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�� Robotic systems used in orthopaedics have evolved from 
active systems to semi-active systems.

�� Early active systems were associated with significant tech-
nical and surgical complications, which limited their clini-
cal use.

�� The new semi-active system Mako has demonstrated 
promise in overcoming these limitations, with positive 
early outcomes.

�� There remains a paucity of data regarding long-term out-
comes associated with newer systems such as Mako and 
TSolution One, which will be important in assessing the 
applicability of these systems.

�� Given the already high satisfaction rate of manual THA, 
further high-quality comparative studies are required uti-
lizing outcome scores that are not limited by high ceiling 
effects to assess whether robotic systems justify their addi-
tional expense.
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Introduction
Background

Long-term outcomes and survivorship of total hip arthro-
plasty (THA) are dependent on the accurate restoration 
of hip biomechanics, which is achieved through optimal 
component positioning.1–9 It is evident that suboptimal 
component positioning leads to joint instability,9 increased 
wear,10 and poorer function.11–14 Robotic-assisted ortho-
paedic surgery has the potential to improve the accu-
racy of component positioning in THA, thus, enhancing 
clinical outcomes.15,16 This review aims to summarize the 

history and development of robotic technology in ortho-
paedic surgery, and discuss the evidence base surround-
ing its use.

Evolution of robotic surgery in orthopaedics

There has been an increased uptake of robotic surgery 
across different specialties since it was first introduced for 
neurosurgical biopsies in 1985.17 In orthopaedics, robotic 
systems are classified as passive, active (autonomous) or 
semi-active (haptic); of which, the latter two are most 
commonly used. With passive robotic systems, the sur-
geon retains control of the robot throughout the proce-
dure. The da Vinci robot is one such example, although 
its use has been limited to upper limb orthopaedic pro-
cedures.18 Early robotic systems for THA were based on 
active technology, where the robot operated autono-
mously under surgical supervision without real-time guid-
ance.19 The robot was programmed using pre-operative 
computed tomography (CT) to carry out bony prepara-
tion for component implantation once adequate surgical 
exposure was achieved intra-operatively. An instant shut-
off switch was available to the surgeon if required.15 In 
recent years, semi-active robotic systems have become 
increasingly popular.15,20 These systems require the sur-
geon to guide the robotic arm for bony preparation via a 
haptic feedback mechanism that ensures minimal devia-
tion from the pre-determined surgical plan. Additionally, 
these systems have the capability to provide real-time 
information on femoral preparation to allow corrections 
to be made intra-operatively.

First-generation robotic systems
ROBODOC

ROBODOC (Curexo Technology Corporation, Fremont, 
California, USA) was an active robotic system and the first 
robotic system used in THA.21 Since its inception, it has 
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been used in over 17,000 procedures.22 As part of the pre-
operative phase, a CT scan of the patient was uploaded 
to the ORTHODOC workstation software to generate a 
three-dimensional (3D) virtual model of the patient’s 
anatomy. This was used to plan and select the optimal 
design and size of the femoral component based on fit 
and fill for each patient.20 The customized plan would 
then be transferred to the ROBODOC surgical system 
consisting of a five-axis robotic arm with a high-speed 
milling device.21 Post calibration and ‘matching’ of the 
pre-operative plan to the patient’s anatomy, the robotic 
arm would then be used to mill out the proximal femur 
to accommodate the press fit femoral stem. Since this 
was a fully active system, once initiated, the only input 
allowed by the surgeon was an emergency stop. The ace-
tabulum would then be manually reamed and standard 
instrumentation used for component implantation. Sev-
eral modifications were made throughout its lifespan to 
address early complications associated with the original 
pin-based calibration system,21,23 which required inser-
tion into the femur.24,25 In 2004, the holding company, 
Integrated Surgical Systems became financially insolvent 
after facing a class action lawsuit over complications 
associated with the system and was acquired by Curexo 
Technology Corporation.

CASPAR

CASPAR (Universal Robotic Systems Ortho, Germany) was 
an active robotic system that utilized similar pre-operative 
CT planning to ROBODOC to mill the proximal femur 
and guide implant insertion. This system had several 
prevailing issues; notably, variable precision of implan-
tation and poorer post-operative outcomes,26–29 which 
highlighted the challenges associated with early robotic 
systems. This system is no longer in used since Universal 
Robotic Systems Ortho, the company behind it, went out 
of business.30

ACROBOT

ACROBOT (The Acrobot Co. Ltd, London, UK) was devel-
oped with the aim of addressing issues associated with 
ROBODOC and CASPAR.19 As with the aforementioned 
systems, pre-operative CT-based software was used to cre-
ate a surgical plan. This was then mapped to the patient’s 
anatomy using a non-invasive anatomical registration 
method with the robotic arm subsequently guided by the 
surgeon to perform bony resection under haptic feed-
back.31 This system was advantageous as it could achieve 
the same level of accuracy as its predecessors without a 
significant time delay.32 This system was sold to Stanmore 
Implants Worldwide and the technology was purchased 
by Mako as part of a confidential patent infringement set-
tlement in 2013.19

New-generation robotic systems
Mako

Mako (Stryker Corporation, Kalamazoo, MI, USA) is a 
semi-active robotic system that has been used in more 
than 20,000 THAs.15,33,34 Similar to earlier systems, pre-
operative CT imaging is used to generate a 3D model of 
the native hip joint. An initial plan is created using selected 
CT landmarks and superimposed onto the 3D reconstruc-
tion. The surgeon is then able to fine-tune this to ensure 
optimal templating of component size and alignment, 
thus allowing the desired restoration of hip biomechanics, 
bone coverage, component positioning and leg-length 
correction.15 In contrast to earlier systems, the robotic 
arm is not fully automated but based on haptic feedback, 
so the surgeon retains partial control. There are cur-
rently two Mako software paths available: the enhanced 
and express femoral workflows. The enhanced workflow 
requires the full mapping and matching of both the proxi-
mal femur and acetabulum to the pre-operative 3D plan. 
This is performed by the registration of 32 surface points 
on both the acetabulum and femur, making it possible to 
calculate offset and hip length throughout the operation 
via pelvic and greater trochanteric checkpoints. For this 
workflow, initial femoral canal preparation and measure-
ment of stem version allows subsequent adjustment of 
planned acetabular component positioning prior to ream-
ing and cup placement. This is based on the theory of 
combined version as described by Ranawat and Dorr.35,36 
Although the femur is prepared manually, the level of the 
neck cut can also be marked as indicated by the Mako 
software prior to resecting. For acetabular preparation, 
the surgeon reams using the robotic arm guided by hap-
tic feedback. This prevents the surgeon from straying from 
the surgical plan. The same haptic-guided robotic arm is 
used to implant the acetabular component with the Mako 
software monitor displaying real-time information thus 
ensuring the cup is well seated. This ensures that over-
reaming is restricted to 2.3 mm and cup orientation to 
within 5° of the surgical plan.34 The express workflow uses 
the robotic arm for acetabular preparation only but allows 
limb-length discrepancy and offset to be calculated with 
similar accuracy to the enhanced workflow using similar 
pelvic and femoral checkpoints.

TSolution One

TSolution One is an active robotic system that incorpo-
rated the technology developed for ROBODOC. In addi-
tion to active femoral canal preparation, this system 
provides guided acetabular reaming and assisted cup 
implantation with the robotic arm. This system has since 
gained FDA approval, although the effectiveness of this 
system is yet to be determined due to the lack of available 
studies.19,37
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Operating system platforms
Open platforms

ROBODOC and CASPAR were open platforms. This meant 
that they provided compatibility with different implant 
companies and designs, which enabled the surgeon to 
tailor implant choice to the patient’s anatomy. However, 
the capability of the open platform to incorporate con-
figurations for multiple implant choices resulted in a lack 
of design specificity and biomechanical data to predict 
optimal implant positioning.30,38

Closed platforms

Mako is a closed platform, which currently limits the ace-
tabular component to the Trident cup and the stem choice 
to either the cemented Exeter or uncemented Accolade II 
stem (Stryker, Mahwah, New Jersey, USA). As such, sur-
geons may have to use an alternative implant compared 
to their usual practice. As the long-term outcomes relat-
ing to this system become clearer, surgeons will need to 
decide whether the risks and benefits of such a robotic sys-
tem outweigh those associated with implant choice.33,39

Component positioning
There is a growing body of evidence that robotic THA sys-
tems improve component alignment.15 Previous active 
systems have focused on femoral canal preparation using 
a robotic milling arm prior to manual insertion, whilst 
more recent semi-active systems such as Mako favour 
acetabular preparation and insertion using a robotic arm 
incorporating haptic feedback. In addition, the enhanced 
workflow capability offers the option of optimizing com-
bined version as described above.34,36,40

Femoral side

Bargar et al noted that the ROBODOC group had signifi-
cantly better stem positioning compared to the manual 
group,21 which has also been confirmed by other stud-
ies.23,41,42 Furthermore, manual THA was associated with 
greater deviation in femoral anteversion from the pre-
operative plan, which correlated weakly with higher 
vertical seating of the stem and increased risk of femoral 
fracture. Cadaveric and lab-based studies of CASPAR have 
suggested improved accuracy of femoral preparation over 
a manual approach, although this may be influenced by 
the type of stem used.43–46 However, the effectiveness of 
CASPAR in a clinical environment has been questioned. 
One study showed a significantly lower accuracy of post-
operative femoral stem anteversion compared with pre-
operative planning.29 This highlights the importance of 
correlating experimental data with clinical outcomes, 
when appraising new technology. Although the Mako 
system relies on manual femoral broaching, the enhanced 

femoral workflow path allows intra-operative calculation 
of the trial femoral stem version. This allows femoral stem 
retroversion to be detected and corrected towards a tar-
get of 15° anteversion if required.47

Acetabular side

Several studies have evaluated Mako’s ability to improve 
placement of the acetabular component. This has been 
based on previous studies noting the Lewinnek safe 
zones and subsequent Callanan modification as essential 
parameters for successful THA.9,48 Illgen et al reviewed 
300 manual and robotic-assisted THAs.49 In their study, 
the robotic group had improved acetabular component 
placement within the Lewinnek safe zones compared 
to the manual group. Subsequent studies have demon-
strated a higher likelihood of placement of the acetabular 
component within the Lewinnek and Callanan safe zones 
with Mako.50–52

Preservation of bone

Given the rising incidence of revision arthroplasty, bone 
stock preservation is an important consideration in primary 
THA.20 Short stems are advantageous over long stems as 
they conserve more bone, thus providing more favour-
able conditions for future revision.53 However, meticulous 
preparation of the femoral canal is required due to the 
lack of diaphyseal fit in order to reduce the risk of stem 
malalignment, incorrect stem sizing, and intra-operative 
fracture.54 One advantage of the ROBODOC was its com-
patibility with short metaphyseal-fitting stems. A cadaveric 
study by Lim et al noted improved fit, better seating and 
a reduced risk of intra-operative fracture with ROBODOC 
compared to manual rasping.55 This was corroborated by 
a clinical study which confirmed more accurate implan-
tation of short femoral stems using ROBODOC’s milling 
system compared to manual methods.56 Preservation of 
acetabular bone stock in primary THA is essential in ensur-
ing proper stability of cementless acetabular components 
as well as for considering future revision surgery.57,58 The 
haptic feedback of the Mako robotic arm ensures acetabu-
lar over-reaming is restricted to no more than 2.3 mm of 
the pre-operative CT plan.34 A study by Suarez-Ahedo et al 
suggested that this accuracy led to a greater preservation 
of bone stock compared to conventional THA.58

Limb-length discrepancy

Limb-length discrepancy (LLD) is associated with patient 
dissatisfaction and is the most common reason for litiga-
tion after THA.59,60 The ability of robotic systems to poten-
tially minimize LLD is advantageous. A ROBODOC study 
noted that LLD was significantly reduced in THAs where 
the femoral canal was prepared with robotic assistance 
compared to being manually rasped. This was despite the 
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manual implantation of all femoral stems.23 A prospective 
study by Nakamura et al with a minimum five-year follow-
up noted that, although there was no significant differ-
ence in LLD between the ROBODOC-assisted (75 hips) 
and hand-rasped THAs (71 hips), the ROBODOC group 
had significantly less variance in LLD.41 Furthermore, Lim 
et al noted significantly smaller LLD with ROBODOC com-
pared to manual THA.56

Although a cadaveric THA study has demonstrated 
the accuracy of measurement of leg lengths using Mako 
software compared to CT scans,61 there are still questions 
about whether this extrapolates to a reduction in LLD or 
planned limb-length correction compared to traditional 
techniques. Kayani et al noted that the Mako was more 
accurate at restoring the patient’s native centre of rota-
tion and offset, but there was no difference in planned 
limb-length correction compared to manual THA.62 Two 
recent systematic reviews concluded no significant dif-
ference in limb-length discrepancy between robotic and 
manual THR.63,64

Clinical outcomes
Functional outcomes

There is a limited amount of data evaluating functional 
outcomes including patient-reported outcome measures 
(PROMs) for robotic THA. Most data available are based on 
active robotic systems which are now obsolete. For ROBO-
DOC, the majority of studies reported similar functional 
outcome scores between robotic THA and manual THA 
after three years of follow-up.21,23,25,56 However, Nakamura 
et al noted marginally improved Japanese Orthopaedic 
Association scores in the robotic THA group compared to 
the manual THA group at two and three years follow-up, 
although this was not sustained after five years.41 A long-
term study of patients undergoing surgery with ROBO-
DOC by Bargar and colleagues found that the robotic 
THA group had significantly improved pain and function 
scores compared to the manual THA group. There were 
no significant differences in wear or revisions for loosen-
ing noted.22 One study evaluated the effectiveness of CAS-
PAR compared to the conventional techniques.28 In this 
study, the authors reported similar Harris Hip Scale (HHS) 
and Health Status Questionnaire (HSQ) scores between 
the two groups after 18 months of follow-up. However, 
the Merle d’Aubigné–Postel score was significantly less, 
and hip abductor function significantly poorer in the 
CASPAR group. More recently, several studies have evalu-
ated outcomes associated with the Mako robotic system. 
Perets et al documented improvements in function, pain 
and patient satisfaction scores with this system after two 
years.65 These findings were supported by a subsequent 
study comparing Mako and manual THAs, which showed 
significantly better functional scores with Mako.3

Complications

A prevalent issue with robotic-assisted THA has been the 
high rate of technical complications resulting in conver-
sion to the manual approach.23,25 Two studies estimated 
that technical complications associated with ROBODOC 
were as high as 18%.23,25 A recent study of Mako reported 
technical complications in 1.4% of cases,50 which may 
suggest improvements in the reliability of newer robotic 
systems. Nevertheless, it is evident that technical issues 
such as pelvic array loosening, acetabular registration 
failure, repetitive reaming, and arduous cup implanta-
tion occur more frequently during the learning phase, 
which has important implications for training.52 Another 
important complication to consider is the rate of disloca-
tions. Honl et al reported that the ROBODOC group had 
a significantly higher dislocation rate than the manual 
group at 18%.23 Meanwhile, Nakamura et al documented 
a similar rate of dislocations between the ROBODOC and 
manual groups, which was attributed to better retraction 
and preservation of the hip abductors.41 Illgen et al noted 
dislocations were significantly reduced using Mako (0%) 
compared to manual THA.49 Several studies of ROBODOC 
have suggested that robotic THA may confer an advan-
tage in reducing the risk of intra-operative fracture.21,41 
This can be attributed to greater accuracy of femoral 
canal preparation by milling the proximal femur using the 
robotic arm rather than manually rasping. Several stud-
ies have reported a higher rate of heterotopic ossification 
associated with ROBODOC and CASPAR.28,41 Data regard-
ing intra-operative blood loss are inconclusive. Siebel et al 
noted that there was significantly greater blood loss with 
CASPAR.28 Subsequently, Illgen et al found that blood loss 
was significantly lower with Mako.49 In terms of compo-
nent positioning, Kong et al reported unacceptable cup 
positioning, LLD and offset in 10% of cases.52 Other less 
common robotic complications that have been described 
in the literature include nerve injury, infections and femo-
ral fissures.23,28 A systematic review compared the com-
plication rate of five robotic studies with manual THA.63 
The five studies reviewed related to the ROBODOC and 
CASPAR systems only. They noted a higher intra-operative 
complication rate but a similar post-operative complica-
tion rate in manual compared to robotically assisted THA. 
Overall complication rates were higher in the manual 
THA group. A more recent meta-analysis including Mako 
results also noted that robotic THA had less frequent intra- 
operative complications but more post-operative disloca-
tions and revisions compared to manual THA.64 Overall, 
there were no differences between the groups in terms 
of total number of complications. The authors noted a 
possible trend of reduction in complications with newer 
robotic-assisted THA systems such as Mako and improved 
surgical technique. However, the higher rate of technical 
issues during the learning phase with all systems highlights 
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the importance of having a surgeon with sufficient hip 
arthroplasty experience overseeing the procedure.

Clinical application
Learning curve

The learning curve is defined as the rate of a surgeon’s 
progress in gaining experience or new skills.66 This is typi-
cally described as the number of cases needed to achieve a 
steady state of outcomes. A variety of surrogate outcomes 
have been used to assess the learning curve associated 
with robotic THA including operating time, component 
positioning and intra-operative complications. Earlier 
studies evaluating the ROBODOC system have reported 
mixed results. While Bargar et al and Nakamura et al sug-
gested that a significant learning curve was present,21,41 
Honl et al subsequently refuted this.23 It is important to 
emphasize that the contrasting findings from earlier work 
may be due to differences in study design and sample 
size. Recent studies evaluating the Mako system sug-
gest a learning curve of 12–35 cases based on operating 
time.52,67,68 However, there is also substantial evidence 
that there is no learning curve with regard to component 
positioning with this system.52,68 It would therefore be 
reasonable to conclude that the learning curve associ-
ated with newer robotic systems for THA is more closely 
related to the familiarity of the surgical team with such 
technology.

Cost-effectiveness

Robotic technology is associated with high front-end 
costs, which include the robotic system, operational 
costs, disposables, pre-operative imaging, and implants.20 
These costs vary widely and are dependent on choice of 
system, manufacturer license agreements and individually 
negotiated pricing structures primarily based on each hos-
pital’s surgical volume. When first introduced, the ROBO-
DOC system price offering varied between US$635,000 
and $1.5 million. In some cases this cost is subsidized by 
implant manufacturers in order to increase sales of their 
implants.69 The annual maintenance fees for most robotic 
systems is between $40,000 and $150,000.70 This poten-
tially includes software upgrades which can otherwise 
be an extra financial burden. Alternative payment struc-
tures include leasing models on a case-by-case payment 
structure. Charges are then based on company-specific 
implants and disposables required per case. The costs of 
disposables alone can vary from $750 to $1300.70,71 In 
addition both active and semi-active systems require pre-
operative CT scans which are an additional $260 each.70 
The cost of implants has previously been estimated to rep-
resent between 15% and 87% of surgical costs without 
taking into consideration additional expenses of robotic 
technology.72 There is also likely to be significant variation 

between open and closed platforms, the latter potentially 
having increased pricing due to a lack of competition. 
Chen et al recently analysed the increased cost associated 
with robotic systems compared to manual THA.70 They 
noted that using the Mako system added 12.2% and 6.1% 
respectively to the cost of each THA if 100 and 300 cases 
were performed, assuming a five-year robotic system life 
span. Under the same pricing structure, they suggested 
similar figures of 13.9% and 6.6% for 100 and 300 THAs 
respectively performed with TSolution One robot. Poten-
tial financial burdens to offset the cost of robotic tech-
nology include the costs saved on revision surgery and 
readmission for post-operative complications. For robotic 
TKA surgery the readmission rate has been reported to 
be a 5% lower than for conventional techniques.71 Chen 
et al equated this to a 4% decrease in overall cost of pri-
mary TKA using a robotic system compared to traditional 
instrumentation.70 However, studies regarding robotic 
THA have been less favourable, with higher revision and 
similar post-operative complication rates having been 
reported.21,23 Chen et al equated this to a 20.3% increase 
in cost when using robotic THA compared to manual 
techniques.70

Discussion
Early active robotic systems focusing on femoral canal 
preparation demonstrated theoretical advantages in terms 
of better fit and potentially lower iatrogenic fracture rate 
for uncemented stem implantation. However, improved 
stem fit did not equate to better outcomes nor a reduc-
tion in dislocation rates and other complications. Techni-
cal unreliability with active systems was a significant issue, 
resulting in manual conversion in up to 18% of cases.23 
Newer semi-active systems such as Mako allow for greater 
operating guidance whilst still maintaining the benefits 
of robotic precision for both acetabular reaming and cup 
placement. Further benefits include intra-operative calcu-
lations of hip length, offset and combined version, and 
the ability to make the relevant component adjustments 
accordingly. This semi-active system therefore shows a 
higher degree of accuracy in terms of component posi-
tioning compared to previous active systems.

The higher complication rates in certain comparative 
studies with fully active systems compared to manual 
THA highlights the risks of using robotic technology 
which could potentially overshadow their benefits.23,28 
The semi-active system Mako has demonstrated more 
favourable outcomes, however, with similar overall com-
plication rates compared to manual THA.62 Specific com-
plications such as blood loss and dislocation rates appear 
reduced in robotic THA using this semi-active system but 
increased in previous fully active systems. In terms of dis-
location rates this may be due to the dependency of these 
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preceding active systems on manual acetabular prepara-
tion and implantation.3,28 Potential soft tissue damage 
with certain active systems may have also been a contrib-
uting factor.28

Although robotic innovation is an exciting develop
ment in hip arthroplasty, it has yet to demonstrate superior 
functional outcome scores or improved patient satisfaction 
compared to conventional THA. This lack of difference is 
perhaps a testament to the already great success of the 
latter. Any potential improvement in functional outcome 
is likely to be narrow, and therefore measured outcome 
scores used should enable ‘good’ and ‘excellent’ differ-
ences to be clearly defined.20 Unfortunately, the majority 
of robotic studies so far have utilized outcome scores such 
as the HHS and Merle d’Aubigné–Postel score which are 
limited in this regard by their high ceiling effects.20,73,74 
This may contribute to previous robotic studies showing 
little difference in functional scores compared to manual 
THA. Of note, one study demonstrated poorer scores and 
abductor function in the robotic group although this active 
system is no longer in use.28 Recent functional outcome 
data for Mako, however, are encouraging, although long-
term follow up is required.3,65

One potential issue with closed systems like Mako is 
the limited variation of compatible prostheses. Surgeons 
wishing to embrace this technology may therefore have 
to change their preferred implant choice. As a result, 
a learning curve relating to new implant usage may be 
introduced, independent of robotic technology. One argu-
ment, however, is that reduction in variation may reduce 
overall implant costs, which could potentially offset some 
of the upfront costs of robotic technology. A recent study 
by Boylan et al noted that adoption of a single preferred 
vendor for hip and knee arthroplasty reduced costs by 
23% per case in the first year.75 Despite the potential 
learning curve with new unfamiliar implants, there was 
no difference in short-term quality metrics in this study, 
although higher-volume surgeons were more reluctant to 
change implant.

Most robots currently used in THA are closed systems. 
This not only limits the comparison of individual robotic 
systems with manual implantation of different implants, 
but also prevents, in most cases, the evaluation of different 
robotic systems utilizing the same implant. Any long-term 
comparisons between such technologies should take into 
account that differences in outcome measures and survi-
vorship may be due to individual prosthesis design as well 
as the additional accuracy that robots provide. Whether 
one of these factors has a greater impact in the long term 
may be difficult to establish even with registry data.

Although previous active systems appear redundant, in 
the future there may be a resurgence of interest with the 
TSolution One system. This fully active system is based on 
the legacy of the ROBODOC, but unlike its predecessor 

allows preparation and component implantation of the 
acetabulum in addition to femoral preparation. This 
theoretical improved accuracy in combined component 
version may potentially address previous concerns of 
increased dislocation compared to manual techniques 
in previous active systems.23 Outcome studies, however, 
have yet to be published.

Conclusion
Although robotic-assisted THA is associated with lower 
complication rates and superior radiographic outcomes 
compared to conventional THA, short- and long-term 
functional outcomes remain equivocal.63,64 It must be 
noted that this evidence is based upon limited data from a 
handful of studies, the majority of which are based on pre-
vious robotic systems that are now redundant. The results 
of the newer semi-active system, Mako, are promising, 
with greater accuracy of implant positioning relating to 
the safe zones, restoration of hip offset, and native cen-
tre of rotation.49,62 Further work is necessary to establish 
whether these improvements lead to a significant reduc-
tion in complications and improved long-term outcomes. 
The variation in technical failures, surgical complications 
and outcome measures between systems highlights  
the importance of appraising the merits of each system 
individually to fully quantify the true benefits and risks of 
robotic THA.
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