
sensors

Article

Damage Localization in Composite Plates Using Wavelet
Transform and 2-D Convolutional Neural Networks

Guillermo Azuara , Mariano Ruiz and Eduardo Barrera *

����������
�������

Citation: Azuara, G.; Ruiz, M.;

Barrera, E. Damage Localization in

Composite Plates Using Wavelet

Transform and 2-D Convolutional

Neural Networks. Sensors 2021, 21,

5825. https://doi.org/10.3390/

s21175825

Academic Editors: Victor Giurgiutiu,

Lingyu Yu and Yanfeng Shen

Received: 2 July 2021

Accepted: 18 August 2021

Published: 30 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Instrumentation and Applied Acoustics Research Group, Universidad Politécnica de Madrid, C/Nikola Tesla,
s/n, 28031 Madrid, Spain; g.azuara@upm.es (G.A.); mariano.ruiz@upm.es (M.R.)
* Correspondence: eduardo.barrera@upm.es; Tel.: +34-910-678-958

Abstract: Nondestructive evaluation of carbon fiber reinforced material structures has received
special attention in the last decades. Usage of Ultrasonic Guided Waves (UGW), particularly Lamb
waves, has become one of the most popular techniques for damage location, due to their sensitivity
to defects, large range of inspection, and good propagation in several material types. However,
extracting meaningful physical features from the response signals is challenging due to several
factors, such as the multimodal nature of UGW, boundary conditions and the geometric shape of
the structure, possible material anisotropies, and their environmental dependency. Neural networks
(NN) are becoming a practical and accurate approach to analyzing the acquired data using data-
driven methods. In this paper, a Convolutional-Neural-Network (CNN) is proposed to predict
the distance-to-damage values from the signals corresponding to a transmitter-receiver path of
transducers. The NN input is a 2D image (time-frequency) obtained as the Wavelet transform of
the acquired experimental signals. The distances obtained with the NN are the input of a novel
damage location algorithm which outputs a bidimensional image of the structure’s surface showing
the estimated damage locations with a deviation of the actual position lower than 15 mm.

Keywords: ultrasonic guided waves; structural health monitoring; machine learning; convolutional
neural networks; wavelet transform; damage imaging

1. Introduction

The aeronautical industry’s interest in composite materials has increased significantly
in the last decades, to the point that leading companies in the sector are currently manufac-
turing aircraft structures using composites accounting for more than 50% by weight [1,2].
The suitability of Carbon Fiber Reinforced Polymer (CFRP) materials for aerospace applica-
tions relies on their exceptional mechanical properties, such as a higher stiffness-to-weight
ratio than metallic materials [3]. However, elevated production costs and issues related to
critical damage, such as impact-induced delaminations, make it necessary to elaborate an
advanced maintenance and repair methodology that monitors the structure’s health [4].

In recent years, Structural Health Monitoring (SHM) has become one of the most inter-
esting techniques to evaluate aeronautical structure health, mainly when using Ultrasonic
Guided Waves (UGW), such as Lamb waves, with surface-bonded piezoelectric transducers
(PZT) [5–7]. Damage detection and localization using this technique have traditionally
focused on knowledge of the material’s physical properties and the effective extraction of
damage-sensitive features from the acquired signals. However, the application of SHM
to composite materials presents several challenges related to their inherent anisotropies,
elastic wave damping, and the dispersive nature of UGW.

Machine Learning (ML) methods [8] are used widely in other fields, such as image
classification and speech recognition. They allow putting aside physical knowledge to per-
form purely data-driven methodologies. The advantage of ML methods and, particularly,
solutions using Deep Learning (DL) (i.e., using multiple layers in the network) [9], relies on
the ability to build models from sample data (i.e., the training dataset) to effectively make
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predictions without determining the previous relationships between input and output
data. The Convolutional Neural Networks (CNN) approach [10] uses a class of deep neural
networks based on an architecture implemented with convolutional filters (i.e., kernels)
applied to the input signal or image.

The evaluation of structural systems with ML applications, such as wind turbines [11],
automobiles [12], rotating machinery [13], and civil structures [14–17], has demonstrated
their ability to perform reliable predictions. Recent advances in aerospace structure SHM
using ML methods have demonstrated applications for impact location (e.g., using a 2-D
CNN to detect the impact zone [18], a time-series signal rearranged as 2-D images for
classifying both the structure’s status and the impact zone via CNN [19], and the impact
coordinates using an Artificial Neural Network (ANN) [20]), damage localization in plate-
like structures (using acceleration data [21] and simulating damage located in different
locations with rearranged time-series signals to 2-D images [22], or using spectrograms by
time-varying 1-D CNN [23]) and fatigue prognosis [24]. The previous solutions were based
on both 1-D and 2-D CNNs, but computer vision-based CNN inputs are two-dimensional
images, usually with three channels for RGB codification [10,25,26].

In this work, the acquired waveforms were preprocessed using a Morlet Wavelet
Transform (MWT), converting the time-domain signal into a 2-D array including time-
domain and frequency-domain information. Wavelet Transform (WT) has been widely used
in time-frequency fault diagnosis [27] and vibration-based rolling bearing evaluation [28].
In addition, WT methods have been primarily used in Lamb wave-based SHM instruments
due to their ability to extract meaningful features from 1-D signals, such as Time of Flight
(ToF) [29,30], and frequency correlations [31–33].

In our research, a 2-D CNN was applied to estimate the normal distance from the direct
transmission path to the damage using wavelet-transformed 1-D experimental UGW signals
(particularly, the residual signals obtained from the responses to two different excitation levels),
propagating through a composite plate as inputs. Two different approaches with CNNs were
considered: a regression output and a classification output. The obtained distances were
subsequently introduced into a novel damage location algorithm for obtaining a color-map
image showing the estimated locations of the damage. The combination of 2-D CNNs, with
their advanced capabilities to extract meaningful characteristics from a disperse dataset (with
high variance in the input data, due to their dependence on several conditions, such as
temperature and boundary conditions), and the novel algorithm designed for this study,
presents a powerful tool for damage localization in composite plates.

Section 2 presents the physical background on which the feature extraction is based.
Section 3 introduces the methodology followed in the paper for distance estimation (ex-
perimental setup, data acquisition process, data preprocessing, designed CNN models,
and the formulation of the imaging algorithm). Section 4 shows the results from both the
CNN training process and the imaging results. The final sections present the discussion,
conclusions and future application of the study.

2. Physical Background

Elastic waves propagating through thin plates result in UGWs and, particularly,
Lamb waves [34]. In a solid plate-like medium, these waves propagate, interacting with
boundaries and defects, resulting in “wave packets” in a multimodal way [35]. UGWs
are very powerful for SHM applications due to their large-range inspection, good wave-
damage interaction, and cost-effectiveness.

PZT transducer distribution over a plate-like structure has been deeply studied through-
out the last decades [36–38], resulting in several studies trying to solve the influence of
the transducer distribution in the imaging algorithms [39–42]. The influence of damage on
wave propagation may result in signal attenuation, phase shifting, and higher harmonics
generation [43,44]. These variations in signals can be easily quantified by performing signal
processing and statistical analysis in both time-domain and frequency-domain.
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However, the influence of damage located far from the direct-transmission path, in a
pitch-catch configuration, needs a deeper analysis of the acquired signals and it is usually
laborious to obtain meaningful indicators. Figure 1 shows how the location of damage
outside of two different direct-propagation paths can affect the guided wave.
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Figure 1. Scattering effects of damage outside the direct propagation path.

These effects are depicted in Figure 2. Different simulated damage (using a putty-like
Blu-Tack mass) were performed in a preliminary experiment carried out in a composite
plate to analyze how the scattering effects influence the propagated direct wave. Using sig-
nal processing techniques, increases in amplitude and phase delay-shifting were observed
as the path-to-damage distance decreased. However, the slight amplitude differences made
it difficult to extract robust indicators from these signals using traditional signal processing.
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Figure 2. Scattering effects of three simulated damages outside the direct propagation path. The higher the distance from
damage to the direct path, the lower the attenuation of the response signal. (a) Layout of the preliminary experiment.
(b) Acquired signals propagated from the actuator to sensor (excitation signal was a 20 V amplitude, 3.5 cycles hanning-
windowed, and 325 kHz toneburst).
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3. Methodology

This paper presents the methodology followed to implement a 2-D CNN network to
locate damage using experimental data from a composite-material plate. The following
paragraphs detail the experimental setup, the data generation and acquisition process
for network training, the preprocessing of the time-series signals to convert them into a
two-dimensional array, the architecture of the proposed CNNs, and the imaging algorithm
designed for this method.

3.1. Experimental Setup Configuration

In this study, a thermoplastic matrix composite plate was used to propagate the UGW
through it (Table 1). Twelve PiCeramic PZT transducers model DuraAct P-876K025 (with
active disc D10 mm× TH 0.2 mm) were bonded to its surface using an epoxy adhesive from
DELO (AD821). They were wired to the 12-channels of an embedded electronic system [45]
capable of generating and acquiring electric signals with a sampling frequency of 12.5
MS/s. Figure 3 shows the specimen and the simplified drawing showing its dimensions.

Table 1. Composite plate characteristics.

Matrix Polymer/Carbon Fiber Layers Ply/Total Thickness (mm) Stacking Sequence

Tenax-E TPCL PEEK-HTA40/
Tenax-E HTA40 3K 9 0.31/2.79 [0/90/+45/

−45/0/90/+45/−45/0]
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(b) Detailed drawing with significant dimensions (in mm).

3.2. Data Acquisition Process for Generating the Training Dataset

DL-based applications require the generation of labeled data to perform training and
create the relationship between input and output. As stated in the introductory section,
the estimated magnitude is the normal distance from a direct transmission path to the
damage. The formula used to compute the distance between a point and a straight line is
Equation (1). The equation parameters are shown in Figure 4.

d(P1(x1, y1), P2(x2, y2), D(x0, y0)) =
|(x2 − x1)(y1 − y0)− (x1 − x0)(y2 − y1)|√

(x2 − x1)
2 + (y2 − y1)

2
, (1)
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Figure 4. Sample labeling: normal distance from damage point to the direct propagation path.

A 5 × 5 positions grid was defined to obtain the measurements for the training
dataset. The damage was simulated by attaching a 4-g, 2.5-cm diameter mass of Blu-Tack
to the surface (see Figure 5). Blu-Tack was selected for simulating damage due to its
mechanical properties, which cause both attenuation and phase shifting on UGW. Besides,
the excitation conditions were varied by sweeping among different conditions: amplitude,
frequency, and the number of cycles. All the excitation signals were hanning-windowed
tonebursts, resulting in narrowband excitation (see Figure 6) with amplitudes of 10 and
20 V, frequency sweeping from 250 kHz to 350 kHz in 5-kHz steps, and the number of
cycles from 3.5 to 6.5 in 0.5-cycles steps. The total number of different tests carried out
was 7644 (2 different amplitudes × 21 frequencies × 7 cycles × 26 grid positions plus
pristine). Since the pitch-catch configuration was selected, 12 transducers attached to
the specimen resulted in 132 different signals per test (12 × 11, removing the pulse-echo
signals), totalizing 1,009,008 (7644 × 132) waveforms.
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3.3. Conversion of 1-D Waveforms to 2-D Arrays Using Wavelet Transform

Preliminary studies using 1D CNN yielded low performance in both training and
testing phases. This motivated signal preprocessing to include both time and frequency
domains in the same data input. The Morlet Wavelet Transform (MWT) was selected to
convert the time-series signal into a time-frequency series, which allowed using them as
inputs for a 2-D CNN. The Morlet complex wavelet was selected due to its suitability to
extract features from UGW, as described in [29–33]. It is calculated through the convolution
of the time-series signal with a wave-like oscillation called the mother wavelet, which is
composed of a complex exponential carrier multiplied by a Gaussian window. The MWT
was not applied directly to the acquired waveform. Instead, our algorithm worked with
the residual signal obtained as the difference between the normalized responses to the
20-V and 10-V excitations, for the same conditions of frequency and toneburst cycles (this
process reduced the available number of training samples by a factor of two, since each
training sample needs for the signals from two tests). The residual signal of two responses
at two different amplitudes of excitation was used to extract the nonlinearities inherent in
the damage [46] by considering that the main source of nonlinearities of the system came
from the damage itself [44]. In addition, the utilization of signals from the same structural
state avoids the use of baseline data for future analysis and its consequent cost in data
storage. The complete workflow is shown in Figure 7. Two different tests were carried out
at two different levels of excitation (10 V and 20 V) with the same frequency and number of
cycles of the toneburst. The signals were then normalized and the residual signal calculated
and later transformed via MWT in a defined frequency range. Finally, the time-frequency
2-D matrix obtained from the wavelet transform was downsampled in the time domain to
achieve the final size (in this study, it was set to 50 pixels corresponding to time domain).

The frequency-range analysis for the MWT was established to 50 equispaced intervals
in the range of 100 kHz–600 kHz, and the time window was set to 0.16 ms duration
(enough time to analyze the first arrival of the wave packets from S0 and A0 modes [47,48]).
Moreover, final downsampling in the time-domain resulted in images of 50× 50 pixels. This
downsampling (reduced by a factor of 40) simplified implementing the data augmentation
technique used to enhance the training. This point is explained in the following paragraphs.
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3.4. Convolutional Neural Networks Design

This section presents the architecture of two CNNs that have a common part and differ
in the implementation of the output layer. One solution uses an output layer with only
one neuron and a linear activation function (linear regression) that estimates the distance
at where the impact is located. The other CNN includes an output layer with 19 outputs
for classifying the discretized 18 interval distances or the pristine state using a SoftMax
evaluation function. The architecture for both CNNs is depicted in Figure 8.
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The designed CNN comprises two convolution layers with Max-Pooling layers stages,
one Convolution layer, and three fully connected layers. The details, such as filter and
pooling sizes and strides, are summarized in Table 2. In the case of regression-based CNN,
the output is the path-to-damage normal distance, which makes it necessary to add an
output neuron that calculates the linear regression from the previous layer. This regression-
based CNN aims to directly estimate the target distance so that the data was arranged as
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50 × 50 × N input training samples and an N × 1 numerical target array containing the
calculated distances from the signal path to each training grid point. The input number of
samples N is discussed in the following section.

Table 2. CNN layers parameters.

Layer Type Operation Size Channels Stride Activation Input Size Output Size Weights

Convolution (1) 5 × 5 64 1 ReLU 50 × 50 × 1 46 × 46 × 64 1664
Max-Pooling (1) 2 × 2 64 2 - 46 × 46 × 64 23 × 23 × 64 0
Convolution (2) 6 × 6 64 1 ReLU 23 × 23 × 64 18 × 18 × 64 147,520
Max-Pooling (2) 2 × 2 64 2 - 18 × 18 × 64 9 × 9 × 64 0
Convolution (3) 7 × 7 64 1 ReLU 9 × 9 × 64 3 × 3 × 64 200,768

Fully-Connected (1) 576 × 288 - - ReLU 3 × 3 × 64 288 × 1 166,176
Fully-Connected (2) 288 × 128 - - ReLU 288 × 1 128 × 1 36,992
Fully-Connected (3) 128 × 19 - - ReLU 1/SoftMax 2 128 × 1 19 × 1 2451
Fully-Connected (4) 19 × 1 - - Linear 1 19 × 1 1 × 1 20

1 Regression-based output layers (last one only in the regression-based model). 2 Classification-based output layer.

The case of the classification-based CNN is slightly different from the regression-based
one. The outputs are 19 different classes, divided as follows: the first 18 classes are the
discretized target distance extracted from the dataset, in the same number of bins (data
best fit is with this 18-bins distribution), and the last class corresponds to the pristine
state, assigning every pristine signal to the same class label. This additional class allows
considering the undamaged state in the model, which was not assigned to any distance. In
the same way as the regression-based CNN model, the data was arranged as 50 × 50 × N
input training samples, but the target array was considered as an N × 19 labels array,
including the labeling for each distance (1, . . . , 18) and pristine (19) class (see Figure 9.).
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The imbalanced distribution of the data among the histogram bins requires a further
data arrangement, eliminating samples randomly to equilibrate the distribution (adapting to
the minimum number of available samples), and thus avoiding bias in the training process.

3.4.1. Improvement of the Training Dataset Using Data Augmentation

To increase training samples for the network, data augmentation was carried out by
slightly shifting the analysis window in Figure 7b and obtaining different images from
the same time-series signal. The analysis window shift was set up to five time-domain
samples, equivalent to a 0.4 µs of time delay in the maximum displacement case, resulting
in a data augmentation of six times. Figure 10 shows examples of images obtained from
the proposed augmentation and the difference among them.

As explained in the previous section, the original dataset, which was highly imbal-
anced concerning the number of samples per class, was reorganized to limit the number of
samples per class. The reference value was obtained from the histogram distribution plot
of the augmented dataset, which is the corresponding value to 14 and 17 classes (14,112
samples, Figure 11a). Finally, doing random selection before training, the final dataset was
as shown in Figure 11b, with a uniform number of training samples per class, totaling
14,112 × 18 classes = 254,016 distance samples, and 14,112 pristine samples.
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3.4.2. Hyperparameters Tuning and Model Training

The training process was performed using Adaptative Moment Estimation (ADAM),
a method for efficient stochastic optimization that only requires first-order gradients with
fewer memory requirements [49]. The batch size was set to 2048 samples, and the number
of training epochs was established at 500. Besides, some parameters were tuned to improve
the training performance, such as a kernel regularization value of 0.0001 [50]; the kernel
weights initializer was Glorot (also known as Xavier) [51].

3.4.3. Training Software Tools

The software selected to develop the CNN models was based on TensorFlow tools.
Anaconda (v.4.0) environment and Spyder IDE (v.4.2) with Python (v3.7) were chosen to
ease the code development and debugging. TensorFlow-GPU backend (v.2.1.0) and Keras
(v.2.2.4) were selected to design, analyze, and train the models. The training process was
carried out using Nvidia Geforce RTX 2080. The computational training cost was around
1.5 h due to the use of the GPU in the training phase.

3.5. Distance Estimation-Based Imaging Algorithm

With the main goal of obtaining an image of the damage index (between 0 and 1) for the
plate, a specific algorithm was designed and implemented, receiving as input the estimated
distances values obtained as outputs from the CNNs. In the case of the regression-based
method, the distance output was directly fed to the imaging algorithm, but in the case of
the classification-based method, each class was assigned to its corresponding numerical
value. The algorithm was based on a geometric Gaussian distribution (see Equation (2)),
assigning a higher value to the DI when the actual path-to-damage normal distance was
closer to the predicted distance by the CNN, which means the analyzed point had a higher
probability of being a damage location (Figure 12). Regarding Equation (2), the partial
assigned value to DI is higher for the paths t − r for which the predicted distance is closer
to the actual distance to the analysis point (x,y).

DI(x, y) = ∑N
t=1 ∑N

r=1, r 6=t ∑B
b=1 wb·e

−
(distt−r

(x,y)−distpred(b))
2

2σ2 , (2)

where:

DI(x, y): damage index for the analyzed point.
N: number of attached transducers.
distt−r

(x,y): normal distance from the analysis point (x,y) to the line which intersects the
transmitter and receiver transducers (t and r) path.
distpred(b): predicted distance (corresponding distance-class value, in case of classification-
based CNN) for the input signal (wavelet-transformed image).
σ: standard deviation of the exponential-Gaussian distribution. This value controls the
influence of the propagation path on the analyzed point.
wb: probability value for each b class in the t-r path signal prediction (only for classification-
based CNN; otherwise, wb = 1). The value is obtained as output from the SoftMax layer of
the model.
B: number of classes (only for classification-based CNN—18 distance classes, the pristine
class has no associated distance value; otherwise, B = 1).
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Figure 12. DI value assignment by the algorithm. (a) Distances layout for two different points, P1 (x1,y1)
and P2 (x2,y2). P2 is more likely to be a damage point than P1 because it is closer to the predicted distance
(the difference between actual distance and predicted distance is lower). ∆di is the difference between
predicted distance and pixel-path distance. (b) Designed Gaussian distribution, showing the corresponding
DI values for the previous points represented by ∆di, for two different distributions with σ2 > σ1. Each
distribution assigns a higher probability value to P2 because it is closer to the predicted distance.

4. Results

This section introduces the network training, validation, testing results, and imaging
algorithm outcomes.

4.1. Training Process

The previous sections show how the training samples were distributed. The aug-
mented dataset of 14,112 samples per class totaled 254,016 samples for the regression-based
model (target value is the real number distance, not a class), and 14,112 × 19 = 268,128 sam-
ples for the classification-based model (adding the pristine class). The training, validation
and testing dataset proportions were set to 70%, 25% and 5%, respectively, for each model’s
training. Figure 13 shows the training process for both models, achieving 94.09% accuracy
for training and 85.60% for validation in the classification-based model; the regression-
based model had 0.203 cm error for training and 3.632 cm error for validation. The training
process was carried out several times to check its stability, due to its stochastic nature.
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Figure 13. Training indicators evolution for (a) regression-based model (RMSE in cm) and
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Figure 13 shows two different results: for the regression-based model (Figure 13a).
Its goodness of fit was evaluated through the RMSE (Root Mean Square Error) function,
while for the classification-based model (Figure 13b), the goodness was evaluated through
cross-entropy loss function, showing, in this case, both accuracy and loss values evolution.
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4.2. Imaging Results

Several additional tests were carried out to check the effectiveness of the models,
locating the Blu-Tack mass on other positions than previously trained: one slightly shifted
from a training-grid position, two of them randomly located, two others by attaching two
Blu-Tack masses at the same time, and finally, in a pristine state to evaluate the effectiveness
of the additional pristine class in the classification-based model (Figure 14).

The results for tests, considering a grid size of 100 × 100 pixels (each pixel area is
9 mm2), and a σ value of 12.5 mm, are shown in Figure 15 for the regression-based model,
and in Figure 16 for the classification-based model.
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The images show high accuracy in the location, calculated in Tables 3 and 4 (in terms of
distance deviation from the predicted position to the actual location), even for the tests with
multiple coexistent damage, a situation that was not trained for and expected by the model.

Table 3. Predicted locations and deviations of single damages (all units in mm).

Regression-Based Model Classification-Based Model

Damage Actual Location (mm) Predicted Location (mm) Deviation (mm) Predicted Location (mm) Deviation (mm)

1 (73.3,110) (69.09,108.5) 4.47 (72.12,111.5) 1.92
2 (135,85) (135.8,87.27) 2.39 (123.6,84.24) 11.39
3 (170,85) (160,81.21) 10.69 (163,96.36) 13.33

Table 4. Predicted locations and deviations of multiple damages (all units in mm).

Regression-Based Model Classification-Based Model

Dam. Actual (1) Actual (2) Predicted (1) Predicted (2) Dev. (1) Dev. (2) Predicted (1) Predicted (2) Dev. (1) Dev. (2)

4 (92.5,45) (47,146) (96.36,50.91) (47.88,160) 7.06 14.02 (81.21,41.82) (41.82,147.9) 11.72 5.51
5 (170,85) (75,35) (157,87.27) (81.21,35.76) 13.22 6.25 (169.1,84.24) (75.15,38.79) 1.18 3.79

Of particular note is the pristine case. In the case of the regression-based model, the model
estimated some distances inside the plate, resulting in the image shown in Figure 15 (Pristine),
which shows several false positives. To avoid this effect, the added class in the classification-
based model corresponding to pristine signals, and setting a threshold for the imaging process
(in 80% of cases the signals are classified as pristine with the specimen undamaged), resulted in
an all-zeroes surface, which means the analyzed structure is unaltered significantly (in this test
the number of signals classified as pristine was 116/132 = 87.87%).

5. Discussion

Even though both models’ training processes showed an accuracy value of around
90%, the subsequent results, mainly achieved with the novel imaging algorithm, showed
the full model (CNN plus imaging algorithm) as a reliable approach for accurate location of
damage. Besides, the ability of the proposed method to detect multiple damage events, even
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though the training was carried out with single damage events, expands its possibilities in
terms of generalization.

Blu-Tack simulated damage detection using the proposed CNN approaches resulted
in accurate predictions for every additional test, as seen in Tables 3 and 4. The maximum
deviation obtained for any single simulated damage was less than 15 mm, and the mean
value of the deviation for all single damage tests was approximately 5 mm, while the
mean value for multiple damage was around 10 mm. Considering that the UGW S0 mode
wavelength in the range of frequencies used in this study varied approximately between
0.02 m and 0.015 m, the obtained deviation values were within the range of Lamb waves
sensitivity [43]. However, even though these results are promising, further validation on
larger structures is needed.

The obtained map with the DI identifies the location of the individual damage without
false positives, avoiding unnecessary additional inspections. Furthermore, the addition of a
pristine class to the classification-based CNN helped to successfully evaluate the existence of
damage (i.e., simple structure evaluation from the point of view of damaged-undamaged).

The presented imaging algorithm showed high performance for damage localization,
even when multiple damage events were present at the same time. Its utilization instead
of traditional imaging algorithms, such as RAPID [40] and Delay-and-Sum [52], showed
better results when damage effects on UGW were slight, with the drawback of the previous
training of the CNN for distance estimation.

6. Conclusions and Future Work

The work presented in this paper demonstrates the feasibility of 2D CNNs to estimate
the damage index in a thermoplastic composite plate. The methodology followed to
implement the solution using the Morlet wavelet transform and different CNN layers
allow a solution generating an acceptable error in damage location. The ability of CNN
for extracting damage-sensitive features from wavelet-transformed signals was shown
with high effectiveness, with a special focus on normal path-to-damage distance, allowing
triangulation of the position of the damage using the novel algorithm proposed for the
methodology. The high accuracy of the prediction, obtained from the imaging process
of the plate, makes the method a promising tool to be applied in SHM of aeronautical
structures using PZT transducers.

The use of Blu-Tack for simulating damage (a well-established technique in UGW-
based SHM research due to its scattering capabilities) should be changed by causing real
damage, especially impact-induced delaminations, which are the most common damage
sources in the aeronautical field when structures are manufactured with composite mate-
rials. Future research activity will include the execution of additional tests (in different
environmental and operational conditions) in aeronautical facilities, applying the method-
ology developed in this work. The outcomes of these tests will allow improvement of the
dataset to generate an enhanced CNN model, as well tuning the σ parameter in such a way
that minimizes deviations in predictions with different transducer distributions.

Another consideration is the implementation of this methodology inside electronic
embedded devices [45,53,54]. These devices enable internal data processing and real-
time damage detection capabilities, making them very suitable for the SHM objective of
autonomous structure evaluation. The application of software development and hardware
acceleration tools, such as the OpenCL framework, will allow CNN model integration in
autonomous embedded real-time systems.
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