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Biliary innate immunity is involved in the pathogenesis of cholangiopathies in cases of biliary disease. Cholangiocytes possess
Toll-like receptors (TLRs) which recognize pathogen-associated molecular patterns (PAMPs) and play a pivotal role in the innate
immune response. Tolerance to bacterial PAMPs such as lipopolysaccharides is also important to maintain homeostasis in the
biliary tree, but tolerance to double-stranded RNA (dsRNA) is not found. Moreover, in primary biliary cirrhosis (PBC) and
biliary atresia, biliary innate immunity is closely associated with the dysregulation of the periductal cytokine milieu and the
induction of biliary apoptosis and epithelial-mesenchymal transition (EMT), forming in disease-specific cholangiopathy. Biliary
innate immunity is associated with the pathogenesis of various cholangiopathies in biliary diseases as well as biliary defense
systems.

1. Introduction

Primary biliary cirrhosis (PBC), primary sclerosing cholan-
gitis (PSC), and hepatolithiasis in adults and biliary atresia
and choledochal cyst in infants are biliary diseases in which
different anatomical levels of the biliary tree are specifically
affected and characterized by cholangiopathy. The biliary
tree, consisting of cholangiocytes, is a system of connecting
ducts that drain the bile secreted by hepatocytes into the
duodenum. Cholangiocytes provide the first line of defense
in the biliary system against luminal microbes originat-
ing from the intestines via portal blood and duodenum
[1]. In general, although human bile is normally sterile, it
can contain bacterial components such as lipopolysaccharide
(LPS), lipoteichoic acid, and bacterial DNA fragments,
known as pathogen-associated molecular patterns (PAMPs)
[2–5], and cultivable bacteria are detectable in bile of
patients with biliary diseases [1, 6–8]. Enteric bacteria, in
particular, may be responsible for the chronic proliferative
cholangitis associated with hepatolithiasis [1, 6]. These
findings indicate that cholangiocytes are exposed to bacterial
PAMPs under physiological as well as pathological condi-
tions.

Innate immunity was initially thought to be limited to
immunocompetent cells such as dendritic cells and macro-
phages, but epithelial cells also possess TLRs and proper in-
nate immune systems reflecting the specific micro-environ-
ment and function of each epithelial cell type. Recent studies
concerning biliary innate immunity indicate that cholangi-
ocytes express a variety of pathogen-recognition receptors
such as Toll-like receptors (TLRs) [9, 10]. Infectious agents
have been implicated in the etiology or progression of
cholangiopathies including cholangitis, bile duct loss, and
lithiasis as a trigger or aggravating factor. Notably, several
enterobacteria and viruses are speculated to be primary or
secondary factors for PBC, PSC, biliary atresia, hepatolithia-
sis, and chronic cholecystitis [2, 3, 11–15] (Table 1). More-
over, no microorganisms showing cholangiocyte-specific
tropism have been identified, suggesting that an innate im-
mune response specific to cholangiocytes rather than PAMPs
is important in the pathogenesis of cho-lan-gi-op-a-thy.
This review summarizes our current understanding of the
biliary innate immune system against microbial infections
including the various mechanisms employed by negative
regulators and their associations with the pathogenesis of
cholangiopathy in biliary diseases.
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Table 1: Bacteria and viruses speculated to be etiologic factors in
biliary diseases.

Primary biliary cirrhosis

Lipopolysaccharide

Lipoteichoic acid

Helicobacter

β-retrovirus

Propionibacterium acnes

Escherichia coli

Mycobacterium

Novosphingobium

Lactobacillus

Chlamydia

Biliary atresia

Reovirus

Rotavirus

Cytomegalovirus

Adenovirus

Enterovirus

Ebstein-Barr virus

Primary sclerosing cholangitis

Helicobacter

α-hemolytic streptococcus

Hepatolithiasis

Escherichia coli

Klebsiella

Streptococcus

Pseudomonas

Bacteroides

Clostridium

Campylobacter

2. Molecular Mechanisms of Biliary
Innate Immunity

2.1. Expression of PAMP-Recognizing Receptors and Intracel-
lular Adaptor Molecules. The TLR family are the best char-
acterized cell surface receptors recognizing PAMPs, and 10
members (TLR1-10) have been identified in humans [16,
17]. The response to LPS is mediated by interaction with
TLR4 in conjunction with the TLR4 accessory proteins MD-
2 and CD14, triggering the transduction of intracellular
signals followed by the activation of TLR-associated adapter
proteins, myeloid differentiation factor 88 (MyD88), and
IL-1 receptor-associated kinase- (IRAK-)1, leading to the
activation of nuclear factor-κB (NF-κB) and then to the
synthesis of antibiotics and proinflammatory cytokines. In
contrast to bacterial PAMPs, dsRNA including viruses are
recognized by TLR3, IFN-inducible helicase retinoic acid-
induced protein I (RIG-I), and melanoma differentiation-
associated gene-5 (MDA-5). The stimulation of these recep-
tors by dsRNA transduces signals to activate transcription
factor interferon regulatory factor 3 (IRF3) as well as NF-κB.

Table 2: Expression of Toll-like receptors in cultured human biliary
epithelial cells (BECs), cholangiocarcinoma, and murine BECs.

Human Murine

BECs Cholangiocarcinoma BECs

TLR1 + [19]

TLR2 + [19, 20] + [2] + [2]

TLR3 + [19, 20] + [2] + [2]

TLR4 + [19–21] + [2] + [2]

TLR5 + [19, 20] + [2] + [2]

TLR6 + [19, 20]

TLR7 + [19] /−∗
TLR8 + [19] /−∗
TLR9 + [19] /−∗
TLR10 + [19]

Blanks: no reports. ∗Our unpublished data. Parentheses denote reference
numbers.

NODs (i.e., NOD1 and NOD2) are also involved in the intra-
cellular recognition of microbes through specific interactions
with derivatives of pathogen-specific peptidoglycans [18].

The expression of TLRs in human and murine cholan-
giocytes and several human cholangiocarcinoma cell lines
has been confirmed by several groups (Table 2), implicating
the possible activation of biliary mucosal immunity against
microbial infections [2, 19–23]. Cultured human and murine
biliary epithelial cells (BECs) possess at least TLR1-TLR5,
related molecules (MD-2, MyD88, and IRAK-1), RIG-I,
and MDA-5 [2, 20, 23, 24]. Moreover, SV40-transformed
human cholangiocytes expressed mRNAs for all ten human
TLRs [19]. Immunohistochemistry has confirmed that
intracellular adaptor molecules (MyD88 and IRAK-1) as
well as TLRs (TLR1-TLR5) are diffusely distributed in the
intrahepatic biliary tree of normal and diseased human livers,
irrespective of anatomical level (Figure 1) [2, 20–22, 24, 25].
As for NODs, cultured human BECs and cholangiocytes in
intrahepatic bile ducts constantly express the mRNA and
protein of NOD2, but cultured BECs do not respond to
the NOD2 ligand (muramyl dipeptide, MDP), indicating a
suspicious functional expression (our unpublished data).

2.2. Recognition of PAMPs. In addition to the expression
of TLRs in cholangiocytes and the biliary epithelium, the
activation of TLRs has also been demonstrated during bacte-
rial, viral, and parasitic infections. Stimulation with PAMPs
including Pam3CSK4 (TLR1/2 ligand), MALP-2 (TLR2/6
ligand), peptidoglycan (TLR2 ligand), and polyinosinic-
polycytidylic acid (poly(I:C), a synthetic analog of viral
dsRNA, TLR3 ligand) induced the activation of NF-κB, a
major transcription factor downstream of TLRs, in cul-
tured human BECs [2, 20, 23]. In addition to bacteria,
Cryptosporidium parvum (C. parvum), a protozoan parasite
causing intestinal and biliary diseases, also activates both
TLR2 and TLR4 in cholangiocytes to initiate epithelial host
responses, accompanying the recruitment of these TLRs and
ganglioside GM1 to membrane rafts [26]. Membrane rafts
have been implicated in TLR activation in several other cell
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Figure 1: Immunohistochemistry for TLR3 in chronic hepatitis C (a) and TLR4 in primary biliary cirrhosis (PBC). The expression of
TLR3 existing in endosomes is found in interlobular bile ducts (arrow in (a)) and hepatocytes in a cytoplasmic pattern. In contrast, TLR4
expression is highlighted in a membranous pattern (b).

types, including epithelial cells, following microbial infection
[27]. Moreover, viral PAMPs such as double-stranded RNA
(dsRNA) are also recognized by cultured BECs; cultured
human BECs expressed nuclear transcription factors includ-
ing NF-κB and interferon regulatory factor-3 (IRF-3) on
stimulation with poly(I:C), a synthetic analog of viral dsRNA
[23]. These findings indicate that human BECs possess func-
tional PAMP-recognizing receptors and an innate immune
system against viruses as well as bacteria.

In addition to microorganism components, several fam-
ilies of proteins originating from and produced by autocells
are involved in the recognition of pathogens and the products
released from injured or dying cells. In particular, endoge-
nous factors including HMGB1, S100A8/S100A9, and heat
shock proteins are known as damage-associated molecular
patterns (DAMPs) [28], but a detailed analysis has not been
conducted in cholangiocytes.

2.3. Response to PAMPs. As part of the host’s defenses against
infections, cholangiocytes secrete polymeric immunoglobu-
lin A and produce several antibiotics against bacteria (lacto-
ferrin, lysozyme, and defensins) [29–31]. Defensins, in par-
ticular, are key elements in innate immunity. Basic peptides
activate against a broad spectrum of microbes including
bacteria and fungus, defensins are divided into two types, α-
and β-defensins. Human beta-defensins (hBDs) consisting of
hBD1-hBD6 are produced by several epithelial cells includ-
ing cholangiocytes and play an important role in the defense
against mucosal infection. hBD1 distributes throughout the
intrahepatic biliary tree and is detected in bile. Moreover,
studies using cultured human BECs and SV40-transformed
human cholangiocytes confirmed the constant production
of hBD1 and also hBD3 [19, 22]. In contrast, hBD2 is not
physiologically expressed in nondiseased livers and de novo
expression is detected in bile ducts showing suppurative
inflammation in patients with biliary diseases such as
hepatolithiasis and biliary infections and also in their bile
[22]. Moreover, the expression of hBD2 via the activation
of NF-κB occurred on stimulation by PAMPs including LPS,
E. coli, and C. parvum in cultured human BECs [19, 22].
This finding suggests that hBD-1 is constantly detectable

in bile samples while it plays a role in the constitutive
antimicrobial defense of the hepatobiliary system and hBD2
plays a role in the localized biliary defense in cases of
biliary infection. In addition to defending against bacteria,
cholangiocytes possess an innate immune system to fight
viral infections, because cholangiocytes have TLR3, RIG-I,
and MDA-5 recognizing dsRNA viruses such as Reoviridae
(reovirus and rotavirus). Stimulation with poly(I:C), a
synthetic analog of viral dsRNA, induces the activation of
NF-κB and IRF3 and the production of key components
of antiviral immunity, IFN-β1 and MxA [23]. In normal
human liver tissues, small numbers of Kupffer cells, but no
hepatocytes and cholangiocytes, exhibited MxA expression.
In contrast, strong expression of the MxA protein was
identified in Kupffer cells and cholangiocytes in patients
with chronic liver diseases and fulminant hepatic failure
[19]. These findings suggest that cholangiocytes participate
directly in innate immunity and show a prompt response to
pathogens without any help from immunocompetent cells
such as macrophages.

In addition to antibiotics, cholangiocytes produce sev-
eral inflammatory cytokines and chemokines such as IL-
6, TNF-α, IL-8, fractalkine, monocyte chemotactic protein-1
(MCP-1), and CXCL16 [2, 19, 20, 32–37]. IL-6 has been
demonstrated to increase DNA synthesis in human cholan-
giocytes in vitro, indicating increased proliferative activity
[38]. IL-8 is closely associated with neutrophilic infiltration
and its expression is found in cholangitis lenta which is usu-
ally encountered in septic patients and characterized by
bile ductular proliferation, ductular cholestasis, and duc-
tular epithelial damage [33, 39]. Chemokines produced in
cholangiocytes as part of the biliary innate immune response
could result in the recruitment and activation of T cells,
macrophages, neutrophils, hepatic stellate cells, and NK cells
to protect against biliary infection and also play an important
role in bile duct-specific acquired immunity by forming
periductal cytokine networks and migrating immunocom-
petent cells, thereby contributing to biliary mucosal defense
and subsequent acquired immunity.

Cholangiocytes may also function as professional anti-
gen-presenting cells (APCs) and contribute to the control of
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inflammatory reactions [40]. Cultured murine BECs consti-
tutively expressed low levels of MHC Class I and MHC Class
II molecules, and these levels were significantly enhanced
by IFN-γ stimulation and murine cytomegalovirus (CMV)
infection [41]. Moreover, murine BECs infected with murine
CMV showed a progressive cytopathic effect. In contrast,
in cultured human BECs, CMV-infection augmented the
expression of MHC class I but not MHC class II molecules
[42]. These findings suggest that CMV affects the immuno-
genic potential of cholangiocytes.

TLR signals influence from fuctions of tight junctions in
cholangiocytes by activating various intracellular signaling
pathways. LPS disrupted the tight junctions of a rat BEC
monolayer via a TLR4-dependent mechanism and LPS and
C. parvum increased paracellular permeability by activating
c-Src in rat and human BECs [43, 44]. Therefore, biliary
innate immune reactions are involved in the functional
regulation of tight junctions in cholangiocytes.

3. Regulation of Biliary Innate Immunity

TLR signaling initiates adaptive immunity which then regu-
lates the innate immune system to maintain mucosal home-
ostasis. The expression of TLRs in cholangiocytes is highly
regulated, but its disruption has been associated with various
hepatobiliary diseases. Infecting cultured human cholangio-
cytes with C. parvum induced a significant increase in TLR4
protein, a process that appears to be associated with the pro-
duction of hBD2 [19]. T cell-derived inflammatory cytokines
are known to participate in the regulation of TLR expression
in several cells [45, 46]. The interactions of TLRs with Th1
cytokines, in particular, participate in the pathogenesis of
inflammatory bowel diseases [47]. Cholangiocytes express
receptors for cytokines such as IFN-γ, TNF-α, IL-4, IL-6, and
IL17, and thus, are also the target of many periductal inflam-
matory mediators during biliary inflammatory diseases. A
Th1-type cytokine, IFN-γ upregulates the mRNA expression
of TLR2-TLR5 and accelerates the upregulation of PAMP-
induced NF-κB activation in cholangiocytes, suggesting that
a Th1-dominant peribiliary milieu leads to the increased
susceptibility to PAMPs and the production of inflammatory
cytokines and chemokines from BECs [20]. This impaired
regulation of biliary innate immunity caused by the Th1-
predominant milieu may be involved in the pathogenesis of
cholangiopathy in biliary diseases including PBC [48]. In
fact, upregulation of TLR4 and TLR9 in cholangiocytes has
been reported in patients with PBC and PSC [25, 49].

Micro-RNAs play important roles in a wide range of
biological events through posttranscriptional suppression
of target mRNAs. Recent studies indicate that micro-RNA-
mediated posttranscriptional pathways may be critical to
host-cell regulatory responses to microbial infections. Cul-
tured human BECs express let-7 family members which post-
transcriptionally downregulate TLR4 expression and infec-
tions of C. parvum decrease the expression of let-7 resulting
in the upregulation of TLR4 [50]. Moreover, microRNA-
98 and let-7 suppressing cytokine-inducible Src homolog 2-
containing protein (CIS, a suppressor of cytokine signaling

family) at the translational level are expressed in cholangio-
cytes and LPS and C. parvum infections downregulate these
mirco-RNAs, suggesting the regulation of the TLR-mediated
biliary innate immune response [51].

The luminal surface of the bile duct is continually ex-
posed to PAMPs via bile, but cholangiocytes physiologically
do not elicit an inflammatory response. This lack of response
to PAMPs, especially LPS, could be due to “endotoxin toler-
ance” and this system is important in preventing endotoxin
shock in infections as well as maintaining homeostasis in
organs [52]. As for negative regulatory systems of innate
immunity, mechanisms compete with TLR binding and
suppress intracellular TLR signaling using several molecules
including extracellular soluble TLRs (sTLRs), single immu-
noglobulin IL-1-related protein (SIGIRR), IRAK-M (homo-
log of IRAK-1), MyD88s (inactive splice variant of MyD88),
SARM (negative regulator of TRIF), Toll-interacting protein
(Tollip), A20, SHIP (a PI3K inhibitor), and suppressor of
cytokine signaling-1 (SOCS1) [52–58].

Our previous study using cultured BECs and cholangio-
carcinoma cell lines revealed that the activation of NF-κB
and the increased expression of TNF-α caused by stimulation
with PAMPs including LPS are gradually attenuated with
time and that pretreatment with LPS significantly inhibits the
response to subsequent stimulation, suggesting an induction
of LPS (endotoxin) tolerance [59]. Moreover, pretreatment
with Pam3CSK4 (TLR1/2 ligand) effectively induced toler-
ance to subsequent stimulation with LPS (TLR4 ligand)
[52, 59]. Among several negative regulators, the expression of
at least IRAK-M and Tollip has been demonstrated in human
cholangiocytes and treatment with LPS and Pam3CSK4

upregulates the expression of IRAK-M, but not Tollip.
IRAK-M negatively regulates TLR signaling by inhibiting
the activation of IRAK-1 and MyD88 [55]. Furthermore,
immunohistochemistry using human liver tissue sections
confirmed that IRAK-M is diffusely expressed in intrahepatic
biliary trees in both normal and diseased livers. This
negatively regulated mechanism of innate immune response
is important to escape hypercytokine milieu and tissue injury
caused by excessive innate immune responses.

In contrast, treatment with poly(I:C), TLR3 ligand, sig-
nificantly enhanced NF-κB activity in fresh cultured BECs
and pretreatment did not lead to tolerance to poly(I:C). [60]
Levels of production of MxA and IFN-beta1 were also pre-
served. Therefore, TLR tolerance to a viral PAMP (poly(I:C))
is not found in BECs. Although IRAK-M mRNA expression
was upregulated by stimulation with dsRNA (TLR3 ligand),
no tolerance to the dsRNA was found in cultured BECs. This
is reasonable because the intracellular signaling of TLR3 is
a MyD88-independent pathway, that is, the dsRNA-related
response is not affected by IRAK-M [17]. These findings
suggest that cholangiocytes lining biliary trees are resistant
to nonpathogenic commensal bacterial PAMPs, but not
virus-derived dsRNA, maintaining the homeostasis of biliary
innate immunity in physiological conditions. Moreover,
the upregulation of IRAK-M expression on treatment with
poly(I:C) is speculated to cause dsRNA-stimulated BECs
to become resistant to TLR2- and TLR4-related PAMPs
including LPS. Therefore, once cholangiocytes are infected
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Figure 2: Primary biliary cirrhosis (PBC). (a) Chronic nonsuppurative destructive cholangitis (CNSDC). Damaged bile ducts (arrow)
and infiltration of mixed chronic inflammatory cells surrounding bile ducts are found. (b) Bile ducts have disappeared in the portal tract.
Arrowhead and arrow denote artery and portal vein, respectively.

by a dsRNA virus, progressive destruction caused by the
biliary innate response to dsRNA and resistance to bacterial
infection continues until the virus is eliminated.

4. Disease-Specific Cholangiopathy Associated
with Biliary Innate Immunity

4.1. PBC. PBC is characterized by the selective destruction
and loss of interlobular bile ducts including chronic nonsup-
purative destructive cholangitis (CNSDC) (Figure 2) [61].
The etiopathogenesis of PBC still remains speculative, but
a high prevalence of vaginal and urinary tract infections
and the presence of bacterial and viral components in bile
and liver tissue and of the molecular mimicry of human
and bacterial pyruvate dehydrogenase complex-E2 (PDC-
E2, a major epitope of antimitochondrial antibody [AMA])
and xenobiotics are demonstrated (Table 1) [3, 5, 62–68].
Moreover, BECs translocate immunologically intact PDC-
E2 to apoptotic bodies and create an apotope. The unique
triad of BEC apotopes, macrophages from patients with
PBC, and AMAs induces intense inflammatory cytokine
production, providing a mechanism for the biliary specificity
of PBC [69]. Innate immunity changes may be critical to the
initiation and perpetuation of the autoimmune injury, as in
the case of the enhanced response of immunocompetent cells
(monocytes and memory B cells) as well as target BECs to
infectious stimulation and environmental mimics [70, 71].
These findings suggest that the presence of microorganisms
and the innate immune responses against them are involved
in the pathogenesis, particularly cholangiopathy, of PBC.

In PBC, the expression of TNF-α and IL-6 was detected
in cholangiocytes from the liver of patients with PBC, sug-
gesting the result of some biliary response including a biliary
innate immune response [72]. Several studies revealed that,
compared with Th2, a Th1-dominant cytokine milieu is
associated with the pathogenesis including bile duct injury
in PBC [48]. Cholangiocytes possess the receptor for IFN-
γ (Th1 cytokine) and IFN-γ upregulates the expression of
TLRs and susceptibility to PAMPs in cholangiocytes, impair-
ing the regulation of biliary innate immunity. Moreover, IL-4

(Th2 cytokine) and IFN-γ up- and downregulate the expres-
sion of peroxisome proliferator-activated receptor γ (PPARγ)
showing anti-inflammatory activities in biliary innate
immune response, respectively, in cultured human BECs
[73, 74]. PPARγ is constitutively expressed in cholangiocytes
of intrahepatic small bile ducts. PPARγ as well as IRAK-
M, therefore, may also relate to the maintenance of biliary
homeostasis as a tolerant regulator by attenuating inflam-
matory signals in cholangiocytes to commensal PAMPs in
biles [73]. However, in PBC liver, PPARγ expression is
significantly downregulated in the affected bile ducts as a
Th1-dominant periductal cytokine milieu [73]. Moreover,
the upregulation of TLR4 and TLR9 in cholangiocytes and of
TLR3 and type I IFN signaling pathways in portal tracts and
parenchyma are also found in PBC [24, 25, 49]. These finding
indicate an increased susceptibility to PAMPs, suggesting an
association with the pathogenesis of cholangiopathy in PBC.

In addition to Th1 and Th2 cells, a third pathogenic
type, Th17 cells, are involved in the pathogenesis of chronic
inflammatory diseases. Human Th17 cells are characterized
by the production of IL-17 (IL-17A and IL-17F) and IL-6, IL-
1β, and IL-23 (TGF-β instead of IL-1β in mice) are critical
for driving the differentiation of naı̈ve T cells into Th17 cells
and maintaining or stabilizing the functions of Th17 cells
[75, 76]. In inflammatory hepatobiliary diseases including
PBC, IL-17-positive mononuclear cells are scattered at the
interface areas, particularly showing interface hepatitis [32].
In PBC, moreover, the periductal accumulation, particularly
around cholangitis including CNSDC accompanying the
expression of IL-6, IL-1β, and IL-23 p19, of IL-17 positive
cells is found, suggesting that the Th17-related peribiliary
cytokine milieu is involved in the histogenesis of the sus-
tained cholangiopathy of PBC [32, 77]. Moreover, an in vitro
study using cultured human BECs revealed that bacterial
PAMPs (LPS and Pam3CSK4) induced the production of
Th17-inducing and -maintaining cytokines (IL-6, IL-1β, and
IL-23 p19) [32]. These results indicate that biliary innate
immunity plays a role in the induction and maintenance
of Th17 cells in the periductal area in cases of PBC and
the differentiation into Th17 cells in periductal dendritic
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Figure 3: Transverse section of extrahepatic biliary remnants in biliary atresia. (a) Distorted common bile duct showing luminal occlusion
with surrounding fibroplasia and inflammatory cells. (b) The common bile duct has disappeared leaving a fibrous scar (arrowheads).

cells and macrophages. Th17 cells are part of the mucosal
host defense system and also propagate and modulate the
cholangiopathy in PBC.

Our recent study revealed that Langerin-positive Langer-
hans cells (LCs) are dominantly scattered around or within
biliary epithelial layers of the damaged bile ducts in PBC.
Moreover, experiments with cultured human BECs showed
that an LC-attracting chemokine, macrophage inflammatory
protein-3α, was produced by cholangiocytes in response
to cytokines (IL-1β, TNF-α, and IL-17) and PAMPs [78].
Therefore, LCs existing around or within biliary epithelial
layers are important as periductal antigen-presenting cells
in PBC and the migration of LCs into bile ducts is closely
associated with the periductal cytokine milieu and biliary
innate immunity in PBC.

4.2. Biliary Atresia. Biliary atresia characterized by a pro-
gressive sclerosing obstruction of extrahepatic bile ducts
(Figure 3), is a common infant biliary disease and subdivided
to embryonic and perinatal types based on the clinicopatho-
genesis. Little is known about the etiology and pathogenesis
of biliary atresia, but studies using human materials and
a virus-infected rodent model suggest an association with
Reoviridae (type 3 reovirus and type C rotavirus) having
dsRNA, although conflicting results also have been reported
[12, 79–81]. Imbalanced cell kinetics caused by enhanced
apoptosis in cholangiocytes lining extrahepatic bile ducts
is speculated as an important mechanism in obstructive
cholangiopathy [23, 82, 83]. Human cholangiocytes are
sensitive to tumor necrosis factor-related apoptosis-inducing
ligand- (TRAIL-) and Fas- (CD95-)mediated apoptosis [20,
23, 84]. Moreover, because Reoviridae show epitheliotro-
physm, the innate immune response against viruses is
speculated to be directly associated with epithelial injury and
death in biliary atresia. Our previous study demonstrated
that stimulation with poly(I:C) induced the activation of
NF-κB and IRF-3, followed by the production of antiviral
IFN-β1 and also enhanced apoptosis via production of
TRAIL [23]. Moreover, in biliary atresia, cholangiocytes
lining the remnants of extrahepatic bile ducts diffusely and
constantly expressed TLR3 and showed an enhancement of

TRAIL and single-stranded DNA- (ssDNA-)positive apopto-
sis accompanying the activation of NF-κB and IRF-3 [20, 23].
A significant increase of TLR7 and antimicrobial peptide
hepcidin and MxA at the mRNA and protein levels, was
found in patients in the early stage of biliary atresia [85–87].
Therefore, cholangiocytes not only directly participate in the
antiviral innate immune response, but also play a role in the
generation of apoptotic responses to infected cells. Moreover,
as described above, because the innate immune tolerance
of dsRNA is lacking in cholangiocytes, the biliary damage
caused by the biliary innate immune response continues
until the virus disappears and directly forms the histogenesis
of obstructive cholangiopathy in biliary atresia [60].

As the histogenesis of sclerosing lesion, the epithelial-
mesenchymal transition (EMT) of cholangiocytes has been
speculated to be associated with periductal fibrosis and
portal fibrosis in biliary atresia [88–91]. Fundamental to
EMT is a loss of normal epithelial features such as cell-to-cell
adhesion molecules, the gain of mesenchymal phenotypes,
and the acquisition of a fibroblast-like (spindle) morphology
with cytoskeletal reorganization [92]. As mentioned above,
although the biliary innate immune response to dsRNA
reduces the viability of cultured human BECs via TRAIL-
mediated apoptosis, the rate of cell death is approximately
70% [23]. The cells that evade apoptosis show a gradual loss
of epithelial markers, CK19 (biliary-type cytokeratin in liver)
and E-cadherin, and increased expression of a mesenchymal
marker S100A4 (also known as fibroblast-specific protein
1) and an essential transcription factor for EMT, Snail, via
increased susceptibility to transforming growth factor-β1
(TGF-β1) and the production of basic fibroblast growth
factor (bFGF), demonstrating the occurrence of biliary EMT
[23]. Because EMT confers resistance to apoptotic effects
in fetal rat hepatocytes [93], biliary EMT is thought to be
a survival mechanism and associated with an incomplete
induction of apoptosis caused by the biliary innate immune
response. In fact, in vivo studies reveal that mesenchymal
markers (vimentin and S100A4) and Snail are expressed but
CK19 and E-cadherin are not in cholangiocytes lining the
remnants of extrahepatic bile ducts and peribiliary glands
of biliary atresia [91, 94], suggesting that the occurrence
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of EMT in cholangiocytes is associated with an incomplete
induction of apoptosis caused by the biliary innate immune
response and that these surviving cells play a role in the
sclerosing cholangiopathy of biliary atresia without inducing
tolerance until the clearance of the virus.

5. Conclusion and Perspectives

Biliary innate immunity consisting of an organ-specific sys-
tem is important for the mucosal immunity in intrahepatic
and extrahepatic bile ducts and also associated with the
pathogenesis of several cholangiopathies in biliary diseases.
We speculate that biliary innate immunity is solely associated
with the etiology of biliary diseases as the initial event
and that the presence of causative microorganisms is not
necessary in the pathogenesis of cholangiopathy caused by
a subsequent acquired immunity. It is mandatory to under-
stand the molecular basis underlying the immunophysiology
and immunopathology of cholangiopathy in terms of innate
as well as acquired immunity.
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