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Microorganisms are useful environmental indicators, able to deliver essential insights to processes
regarding mine land rehabilitation. To compare microbial communities from a chronosequence of mine
land rehabilitation to pre-disturbance levels from references sites covered by native vegetation, we sampled
non-rehabilitated, rehabilitating and reference study sites from the Urucum Massif, Southwestern Brazil.
From each study site, three composed soil samples were collected for chemical, physical, and
metagenomics analysis. We used a paired-end library sequencing technology (NextSeq 500 Illumina); the
reads were assembled using MEGAHIT. Coding DNA sequences (CDS) were identified using Kaiju in
combination with non-redundant NCBI BLAST reference sequences containing archaea, bacteria, and
viruses. Additionally, a functional classification was performed by EMG v2.3.2. Here, we provide the raw
data and assembly (reads and contigs), followed by initial functional and taxonomic analysis, as a base-line
for further studies of this kind. Further investigation is needed to fully understand the mechanisms of
environmental rehabilitation in tropical regions, inspiring further researchers to explore this collection for
hypothesis testing.
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Background & Summary
In many countries, the environmental rehabilitation of mine lands as close as possible to its pre-
disturbance levels is a legal requirement to reduce net losses of biodiversity and ecosystem functions1,2. It
is necessary to monitor rehabilitating sites to meet targets of environmental licensing agencies2. To date,
there is no consensus on the best indices available from science to evaluate the monitoring process3.
Therefore, multidisciplinary approaches aiming at providing such parameters have been proposed
recently4,5.

Besides vegetation or fauna surveys6, the examination of microbial communities can detect
environmental alterations in short time scales7, thus able to deliver insights about the fulfillment of
rehabilitation targets8,9. Metagenomic approaches provide insights into environmental variations10–12,
detecting the diversity of microorganisms in rehabilitating habitats13. Comparing the composition of
microbial communities from rehabilitating communities to preserved reference sites may thus contribute
to the evaluation of rehabilitation success in mine lands14,15.

In Brazil, one of the world’s leading raw iron export nations16, iron ore deposits occur in open-cast
mines in different regions. Ferriferous savanna ecosystems named ‘cangas’17,18 cover the deposits in the
Iron Quadrangle (Minas Gerais), the Carajás mountains (Pará), the Caetité region (Bahia), and the
Urucum Massif (Mato Grosso do Sul). Due to particular environmental conditions such as high
concentrations of metal ions, especially iron, high radiation, elevated temperatures, and ample rainfall
seasonal amplitudes, these diverse and endemic ecosystems19–21 are considered hotspots of
biodiversity17,22. Besides the storage of unique genetic resources for therapeutic purposes23 or the
remediation of contaminated areas24,25, rupestrian canga ecosystems provide many ecosystem services26.

Impacted by iron ore extraction27 reshaping entire landscapes28 by the removal of ore and mining
wastes, the environmental rehabilitation of the impacted ecosystems is desired aiming at the preservation
of biotic resources and ecosystem services for future generations. Insights to composition, diversity and
functional characterization of microbial soil communities along environmental rehabilitation gradients
are useful variables for measuring the success of rehabilitation, able to provide valuable feedback to
improve the rehabilitation practice.

The goal of this study was to identify changes in microbial community composition, diversity and
functional processes resulting from mine land rehabilitation and compare to pre-disturbance levels from
references sites covered by native canga vegetation. We sampled three study sites before rehabilitation
efforts, seven study sites spanning different rehabilitation stages and three reference canga sites associated
with two iron ore mines from Corumbá (Urucum Massif). Environmental rehabilitation comprises
topographic reformulation after removal of the iron ore, liming, fertilization and the application of
biomass before native canga species are seeded or planted.

At each study site, we installed three plots of 10 × 10 m; in each plot, a composed soil sample was
collected (depth 0–2 cm) for metagenomics analysis. An additional sample (depth 0–10 cm) was collected
for physical and chemical analysis. In this study, we applied a paired-end sequencing technology
(NextSeq 500 Illumina) after DNA extraction, purification and amplification to construct metagenomic
libraries. The Illumina reads were assembled using MEGAHIT. Subsequently, nucleotide sequences
coding for proteins (CDS), were extracted from assemblies. Functional and taxonomic classification of
coding DNA sequences (CDS) was performed using EMG and Kaiju.

Here, we provide the complete metagenomic data set, without detailed analysis of results or discussion
to highlight its outstanding comprehensive view into soil microbial communities from the rehabilitation
of a canga ecosystem occurring in Southwestern Brazil. We furthermore present the annotated
metagenome assembly, containing taxonomic and functional classification as well as chemical soil
properties (i.e., pH, cation exchange capacity, organic matter contents, micro- and macro nutrient as well
as aluminum availability) and soil texture. The present collection is the first high-throughput sequencing-
based survey from non-rehabilitated and reference sites as well as sites under rehabilitation after iron ore
mining from a tropical region, thus representing base-line data for further studies of this kind. With its
publication, researchers can explore this collection for hypothesis testing related to environmental
rehabilitation in tropical regions, especially after mining activities. The consistency in experimental
design, sequencing methodology and sample sources ensures the value of this collection for on-going
studies about environmental rehabilitation after anthropogenic impacts, in particular, those about mine
land rehabilitation.

Methods
Experimental design
Data were collected in October 2016 in 13 study sites from open-cast iron ore mines situated in the
Urucum Massif, Mato Grosso do Sul, Brazil (Fig. 1). The altitude of the massif varies between 600 and
1,065 m a.s.l. With a mean annual temperature of 25 °C and mean annual precipitation of 1,070 mm29,
the climate of the region corresponds a tropical warm, savanna climate (Aw in the Koppen classification),
characterized by dry winters and rainy summers. The natural vegetation is a mosaic of seasonal deciduous
and semi-deciduous forests on slopes and near watercourses. Furthermore, different savanna formations,
ranging from arborized physiognomies to treeless grasslands stock on the upper parts of the massif 30.

Iron ore mining in the region is restricted to the outcrops of ferruginous jaspilites and fixed hematites
from the Santa Cruz Formation31 and begins with the suppression of vegetation and removal of topsoil
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layers. Environmental rehabilitation after mining includes topological reformulation, topsoil application,
liming and fertilization of mine soils. Organic matter originating from suppressed areas is added. The
rehabilitation targets are native open savanna formations, i.e., pre-mining formations on ironstone
outcrops. Thus, plants rescued from suppressed areas and seedlings of native species produced in a tree
nursery are planted to trigger environmental rehabilitation of mine lands. Additionally, seed mixtures of
native species collected in the vegetation remnants were applied. On-demand, further activities, such as
re-plantation of seedlings, further applications of seeds, and combating alien invasive species, were
executed.

Study sites comprise three bare soil areas immediately before rehabilitation activities are carried out,
seven sites from different rehabilitating stages (two-, three- and six-year-old stands) as well as three
reference sites covered by native vegetation, i.e., open savanna formations (Table 1). At each study site,
three plots (10 × 10m) were installed in homogeneous vegetation without signs of external disturbances.

Two mixed soil samples were collected from each plot. For each sample, the substrate from five
homogeneously distributed sampling points within each plot was mixed. The first sample collected at a
depth of 0–10 cm was air dried and submitted to analysis of chemical properties and texture. The pH in
water (pH(H2O)) and in potassium chloride (pH(KCl)), organic matter (OM), available phosphorus (P),
potassium (K), sulfur (S), calcium (Ca), magnesium (Mg), aluminum (Al), boron (B), zinc (Zn), iron (Fe),
manganese (Mn) and copper (Cu) concentrations as well as effective cation exchange capacity (ECEC) of
the samples were determined following standardized protocols32. Soil texture was detected by particle-size
distribution analysis using the pipette method.

A mixed superficial soil sample (depth 0–2 cm) was collected for metagenomics analysis from each
plot. Immediately after collection, soil samples were cooled in a fridge to avoid DNA degeneration. At the
lab, the samples were stored in a freezer of −80 °C until analysis.

DNA extraction and shotgun sequencing
From 250 mg soil from each sample, total DNA was extracted using the PowerSoil DNA Isolation Kit
(Mobio Laboratories, USA) following the manufacturer’s instructions. DNA samples were quantified
using Qubit 3.0 fluorometer (Thermo Fisher Scientific Inc.).

Figure 1. Map of geographical position of the study sites in the Urucum Massif, Corumbá, Mato Grosso

do Sul, Brazil. 1. Rampa Nova, 2. Mina 5, 3. PRAD 45 C, 4. Piscinão 5. Mina Cateto, 6. PRAD 45 A, 7. Mina

Escarpa, 8. Secção 10I, 9. Mina 5 N, 10. PRAD 45B, 11. Reference A, 12. Reference B, and 13. Reference C.
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Shotgun metagenomic paired-end libraries were then constructed from 50 ng of pure DNA. For that,
samples were subjected to a random enzymatic fragmentation in which the DNA was simultaneously
fragmented and bound to adapters using the QXT SureSelect kit (Agilent Technologies). The fragmented
DNA was purified using AmPure XP beads (Beckman Coulter) and subjected to an amplification reaction
using primers complementary to the Illumina flowcell adapters. Amplified libraries were again purified
using AmPure XP beads (Beckman Coulter), quantified using the Qubit 3.0 Fluorometer (Thermo Fisher
Scientific Inc.) and checked for fragments size in the 2100 Bioanalyzer (Agilent Technologies®) using a
High Sensitivity DNA kit (Agilent Technologies).

After that, the libraries were adjusted to a concentration of 4 nM, pooled, denatured and diluted to a
running concentration of 1.8 pM. The sequencing run was performed in the NextSeq 500 Illumina
platform using a NextSeq 500 v2 kit high-output with 150 cycles.

Category Study sites Sample Alias Latitude Longitude Age

Non-revegetated study sites Rampa Nova NR_RN_1 – NR_RN_3 −19.1950 −57.6030 0

Mina 5 NR_M5_1 – NR_M5_3 −19.1848 −57.6111 0

PRAD 45 C NR_PR_1 - NR_PR_3 −19.2171 −57.5908 0

Sites in environmental rehabilitation Piscinão RH_PI_1 - RH_PI_3 −19.1918 −57.6024 6

Mina Cateto RH_MC_1 - RH_MC_3 −19.2168 −57.5817 3

PRAD 45 A RH_PA_1 - RH_PA_3 −19.1855 −57.6075 3

Mina Escarpa RH_ME_1 - RH_ME_3 −19.1927 −57.6032 3

Secção 10I RH_SC_1 - RH_SC_3 −19.1909 −57.6020 2

Mina 5 N RH_M5_1 - RH_M5_3 −19.2178 −57.5864 2

PRAD 45B RH_PB_1 - RH_PB_3 −19.1840 −57.6110 2

Reference sites, covered by natural canga vegetation Reference A REF_A_1 – REF_A1_3 −19.1921 −57.6016 —

Reference B REF_B_1 – REF_B_3 −19.1837 −57.6126 —

Reference C REF_C_1 – REF_C_3 −19.2095 −57.5935 —

Table 1. Site information for all 13 sampling locations utilized in this study. Age is the time interval (in
years) between the beginning of rehabilitation activities and sampling.

Genome assembly

Classification

Data validation

Figure 2. Workflow of genome assembly, functional and taxonomic classification and data validation

applied in this study. Rounded rectangles symbolize processes containing descriptions and tools, and

rectangles represent input and/or output files enclosing a brief description, file name (∗xxx∗ is a placeholder for

sample ID) and format, as well as their localization. CDS stands for coding DNA sequences. NCBI indicates

that files are available from NCBI (Data Citation 1), whereas SF indicates the corresponding files were

deposited in Open Science Framework (Data Citation 2).
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Genome assembly, taxonomic and functional classification
The Illumina paired-end reads were assembled using MEGAHIT v1.1.233, using default parameters
(Fig. 2). Contigs were output in the fasta format.

Using a locally installed EMG v2.3.2 pipeline34, coding DNA sequences (CDS) were extracted from
contigs output as .fnn files. Furthermore, the pipeline produces the functional classification output as .ipr
files. Subsequently, the taxonomic classification was performed on CDS using Kaiju v.1.4.4 (running
mode: greedy, with up to 5 substitutions; minimum match: 12; minimum match score: 70)35. As reference
database, we used the non-redundant NBCI BLAST protein sequences (access on December, 8th, 2016,
containing 81M protein sequences from Bacteria, Archaea, and Viruses). We estimated average coverage
as the fraction of the observed microbial community covered by the NBCI BLAST protein sequence by
package Nonpareil v3.3.336, using forward reads with quality scores greater than Q20, as recommended
by the tool.

Sample
Alias

Sample
ID

Number of
contigs

Number of
CDS

Classified
CDS

Unclassified
CDS

Number of
Genera

Number of different
functions

NR_M5_1 MG171 135,797 123,230 113,675 9,555 1,664 6,769

NR_M5_2 MG172 110,156 88,340 78,069 10,271 1,652 6,057

NR_M5_3 MG173 127,830 84,564 76,370 8,194 1,583 6,027

NR_PR_1 MG152 48,854 34,574 28,374 6,200 1,467 4,498

NR_PR_2 MG153 71,968 53,781 44,922 8,859 1,586 51,59

NR_PR_3 MG147 15,018 10,461 9,283 1,178 853 2,741

NR_RN_1 MG141 192,916 163,614 145,797 17,817 1,808 7,540

NR_RN_2 MG142 70,101 54,039 48,130 5,909 1,544 5,262

NR_RN_3 MG143 204,263 175,879 157,329 18,550 1,824 7,324

REF_A_1 MG163 256,960 197,062 159,536 37,526 1,894 8,643

REF_A_3 MG165 63,656 39,039 30,236 8,803 1,428 5,195

REF_B_1 MG156 48,507 33,925 28,716 5,209 1,403 4,425

REF_B_3 MG158 142,828 191,768 84,886 16,882 1,737 5,794

REF_C_1 MG174 65,769 43,759 36,997 6,762 1,372 4,497

REF_C_2 MG175 44,973 31,717 27,736 3,981 1,261 4,149

REF_C_3 MG166 87,360 54,934 45,323 9,611 1,523 4,750

RH_M5_1 MG170 60,777 44,591 38,495 6,096 1,500 4,759

RH_M5_2 MG161 43,609 32,799 28,893 3,906 1,346 4,639

RH_M5_3 MG162 50,393 35,744 30,963 4,781 1,373 4,661

RH_MC_1 MG167 15,205 9,708 8,308 1,400 942 2,886

RH_MC_3 MG169 38,569 26,907 22,408 4,499 1,334 4,565

RH_ME_1 MG137 54,573 36,071 31,285 4,786 1,239 4,212

RH_ME_2 MG138 23,548 161,377 14,221 1,916 913 3,222

RH_ME_3 MG139 102,373 60,377 49,696 10,681 1,590 5,003

RH_PA_1 MG159 117,602 81,492 70,877 10,615 1,643 5,653

RH_PA_3 MG151 52,570 38,612 33,140 5,472 1,460 4,656

RH_PB_2 MG155 62,923 45,304 37,582 7,722 1,431 4,219

RH_PB_3 MG146 28,526 19,291 16,603 2,688 1,188 3,873

RH_PI_1 MG144 50,794 37,158 33,510 3,648 1,246 5,184

RH_PI_2 MG145 45,768 30,553 25,689 4,364 1,222 4,189

RH_PI_3 MG136 9,777 6,045 4,920 1,125 739 2,233

RH_SC_1 MG148 49,559 31,403 28,178 3,225 1,276 4,489

RH_SC_2 MG149 19,921 14,859 13,023 1,836 1,049 3,387

RH_SC_3 MG150 95,547 73,395 62,663 19,732 1,638 5,503

Table 3. Taxonomic and functional classification of communities from metagenomic libraries of 34
soil samples from non-rehabilitated, rehabilitating and reference sites from two iron-ore mines,
Corumbá, Mato Grosso do Sul, Brazil. CDS are protein-coding sequences. The number of genera
corresponds the number of distinct, fully identified genera of archaea, bacteria, and viruses.
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Cluster analysis
For data validation, taxonomic and functional counting matrices were generated. Differences in entire
microorganism richness, i.e., the taxonomic matrix containing all CDS identified until genus level,
between non-rehabilitated, rehabilitating and reference study sites were outlined using one-way ANOVA
followed by post-hoc Tukey HSD tests after checking for normality and homogeneity of variance.
Diversity was estimated as Shannon’s diversity index H’, using package vegan v2.5-237 in R Environment.

We used package pvclust v2.038 in R Environment v3.4.139 to compute the clusters from the
taxonomic counting matrix, considering genus-level predictions from Kaiju. Cluster consistency was
tested using the approximately unbiased (au) and the bootstrap probability (bp) statistics40. Both statistics
return p-values ranging from 0 to 1, where 0 represents a weak consistency and 1 represents a strong
consistency for all formed clusters. As au is a better approximation to unbiased p-value than bp, we
considered only with au values larger than 0.95, which represents a strong similarity between the grouped
samples.

Finally, an integral analysis of taxonomy was performed by MGCOMP41 to observe the relationship
among sample profiles and sites. In order to reduce the influence of rare organisms in this analysis, we
considered only the top 30 most abundant genera for each sample, which corresponds to the smallest
number of genera covering 50% of the analyzed sequences. Based on these top 30 genera, we performed a
two-level clustering of all identified genera for this analysis. In the first level, the samples that showed
similar genus abundances were grouped and in the second level, a second grouping was carried out in
each cluster considering only the samples belonging to the respective group. After the grouping, the
genera present in all first level groupings (denominated core taxa), the genera present exclusively in each
of the first level groupings (denominated exclusive taxa) and the other genera (denominated neutral taxa)
were identified.

Data Records
The raw nucleotide sequences of 1,192,347,558 reads and 2,608,990 contigs extracted from 34 soil
samples were deposited as fastq and fasta files at NBCI (Data Citation 1 and Table 2 (available online
only)). As required, fastq files contain four lines for each read, that is an identifier of the read, the
nucleotide sequence, the placeholder ‘ + ’ for optional annotations (not used here) and the Phred quality
score of each nucleotide. fasta files are composed of two elements for each contig, an identifier and the
sequence of the contig.

Further data were deposited in Open Science Framework (Data Citation 2). Here, the “supplementary”
folder contains quality reports for forward and reverse reads from each sample as well as chemical and
physical soil properties. Soil properties are furnished as comma delimited .csv file, named SoilSamples.
csv. Read quality reports contains 12 section entitled 1) Basic Statistics, 2) Per base sequence quality, 3)
Per tile sequence quality, 4) Per sequence quality scores, 5) Per base sequence content, 6) Per sequence

Figure 3. Shannon diversity of each of the 34 samples (left) and boxplot of species richness, separated by

non-rehabilitated (NR), rehabilitating (RH) and reference study sites (REF). Different letters in the same

boxplot meant significant difference at 0.05 level according to a post-hoc Tukey HSD test. Although no significant

difference in richness values between REF to NR and RH, we observed a significant difference between NR to RH.
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GC content, 7) Per base N content, 8) Sequence Length Distribution, 9) Sequence Duplication Levels, 10)
Overrepresented sequences, 11) Adapter Content and 12) Kmer Content. The file README.txt, available
in the same folder, contains a brief explanation for each section.

Additionally, the “cluster_analysis” folder contains three subordinated folders. The “inputs” folder
contains files regarding CDS detected within assembled contigs whereas the “output” folder contains the
taxonomic and the functional classification that were used to generate counting matrices by the
corresponding scripts, deposited in the “script” folder.

The “inputs” folder contains three zipped files. First, kaiju_input.tar.gz contains a file for each sample
with all identified CDS. The file lists CDS identifiers and their sequences. Second, kaiju_output.tar.gz
contains the taxonomic classification for each CDS, stored as individual, tab-delimited files for each
sample. An upper case letter indicates the success of taxonomic classification (U is unclassified, C is
classified) and is followed by the CDS identifier, the NCBI taxonomy ID for the identified taxon and a
string showing taxonomic identification containing domain, phylum, class, order, family, genus and
species, separated by semicolons, for each CDS. The identifier is composed of CDS ID, containing the
contig ID as well as the initial and final nucleotide positions of the CDS within the contig, all of them
joined by underlines to a single string. The interpro_output.tar.gz contains the functional classification.
Individual comma-delimited files (.csv) contains the enzyme list detected within each sample. Each file is

Figure 4. Clustering of samples from non-rehabilitated (NR), rehabilitating (RH) and reference study

sites (REF) from Corumbá iron ore mines, Mato Grosso do Sul, Brazil, based on taxonomic counting

matrix. We considered only clusters with approximately unbiased clustering statistics (au) larger than 0.95,

which represents a strong similarity between the grouped samples.

A

B

C

D

Core taxa
Neutral taxa
Exclusive taxa

Figure 5. Graphical representations of integrated taxonomy analysis performed by MGCOMP, containing

a two-level grouping of all identified genera. Different clusters A, B, C, and D as well as their subclusters,

represented as dark blue circles, are composed of different numbers of samples and contain different amounts

of core (i.e., present in all first level groupings), exclusive (i.e., occurrence restricted to first level grouping) and

neutral (others) genera as shown in Table 4.
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composed of three columns containing an identifier, the name of the protein as well as the number of
occurrences within the analyzed sample.

The “output” folder contains three comma separated files within a zipped folder (output.tar.gz). The
files correspond to the expected taxonomic (taxa.csv) and the functional matrices (functions.csv).
Additionally, taxa_30.csv shows the taxonomic matrix for the 30 top genera only.

Furthermore, five R scripts used to produce the taxonomic matrix (taxonomic_analysis.R), plot
samples clustered by taxonomic composition (taxonomic_cluster_plot.R), plot taxonomic composition of
each sample (taxonomic_stacked_plot.R), produce the functional matrix (functional_analysis.R) and to
plot samples clustered by functions (functional_cluster_plot.R) are available in the “scripts” folder.

Technical Validation
Altogether, 2,166,372 CDS were detected. A total of 2.064 genera were present in 1,290,491 CDS, among
them 127 archaea, 1,853 bacteria, and 84 virus genera. Richness varies from 739 to 1,894 within samples
(Table 3). 273,799 CDS (12.64% of all CDS) remain completely unclassified, and for an additional
875,881 CDS (40.43% of all CDS), only partial matches are available. Functional classification of
identified contigs distinguished 10,913 proteins.

All micro-organism diversity within samples (measured on genus level) varied from 4.5 to 5.5 (Fig. 3)
and was significantly higher in non-rehabilitated than in rehabilitating study sites (ANOVA, F = 4.137,

Cluster Id Samples Exclusive taxa Core taxa

A RH_ME_1 Subcluster 1: Frateuria, Leifsonia, Rhodanobacter, Dyella,
Rubrobacter
Subcluster 2: Nonomuraea, Nocardiopsis, Microbispora,
Thermomonospora, Actinopolymorpha

Anaeromyxobacter, Arthrobacter, Blastococcus,
Chitinophaga, Flavihumibacter, Flavisolibacter, Frankia,
Gemmatimonas, Gemmatirosa, Geodermatophilus,
Janthinobacterium, Marmoricola, Massilia,
Mucilaginibacter, Mycobacterium, Myxococcus,
Niabella, Niastella, Nocardioides, Novosphingobium,
Pedobacter, Phycicoccus, Ramlibacter, Segetibacter,
Sinomonas, Sphingobium, Sphingomonas, Variovorax

RH_ME_2

RH_PB_2

RH_PA_1

NR_M5_3

REF_C_1

REF_C_2

B RH_PI_3 Subcluster 1: Duganella, Lactococcus, Bryobacter,
Chryseobacterium, Steroidobacter, Verrucomicrobium,
Streptococcus, Lysobacter, Enterobacter, Geobacter,
Belnapia, Dechloromonas
Subcluster 2: Microvirga, Pseudolabrys, Bosea,
Rhodovulum

RH_ME_3

NR_RN_2

RH_PI_1

RH_PI_2

RH_PB_3

NR_PR_3

RH_SC_1

RH_SC_2

RH_SC_3

RH_PA_3

NR_PR_1

NR_PR_2

REF_B_1

REF_B_3

RH_M5_2

RH_M5_3

REF_A_3

REF_C_3

RH_MC_1

RH_MC_3

RH_M5_1

C NR_RN_1

NR_RN_3

NR_M5_1

NR_M5_2

D REF_A_1 Phenylobacterium, Caulobacter

Table 4. Exclusive and core taxa for each sample cluster build with MGCOMP.
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p = 0.0255, Fig. 3). Significant differences in community composition were detected. First, the cluster
analysis separated the samples into two clusters. The larger cluster groups samples from rehabilitating
and reference sites, whereas samples from non-rehabilitated sites were grouped outside (Fig. 4).

Additionally, the complete analysis of taxonomy separated the dataset into four groups by taxonomic
profile, three of them divided into subgroups (Fig. 5). As shown in Table 4, samples from all three
treatments (non-rehabilitated, rehabilitating and reference sites) were clustered in groups A and B, while
a single reference sample forms group D and group C is composed exclusively of non-rehabilitating
samples. All analysis carried out here show that taxonomic composition of microorganism communities
from rehabilitating and reference sites is highly similar, indicating that rehabilitating activities after iron
ore mining in the Urucum massif can rehabilitate soil microorganisms successfully.

Usage Notes
Contigs and the taxonomic and functional classifications have been generated using an automated process
without manual assessment, i.e., represent a draft assembly only. As such, all downstream research should
independently assess the accuracy of reads, contigs, and taxonomic and functional assignments for
organisms of interest. Nevertheless, this study presents a baseline for further studies of this kind.

The dataset contains a significant amount of taxa and functions previously identified, but a high
portion of unclassified or incompletely classified CDS indicates the presence of a sizable portion of
unseen biodiversity within soils along the sampled rehabilitation chronosequence. The identification of
this unseen biodiversity may require additional alignments, eventually using different genome assemblers
as well as combinations with further reference databases. Furthermore, there is a need for manual
assessment of the quality of functional and taxonomic classification in some cases. This analysis of
outstanding seen and unseen biodiversity within this dataset is expected to produce helpful insights to
microbial community ecology along rehabilitation chronosequences after iron ore mining.
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