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Recent findings suggest that evolutionarily distant
organisms share the key features of the aging process and
exhibit similar mechanisms of its modulation by certain
genetic, dietary and pharmacological interventions. The scope
of this review is to analyze mechanisms that in the yeast
Saccharomyces cerevisiae underlie: (1) the replicative and
chronological modes of aging; (2) the convergence of these 2
modes of aging into a single aging process; (3) a programmed
differentiation of aging cell communities in liquid media and
on solid surfaces; and (4) longevity-defining responses of cells
to some chemical compounds released to an ecosystem by
other organisms populating it. Based on such analysis, we
conclude that all these mechanisms are programs for
upholding the long-term survival of the entire yeast
population inhabiting an ecological niche; however, none of
these mechanisms is a ʺprogram of agingʺ - i.e., a program for
progressing through consecutive steps of the aging process.

Introduction

Studies of the budding yeast Saccharomyces cerevisiae, a unicel-
lular eukaryote amenable to comprehensive molecular analyses,

have provided deep insights into mechanisms of cellular aging in
multicellular eukaryotes.1-5 These studies have been instrumental
in identifying genes, uncovering signaling pathways and discover-
ing chemical compounds shown to orchestrate a distinct set of
cellular processes that define organismal longevity in eukaryotes
across phyla.5-21 These studies have revealed that the key features
of the aging process and the mechanisms of its deceleration by
certain longevity-extending genetic, dietary and pharmacological
interventions are evolutionarily conserved.1-3,6,8-10,15-19

Two different methods have been established to investigate
aging of budding yeast; each of them is designed to monitor a
distinct aspect of the aging process. One of these 2 methods
measures yeast replicative lifespan by assessing the number of
asymmetric mitotic divisions a mother cell can undergo prior
to cell cycle arrest.2,3,5 Another method measures yeast chro-
nological lifespan by assessing the length of time a cell remains
viable following cell cycle arrest; a cell is considered to be via-
ble if it can re-enter the cell cycle in response to addition of
essential nutrients.2-4,12,13 The use of these 2 methods has sig-
nificantly advanced our understanding of cell-autonomous
mechanisms that underlie the replicative and chronological
paradigms of cellular aging in yeast.2-5,12,13 However, these
alternative methods have been employed to investigate the rep-
licative and chronological modes of yeast aging separately from
each other and under controllable laboratory conditions; such
conditions may differ substantially from those existing within
various natural ecosystems inhabited by budding yeast.22-26

Moreover, recent studies have revealed several important
features of yeast physiology and morphology, cell cycle
regulation, quiescence-related differentiation, multicellular
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organization, intercellular communications, ecology, and evo-
lution; many of these features are likely to play key roles in
defining longevity of budding yeast in Nature and/or under
field-like laboratory conditions. First, studies in yeast cultured
under controllable laboratory conditions have demonstrated
that the rates of a stepwise progression of certain cellular pro-
cesses through a series of “checkpoints” early in life of a yeast
cell, prior to entry into a non-proliferative state, define its rep-
licative and chronological lifespans; these processes include cell
metabolism, growth and division, stress response, organelle
dynamics, and macromolecular homeostasis (for a review, see
refs. 3–5). Second, it has been shown that the replicative and
chronological modes of yeast aging share some mechanisms
and, thus, may converge into a single aging process; this pro-
cess may progress through successive phases of quiescence and
proliferation in response to certain environmental changes.3,27-
34 Third, it has been revealed that yeast cells cultured in glu-
cose-based liquid media can exit the cell cycle from G1 (or,
under certain circumstances, from a cell cycle phase other than
G1) and enter a distinct differentiation program; this program
yields a population of reproductively competent quiescent cells
and several populations of non-quiescent cells that differ from
each other in their ability to reproduce and/or survive.35-43

Fourth, it has been demonstrated that yeast cells growing on
solid surfaces are spatially organized into multicellular com-
munities that exist as colonies or biofilms; individual cells
within these communities grow, divide, communicate with
each other, differentiate or commit programmed suicide in a
manner which depends on their location within the commu-
nity.44-62 Fifth, it has been proposed that yeast cells within a
natural ecosystem may respond to certain chemical com-
pounds released to the ecosystem by other groups of prokary-
otic and eukaryotic organisms; such response of yeast cells
within the ecosystem may drive the evolution of yeast longev-
ity regulation mechanisms.63-67

In this review we analyze these recent advances in our
understanding of yeast aging within a logical framework of the
so-called “quasi-programmed” concept of aging.68-73 This con-
cept: (1) considers aging not as a programmed (i.e., “active”)
process of functional decline or as a stochastic (i.e., “passive”)
process of molecular damage accumulation but as a late-life
aftermath of the early-life programmed processes of cellular
and organismal growth and reproduction; (2) posits that the
rates with which these early-life programmed processes progress
through late life define the rate of aging; and (3) postulates that
the high rates of progression of these early-life programmed
processes through late life cause so-called “hyperfunction” (or
“hypertrophy”), thus accelerating the development of various
age-related pathologies and ultimately causing aging-related
death.68-85 Based on presented here analysis of the recent
advances in understanding of yeast aging, we propose that: (1)
aging of budding yeast in the wild and/or under field-like labo-
ratory conditions is a quasi-programmed process; and (2) the
lifespan of yeast cells within an ecosystem is defined by a trade-
off between programmed processes of cell proliferation, differ-
entiation, stress response, survival and death.

Certain Early-Life Processes in a Mitotically
Competent Mother Yeast Cell Define

its Replicative Lifespan

Recent studies revealed that the rates and efficiencies of some
cellular processes occurring early in life of a mother yeast cell,
prior to loss of its ability to undergo asymmetric mitotic divi-
sions, define the maximal number of daughter cells it can pro-
duce – i.e., define longevity of replicatively aging yeast.3,5,20,21,78-
80,85,86 These longevity-defining cellular processes within a repli-
catively aging mother cell: (1) are confined to various cellular
compartments;5,10,21,86,87 (2) take place during one of the 3 con-
secutive stages of replicative aging - which are called “early age”,
“intermediate age” and “late age”, respectively;5 (3) are coordi-
nated and co-regulated in space and time (and some of them are
inter-reliant on each other);5,10,20,21,86,87 and (4) set up a rate of
an age-related progressive accumulation of so-called “aging
factors” (also known as “senescence factors”) within the mother
cell and, therefore, define its replicative lifespan.3,5,20,21,86-91

These longevity-defining cellular processes within a replicatively
aging mother cell include: (1) an increase in vacuolar pH during
the early-age stage of replicative aging, which is followed by a
gradual expansion of vacuoles during the intermediate-age stage
and then by a dramatic enlargement of these organelles during
the late-age stage;5,21,86 (2) an appearance of protein aggregates
due to a minor decline in proteostasis maintenance during the
early-age stage of replicative aging, which is followed by a pro-
gressive accumulation of oxidatively damaged and aggregated
proteins during the intermediate-age and late-age stages;5,20,21,90

(3) a reduction in mitochondrial membrane potential, rise in the
level of mitochondrial reactive oxygen species (ROS) and frag-
mentation of tubular mitochondria during the intermediate-age
stage of replicative aging; such changes in mitochondria are fol-
lowed by a massive aggregation of these organelles, further
buildup of mitochondrial ROS and loss of mitochondrial DNA
during the late-age stage;5,86,92-95 (4) a rise in histone acetylation
within subtelomeric chromatin regions of the nuclear DNA, the
resulting release of histones from these regions and their tran-
scriptional activation, and an accumulation of extrachromosomal
rDNA circles (ERCs) in the nucleus during the intermediate-age
stage of replicative aging; these changes are followed by a buildup
of ERCs in the nucleus and loss of heterozygosity at the rDNA
locus during the late-age stage;5,21,90,96-98 and (5) an age-related
gradual reduction in the efficiency of Pex5- and Pex7-driven pro-
tein import into the peroxisome, which causes a progressive
development of a pro-aging metabolic pattern in peroxisomes
and mitochondria (Fig. 1).9,10,17

The rates and efficiencies of all these longevity-defining cellu-
lar processes are modulated via 2 groups of cell-autonomous
mechanisms operating within a mother yeast cell undergoing
replicative aging.

One group of such mechanisms is aimed at reducing the rate
of an age-related buildup of various aging factors within the
mother cell; these mechanisms include: (1) mechanisms responsi-
ble for maintaining growth rate of the mother cell at a level which
is (a) above a threshold level preventing a dilution of various
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aging factors within the mother cell via their transmission to the
daughter cell but (b) below a threshold level allowing such trans-
mitted aging factors to accumulate in the daughter cell in toxic
quantities;5,78,85 (2) the unfolded protein response signaling
pathway in the endoplasmic reticulum (UPRER), which responds
to an age-related accumulation of misfolded proteins in the ER
by activating the expression of multiple genes implicated in stress
resistance and cell wall integrity maintenance;99 (3) the mito-
chondrial retrograde (RTG), unfolded protein response
(UPRmt), translation control (MTC) and back-signaling (MBS)
pathways; these signaling pathways respond to an age-related
decline in mitochondrial membrane potential, protein quality
control, translation or ribosome assembly by stimulating tran-
scription of many nuclear genes implicated in maintaining mito-
chondrial proteostasis, stabilizing nuclear and mitochondrial
genomes, stress response, and various routes of central metabo-
lism;17,100-104 and (4) “secretophagy,” a distinct form of age-
related autophagy involved in the degradation of dysfunctional
and aggregated organelles and proteins via a mechanism which is
orchestrated by the Erg6 protein and executed by Atg15, a lipase
whose re-location from the ER to vacuoles is mandatory for dis-
integrating membranes of autophagic bodies (Fig. 1).105

Another group of such mechanisms is aimed at increasing the
efficiencies with which the mother cell retains various aging fac-
tors, thereby preventing their transmission into the daughter cell;
these mechanisms include: (1) an Hsp104- and Sir2-dependent
association of insoluble aggregated proteins with the actin cyto-
skeleton, a process which obstructs a free diffusion of such aggre-
gates into the daughter cell (Fig. 2A);5,20,21,106,107 (2) an
Hsp104-driven sequestration of soluble misfolded proteins in
nucleus-bound JUNQ (juxtanuclear quality control compart-
ment), a process which concomitantly prevents a transmission
of such misfolded proteins into the daughter cell and retains
them within the mother cell for proteasomal degradation
(Fig. 2B);5,20,21,108,109 (3) an Hsp104- and Hsp42-dependent
protective buildup of insoluble aggregated proteins in vacuole-
bound IPOD (insoluble protein deposit); vacuoles containing
IPOD are transmitted into the daughter cell less efficiently than
vacuoles lacking it (Fig. 2B);5,20,21,108-110 (4) a Sir2- and Myo2-
driven movement of mitochondria from the mother cell to
the daughter cell, a process in which fully functional mitochon-
dria move on actin cables faster than dysfunctional ones
(Fig. 2C);21,92,111,112 (5) an association of ERCs formed in the
mother cells with nuclear pore complexes (NPCs) whose lateral
movement from the mother-cell side of the nuclear envelope to

its daughter-cell side is prevented by a septin- and Bud6-depen-
dent barrier existing at the bud neck; in this mechanism, NPCs
are formed de novo in the daughter-cell side of the nuclear enve-
lope (Fig. 2D);21,113 (6) a distinct domain of the ER membrane
assembled at the bud neck in a septin-, Bud1- and sphingolipid-
dependent fashion; the formation of such domain in the mother-
cell side of the cortical ER creates a barrier which prevents a lat-
eral diffusion of misfolded (and, hence, toxic) transmembrane
proteins into the daughter-cell side of the cortical ER
(Fig. 2E);114 and (7) an Inp2-dependent tagging of only fully
functional peroxisomes within the mother cell for their segrega-
tion to the daughter cell; because Inp2 is a peroxisomal receptor
for the class V myosin motor Myo2, such tagging contributes to
the maintenance of age asymmetry between the mother and
daughter cells by allowing only fully functional peroxisomes to
be transferred to the daughter cell as Myo2 cargo moving on
actin cables (Fig. 2F).9,10,115,116

It needs to be emphasized that the interplay between the
aforementioned 2 groups of mechanisms operating within a
mother yeast cell undergoing replicative aging defines several vital
physiological traits. These traits play casual roles in yeast replica-
tive aging; they include the rates and efficiencies with which the
mother cell accumulates various aging factors, transmits these fac-
tors into the daughter cell, grows and undergoes asymmetric
mitotic divisions, increases its size prior to bud formation, sporu-
lates if deprived of nutrients, and responds to mild stresses and
other environmental perturbations.5,9,10,17,20,21,90,99-116 Thus,
within a logical framework of the concept of quasi-programmed
aging,68-73 all of the mechanisms modulating the rates and effi-
ciencies of accumulation and retention of various aging factors
within the mother cell are programs for sustaining the long-term
survival of the mother and daughter cells under various environ-
mental conditions. However, none of these mechanisms is a
“program of aging” - i.e., a program for a stepwise progression
through consecutive steps of the aging process taking place in the
mother or daughter cell.

Yeast Chronological Lifespan is Defined by Many
Cellular Processes that Progress through a Series of

Early-Life and Late-Life "Checkpoints"

We have recently reviewed in detail the cell-autonomous
mechanisms underlying chronological aging of the yeast S. cerevi-
siae.4 Briefly, longevity of chronologically aging yeast cultured
under controllable laboratory conditions in liquid media is

Figure 1 (See previous page). Some processes in a mitotically competent mother yeast cell undergoing replicative aging define a rate with which it
accumulates “aging factors.” These longevity-defining cellular processes occur during one of the 3 consecutive stages of replicative aging called “early
age,” “intermediate age" and “late age.” The rate of an age-related buildup of aging factors in the replicatively aging mother cell is modulated via several
cell-autonomous mechanisms. Arrows next to the pro-aging cellular processes involved in the accumulation of aging factors in various cellular locations
denote those of them that are stimulated or inhibited during a particular stage of replicative aging. Inhibition bars denote anti-aging cell-autonomous
mechanisms that reduce the rates of the age-related buildup of certain aging factors in the replicatively aging mother cell. See text for additional details.
ERCs, extrachromosomal rDNA circles; LOH, loss of heterozygosity at the rDNA locus; MBS, the mitochondrial back-signaling pathway; MTC, the mito-
chondrial translation control signaling pathway; mtDNA, mitochondrial DNA; ROS, reactive oxygen species; RTG, the mitochondrial retrograde signaling
pathway; UPRER, the unfolded protein response signaling pathway in the endoplasmic reticulum; UPRmt, the mitochondrial unfolded protein response
signaling pathway; DC, electrochemical potential across the inner mitochondrial membrane.
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defined by a distinct set of cellular processes that occur through-
out lifespan, prior to an arrest of cell growth and division and fol-
lowing such arrest.3,4,9,10,15,17,117-133 These processes include cell
metabolism, growth, division, organelle biogenesis, interorganel-
lar communication, macromolecular homeostasis, stress response
and death.2-4,17,119,126-131 We have proposed that all these lon-
gevity-defining cellular processes are integrated into a "biomolec-
ular network".4 Our concept of a biomolecular network
underlying chronological aging in yeast posits that: (1) the net-
work progresses through a series of lifespan checkpoints; the
early-life checkpoints occur in logarithmic, diauxic and post-dia-
uxic growth phases, whereas several late-life checkpoints occur in
stationary growth phase; (2) at each of these checkpoints, several
"master regulator" proteins monitor the intracellular concentra-
tions of certain intermediates and/or products of particular meta-
bolic pathways and assess the rates with which these key
metabolites move within an elaborate network of interorganellar
communications; (3) all these master regulator proteins have
been shown to regulate longevity of chronologically aging yeast;
(4) at each of the lifespan checkpoints, the checkpoint-specific
master regulator proteins respond to age-related changes in the
intracellular concentrations of the key metabolites and in the
intensity of their interorganellar flow by amending the rates and
efficiencies of cell metabolism, growth, division, organelle bio-
genesis, interorganellar communication, macromolecular homeo-
stasis, stress response or death; and (5) by modulating such vital
cellular processes throughout lifespan, these master regulator pro-
teins act synergistically to orchestrate the development and main-
tenance of a pro- or anti-aging cellular pattern, thereby
establishing the pace of cellular aging and defining yeast chrono-
logical lifespan (Fig. 3).4

It should be stressed that, as we recently discussed elsewhere,4

our concept of a biomolecular network underlying chronological
aging in yeast envisions that: (1) the inability of chronologically
"young", proliferating cells to uphold the rates and efficiencies of
the vital cellular processes integrated into the network above a
critical threshold can elicit the excessive buildup of molecular
and cellular damage in chronologically “old”, non-proliferating
cells; and (2) the extreme cellular stress caused by such damage
buildup in chronologically “old” cells can lead to their aging-
related demise by stimulating apoptotic, regulated necrotic, auto-
phagic and/or liponecrotic pathways known to be integrated into

an age-associated network of programmed cell death.3,4,6,18,134-137

Therefore, in terms of the concept of quasi-programmed
aging,68-73 the processes of metabolism, growth, division,
organelle biogenesis, interorganellar communication, macro-
molecular homeostasis and stress response taking place within
a chronologically aging yeast cell are programs for maintaining
its long-term survival. Yet, none of these processes is a program
for progressing through consecutive steps of the aging process
and, hence, none of them is a “program of aging”.

The Replicative and Chronological Modes of Yeast
Aging May Converge into a Single Aging Process

Traditionally, the replicative and chronological paradigms of
yeast aging under controllable laboratory conditions are investi-
gated independently of each other by monitoring the aging pro-
cess in 2 different contexts.3,119,138-141 However, several findings
support the notion that these 2 paradigms share some mecha-
nisms and, thus, are interconnected. Indeed, a caloric restriction
(CR) diet is known to extend both the replicative and chronolog-
ical lifespans of yeast.1-3,33 Furthermore, genetic and pharmaco-
logical interventions attenuating signaling through the TOR/
Sch9 (target of rapamycin/serine-threonine protein kinase Sch9)
or Ras/cAMP/PKA (Ras family GTPase/cAMP/protein kinase A)
pathway have been shown to exhibit longevity-extending effects
in both paradigms of yeast aging;1-3,29 these signaling pathways
are known for their essential roles in modulating the rates and
efficiencies of yeast cell metabolism, growth and division in
response to changes in nutrient availability.1-3 Moreover, chrono-
logical aging of yeast cells cultured under non-CR conditions in
nutrient-rich or nutrient-limited liquid medium (or incubated at
an elevated temperature in water) is known to coincide with their
replicative aging; in fact, the longer a yeast cell is aged chronolog-
ically under such conditions the shorter its replicative lifespan
becomes upon return to conditions that promote cell prolifera-
tion.27,28,31,33 The extent of such chronological aging-associated
reduction in yeast replicative lifespan can be lowered if: (1) yeast
cells are aged chronologically under non-CR conditions that pre-
vent a longevity-shortening phenomenon of medium acidifica-
tion by these cells;31 or (2) yeast cells are aged chronologically
under longevity-extending CR conditions.33 Thus, it is

Figure 2. (See previous page). Several cell-autonomous mechanisms modulate the efficiencies with which the mother cell retains various aging factors,
thereby preventing their transmission into the daughter cell. (A) An association of insoluble protein aggregates with the actin cytoskeleton in the mother
cell impedes a free diffusion of such aggregates into the daughter cell. (B) A sequestration of soluble misfolded proteins in nucleus-bound JUNQ (juxta-
nuclear quality control compartment) and a buildup of insoluble aggregated proteins in vacuole-bound IPOD (insoluble protein deposit) impede a trans-
mission of such proteins into the daughter cell and retain them within the mother cell. (C) A movement of fully functional mitochondria on actin cables
from the mother cell to the daughter cell is faster than that of dysfunctional mitochondria. (D) A septin- and Bud6-dependent barrier at the bud neck
prevents a lateral movement of nuclear pore complexes (NPCs) from the mother-cell side of the nuclear envelope to its daughter-cell side; because extra-
chromosomal rDNA circles (ERCs) formed in the mother cells are attached to NPCs, these aging factors are retained by the mother cell. (E) A lateral diffu-
sion of misfolded transmembrane proteins from the mother-cell side of the cortical endoplasmic reticulum (ER) into its daughter-cell side is prevented
by a specialized domain of the cortical ER membrane; the formation of such ER membrane domain at the bud neck requires septin, Bud1 and sphingoli-
pid. (F) Inp2 is a peroxisomal receptor for the class V myosin motor Myo2; the association of Inp2 only with fully functional peroxisomes within the
mother cell allows the daughter cell to inherit only this kind of peroxisomes, which move with the help of Myo2 along tracks provided by actin cables.
See text for additional details.
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conceivable that chronological aging of yeast cells cultured under
non-CR conditions not only coincides with their replicative
aging but may actually cause or accelerate such mode of aging. It
seems that the efficiency with which yeast mitochondria maintain
the electrochemical potential across their inner membrane is one
of the essential cellular processes linking the replicative and chro-
nological modes of aging; indeed, the lower mitochondrial mem-
brane potential is in a yeast cell cultured under non-CR
conditions the longer replicative lifespan such cell exhibits if it is
returned to growth-promoting conditions.33

Noteworthy, the replicative and chronological modes of yeast
aging do not overlap completely. Indeed, if they are investigated
separately from each other in robust assays conducted under con-
trollable laboratory conditions, it appears that: (1) only a limited
number of single-gene-deletion mutations known to extend the
replicative lifespan of yeast cells also extend their chronological
lifespan;1-3,29 and (2) buffering of various liquid media to differ-
ent values of alkaline pH to prevent medium acidification
extends yeast chronological lifespan but has no effect on yeast
replicative lifespan.31,142,143

It needs to be emphasized that all of the assays for investigat-
ing the replicative and chronological paradigms of yeast aging -
the ones conducted independently of each other and the ones
conducted in combination with each other - were carried out
under laboratory conditions that may differ markedly from those
existing within various natural ecological niches inhabited by
budding yeast.22-26 Such natural habitats of different S. cerevisiae
strains include the bark of oak trees, rotting tissues of cacti, plant
flowers and fruits, desert soil, the midgut of insects, and infected
immunocompromised patients.25,26 Many "domesticated"
strains of budding yeast also inhabit places associated with such
important human activities as baking, brewing, winemaking and
fermented beverage production.22,25,26 We hypothesize that yeast
strains facing diverse environmental constraints within such
broad range of ecological niches may have evolved different kinds
of the relationship between the replicative and chronological
modes of yeast aging; each kind of such relationship is likely to
be an adaptation evolved to sustain the long-term survival of the
entire yeast population inhabiting a particular ecological niche.
One kind of such relationship may involve a transition from the
chronological mode to the replicative mode in a population of
yeast cells that return from a quiescent state to a proliferative state
in response to an increase in nutrient availability within their eco-
logical niche; such transition may rejuvenate the population of

yeast cells within the niche by preventing a transmission of aging
factors accumulated within mother cells into newly formed
daughter cells.30-32

The proposed here hypothesis also posits that the replicative
and chronological modes of yeast aging may converge into a sin-
gle aging process which is specific to the yeast population within
a particular ecological niche. Furthermore, our hypothesis envi-
sions that the postulated single aging process is a byproduct of an
intricate network of cellular processes and intercellular communi-
cations defining the rates and efficiencies with which individual
cells: (1) grow and divide; (2) differentiate into quiescent and
non-quiescent cells; (3) switch mating-type by changing the allele
at the MAT locus; (4) mate and then sporulate; (5) survive when
nutrients are exhausted; (6) germinate from spores when
nutrients become abundant again; (7) grow and survive within
natural, clinical or industrial niches that are enriched or depleted
in sugars, ethanol, acetate, glycerol or chemical compounds that
are mildly toxic at high concentrations; and (8) commit them-
selves to apoptotic, regulated necrotic, autophagic and/or lipone-
crotic subroutines of programmed suicide if they are weakened
or impaired, unable to reproduce sexually or asexually, inade-
quately adapted to natural variations in some environmental con-
ditions, and/or release excessive amounts of ROS or other
detrimental metabolites. It is conceivable that such intricate net-
work is an evolutionary adaptation for sustaining the long-term
survival of the entire yeast population inhabiting a particular eco-
logical niche. Thus, in terms of the concept of quasi-programmed
aging,68-73 all cellular processes and intercellular communications
integrated into the network are programmed to uphold such sur-
vival. However, none of these processes and communications is
programmed to progress through consecutive steps of the aging
process taking place in individual yeast cells within their popula-
tion inhabiting a particular natural, clinical or industrial niche.

Programmed Differentiation of Yeast Cells Cultured
in Liquid Media Yields Several Cell Populations that

Differ in Their Longevities

When yeast cells cultured in a nutrient-rich liquid medium
initially containing glucose consume this carbon source, they: (1)
undergo a transition from L phase to D phase; (2) arrest in the
G1 phase of the cell cycle; and (3) enter a differentiation program
which yields a population of quiescent (Q) cells existing in a

Figure 3. (See previous page). Some cellular processes in chronologically aging yeast are integrated into a biomolecular network. A stepwise progres-
sion of the network through a series of lifespan checkpoints existing in logarithmic (L), diauxic (D), post-diauxic (PD) and stationary (ST) growth phases is
monitored by master regulator proteins. At each of the lifespan checkpoints, certain checkpoint-specific master regulator proteins respond to age-
related changes in the intracellular concentrations of some key metabolites by modulating the rates and efficiencies of the longevity-defining cellular
processes integrated into the network. Such action of master regulator proteins establishes the pace of cellular aging and defines yeast chronological
lifespan. Activation arrows and inhibition bars signify pro-aging processes (shown in green color) or anti-aging processes (shown in red color). Pro-aging
or anti-aging master regulator proteins are presented in green color or red color, respectively. Pro-aging or anti-aging metabolites are displayed in green
color or red color, respectively. Ac-CoA, acetyl-CoA; ATG, components of the protein machinery involved in autophagy; ETC, electron transport chain;
EtOH, ethanol; FFA, non-esterified (“free”) fatty acids; GLR, glutathione reductase; PPP, the pentose phosphate pathway; PKA, protein kinase A; TCA, tricar-
boxylic acid cycle; TORC1, target of rapamycin complex 1; TRR, thioredoxin reductase; DC, electrochemical potential across the inner mitochondrial
membrane.

www.landesbioscience.com 3343Cell Cycle



specialized nonproliferative state called G0 as well as several pop-
ulations of non-quiescent (NQ) cells.35,36,38,41-43 The population
of Q cells committed to this cell fate upon transition from L
phase to D phase consists mainly of daughters, and also includes
“young” mothers that underwent a single budding
event.35,36,38,41 Q cells exhibit a distinct set of morphological,
biochemical and physiological features. These cells: (1) are
unbudded, uniform in size and surrounded by a thickened cell
wall; (2) are denser than NQ cells; (3) amass such reserve carbo-
hydrates as trehalose and glycogen; (4) are highly refractive by
phase-contrast microscopy; (5) are viable - i.e., they exhibit high
metabolic activity monitored using a fluorescent reporter mole-
cule; (6) display low levels of intracellular ROS; (7) contain fully
functional mitochondria exhibiting high respiratory efficiency;
(8) can synchronously reenter the cell cycle if returned to
growth-promoting conditions; (9) are reproductively competent -
i.e., they can form colonies when plated on a fresh solid medium;
(10) are resistant to chronic oxidative, thermal and osmotic
stresses; and (11) are genomically stable.35,38,41,42 The popula-
tion of NQ cells committed to this cell fate upon transition from
L phase to D phase is comprised of "old" mothers that underwent
several budding events.35,36,38,41 NQ cell population is heteroge-
neous; in ST phase it consists of 3 cell types, including: (1) viable
and reproductively competent cells exhibiting genomic instabil-
ity, high levels of ROS and dysfunctional mitochondria that are
unable to respire; (2) viable but reproductively incompetent cells,
which may derive from the reproductively competent NQ cells;
and (3) cells that display characteristic traits of apoptotic and/or
necrotic programmed death subroutines; these cells may originate
from the reproductively incompetent NQ cells.35,36,38,41 Note-
worthy, it has been proposed that late in ST phase the sub-popu-
lation of reproductively competent NQ cells may undergo a
gradual replenishment due to an aging-related differentiation of
Q cells.38,41

It needs to be emphasized that both the commitment of yeast
to the differentiation into Q cells and several populations of NQ
cells, as well as the maintenance of such commitment, are pro-
grammed processes; indeed, they both are orchestrated by: (1)
Xbp1, a transcription repressor of numerous genes implicated in
cell growth and division; (2) the TOR/Sch9 and Ras/cAMP/
PKA signaling pathways known for their essential roles in modu-
lating the rates and efficiencies of cell metabolism, growth and
division in response to changes in nutrient availability; (3) Snf1,
an AMP-activated serine/threonine protein kinase essential for
maintaining energy homeostasis during D phase; and (4) Pho85,
a cyclin-dependent kinase orchestrating various metabolic pro-
cesses upon cell entry into the Q state.36,40,43,144,145 Further-
more, it is also important to note that yeast cell populations can
respond to a depletion of nutrients other than glucose (such as
nitrogen or phosphate) by entering discrete differentiation pro-
grams and accessing distinct Q states;146 it is tempting to specu-
late that cells existing in such distinct Q states differ in their
long-term viabilities following cell cycle arrest in the G1 phase
and, thus, vary in their longevities. Moreover, in should be
stressed that yeast cell population can enter the Q state in cell
cycle phases other than G1;

39 yeast cells that enter the Q state

after being arrested in the S or G2 phase of the cell cycle are
known to exhibit shortened replicative lifespans.147

Altogether, these findings support the notion that a pro-
grammed differentiation of yeast cultured under controllable lab-
oratory conditions in liquid media yields several cell types that
differ in their longevities. Furthermore, the number of such dif-
ferentiated cell types and their longevities may vary within a sig-
nificantly broader range in yeast populations that inhabit diverse
natural, clinical or industrial niches within various ecosystems.
Thus, the differentiation of yeast communities into Q cells and
several populations of NQ cells is a program for adapting to
wide-range variations in nutrients availability within the ecologi-
cal niche inhabited by a particular yeast community; different
types of yeast cells formed during such programmed differentia-
tion vary in their longevities. However, within a logical framework
of the concept of quasi-programmed aging,68-73 such differentia-
tion is not a program for progressing through consecutive steps of
the aging process and, thus, is not a “program of aging”.

Cell-Non-Autonomous Mechanisms Define
Longevity of Differentiated Yeast Cells Attached to
Solid Surfaces and Organized into Multicellular

Communities

It is well known that yeast cells attached to solid surfaces
develop multicellular communities in the wild and under labo-
ratory conditions; these communities of numerous differenti-
ated cells with specialized functions are organized into colonies
or biofilms.44,46,51,53,54,57,61 Individual yeast cells within these
communities undergo global metabolic reprogramming; such
reprogramming progresses through 2 reversible phases of
ammonia release and 2 phases of medium acidification, impacts
various metabolic pathways, and orchestrates a multistep pro-
cess of horizontal and vertical differentiation of the entire com-
munity.45-48,50-53,57,59-61 Furthermore, yeast cells within these
multicellular communities are involved in quorum sensing by
communicating with each other via a unidirectional or bidirec-
tional flow of certain chemical compounds.45-47,50-54,57,59-61

Moreover, yeast cells within these multicellular communities
exhibit differential patterns of global gene expression, which
depends on cell position within the community and may cause
the development of a pro- or anti-aging cellular pattern within
a particular region of such community.47,48,52,53,56-58,60-62

Noteworthy, yeast cells within these multicellular communities
grow, divide, differentiate, communicate with each other or
commit programmed suicide in a manner which depends on
their location within the community and is driven by quorum
sensing.45-54,57,59-61 It needs to be emphasized that these multi-
cellular yeast communities differentiate into several subpopula-
tions of nondividing chronologically aging cells that exhibit
wide-range variations with respect to their central metabolism
patterns, amino acid and nucleotide metabolism rates, storage
carbohydrates and neutral lipids quantities, mitochondrial
functionalities and ROS levels, noncoding RNA quantities,
protein synthesis rates, autophagic and proteasomal protein
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degradation efficiencies, growth and division rates, stress adapt-
abilities and susceptibilities, and survival capabilities.46-62

All of the above cell-non-autonomous mechanisms operating
within a horizontally and vertically organized community of dif-
ferentiated yeast cells define dissimilar longevities of the cells
positioned within different regions of such community.46,47,51-
55,57,61 Hence, the differentiation of individual yeast cells and
their sub-populations within various parts of such community is
a program for maintaining the long-term survival of the whole
community, even though some individual cells and their sub-
populations unintentionally make altruistic sacrifices to execute
this program.46,47,51-55,57,61 Yet, in terms of the concept of
quasi-programmed aging,68-73 such differentiation is not a pro-
gram for progressing through consecutive steps of the aging pro-
cess and, thus, is not a “program of aging”.

Interspecies Communications within an Ecosystem
May Drive the Evolution of Yeast Longevity

Regulation Mechanisms

It has been demonstrated that bacteria, plants and animals
synthesize and release into the environment certain chemical
compounds that under controllable laboratory conditions can
extend longevity of evolutionarily distant organisms.1,2,6,7,63-67

Indeed, soil bacteria are known to synthesize the lipophilic mac-
rocyclic lactone called rapamycin;148 this fungicide not only
impedes proliferation of fungal competitors within a natural eco-
system but also extends longevity of yeast, worms, fruit flies and
mice by inhibiting the nutrient-sensory protein kinase TOR
(Tor1 in yeast).1,2,66-68,149 Furthermore, plants and other auto-
trophic organisms have been shown to respond to various envi-
ronmental stresses by synthesising and releasing into natural
ecosystems certain secondary metabolites called xenohormetic
phytochemicals;63-65 they include polyphenols (such as resvera-
trol, butein and fisetin), curcumin, caffeine and spermidine - all
known for their abilities to increase longevity of yeast and various
other organisms by targeting different cellular processes and
signaling pathways.6,63-65 Moreover, mammals are known to
synthesize and release into natural ecosystems bile acids;150 these
molecules have been shown to extend yeast chronological
lifespan by altering mitochondrial membrane lipidome and trig-
gering major changes in mitochondrial morphology and
function.7,125,128,130

Based on our analysis of how all these natural chemical com-
pounds released into the environment by some organisms com-
posing an ecosystem extend longevity of other organisms within
this ecosystem, we recently proposed a hypothesis of the xenohor-
metic, hormetic and cytostatic selective forces that may drive the
evolution of yeast longevity regulation mechanisms at the ecosys-
temic level.66,67 Our hypothesis posits that yeast cells inhabiting
a natural ecosystem may specifically respond to some chemical
compounds released to such ecosystem by other organisms; such
response of yeast cells within the ecosystem may: (1) elicit a cyto-
static or hormetic effect in these cells; (2) trigger the development
of a pro- or anti-aging physiological pattern within these cells;

and (3) drive the evolution of yeast longevity regulation mecha-
nisms toward the maintenance of a finite lifespan of these
cells.66,67 Our hypothesis envisions that such response of yeast
cells to the chemical compounds released to the ecosystem by
other organisms is a program for increasing the chances of yeast
cells to survive various environmental alterations by undergoing
specific changes in yeast physiology; some of these changes play
essential roles in regulating yeast longevity.66,67 However, within
a logical framework of the concept of quasi-programmed
aging,68-73 such response of yeast cells to the chemical com-
pounds released to the ecosystem by other organisms is not a
“program of aging” - i.e., a program for progressing through con-
secutive steps of the aging process.

Conclusions

In this review we analyzed mechanisms underlying the replica-
tive and chronological modes of yeast aging, their convergence
into a single aging process within natural ecological niches, pro-
grammed differentiation of aging yeast communities cultured in
liquid media or attached to solid surfaces, and a longevity-defining
response of yeast cells to certain chemical compounds released to
an ecosystem by other organisms inhabiting this ecosystem. Our
analysis implies that all these mechanisms are intricate programs
for sustaining the long-term survival of the entire yeast population
inhabiting a particular natural, industrial, clinical or laboratory
niche; to execute such programs, some individual cells altruistically
(but involuntarily) sacrifice their own lives. However, none of these
mechanisms is a program for progressing through consecutive steps
of the aging process. We therefore concluded that aging of bud-
ding yeast in natural, industrial, clinical and laboratory niches is a
late-life aftermath of the early-life programmed processes of cell
growth, division, differentiation and stress response; a term “quasi-
programmed” has been coined for such mode of aging in higher
eukaryotic organisms.68-73 We also concluded that the lifespan of a
yeast cell within an ecosystem is defined by a trade-off between
programmed processes of cell growth, reproduction, differentia-
tion, stress response, survival and death.
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