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Abstract

Background: Stem cell therapy can be used for alleviating the neuropathic pain induced by spinal cord injuries
(SCIs). However, survival and differentiation of stem cells following their transplantation vary depending on the host
and intrinsic factors of the cell. Therefore, the present study aimed to determine the effect of stem cells derived
from bone marrow (BM-MSC) and umbilical cord (UC-MSC) on neuropathic pain relief.

Methods: A compression model was used to induce SCI in a rat model. A week after SCI, about 1 million cells were
transplanted into the spinal cord. Behavioral tests, including motor function recovery, mechanical allodynia, cold
allodynia, mechanical hyperalgesia, and thermal hyperalgesia, were carried out every week for 8 weeks after SCI
induction. A single unit recording and histological evaluation were then performed.

Results: We show that BM-MSC and UC-MSC transplantations led to improving functional recovery, allodynia, and
hyperalgesia. No difference was seen between the two cell groups regarding motor recovery and alleviating the
allodynia and hyperalgesia. These cells survived in the tissue at least 8 weeks and prevented cavity formation due
to SCI. However, survival rate of UC-MSC was significantly higher than BM-MSC. Electrophysiological evaluations
showed that transplantation of UC-MSC brings about better results than BM-MSCs in wind up of wide dynamic
range neurons.

Conclusions: The results of the present study show that BM-MSC and UC-MSC transplantations alleviated the
symptoms of neuropathic pain and resulted in subsequent motor recovery after SCI. However, survival rate and
electrophysiological findings of UC-MSC were significantly better than BM-MSC.
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Background
According to the International Association for the
Study of Pain (ISAP), neuropathic pain is a pain caused
by damage or diseases affecting the central or periph-
eral nervous system. Following spinal cord injury (SCI)
most patients suffer from long-lasting moderate to
severe pain [1–4]. Existing treatments for reducing
neuropathic pain have low efficiency in the majority of

patients. These treatments include surgical decompres-
sion, drug therapy, and palliative care; even new drugs
only reduce the pain by 50 % in a quarter of the patients
[5]. These therapeutic strategies are purely conservative,
and side effects caused by long-term use of the drugs are a
great obstacle for applying this method of pain reduction
[6, 7]. Neuropathic pain will persist unless the damaged
area is healed or pain reduction pathways are amplified.
Therefore, researchers are looking to repair the damaged
nerve cells.
Intrinsic regeneration of the damaged nerves in the

central nervous system is limited, so scientists are trying
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to build new nervous contacts at the site of injury to re-
duce the neuropathic pain [8]. Thus, cell transplantation
is thought to be a suitable treatment for SCI. As a result,
in recent years ample research has been done in this
field, the result of which shows powerful influence of
stem cell transplantation in functional recovery after SCI
[9, 10]. These studies showed that stem cells are able to
proliferate and differentiate into nerve cells such as ma-
ture neurons or glial cells under special circumstances
[11]. However, survival and differentiation of stem cells
following their transplantation varies depending on the
host and intrinsic factors of the cell [12, 13]. Based on
these findings, it can be stated that the fate of transplanted
cells in vivo varies with the intrinsic characteristics of the
cells and site of transplantation [14]. However, the optimal
source of stem cells is a controversial issue for treating
SCI [15, 16].
Mesenchymal stem cells (MSCs) are the main source of

cell therapy because of their capability of differentiating
into multiple cell types, including blood, adipose tissue,
connective tissues, and so forth [17–19]. These cells can
easily grow in vitro and exhibit intriguing immunomodula-
tory properties, non-teratogenicity, and multi-potentiality
with high genetic stability. MSCs can maintain regenerative
capacity after cryopreservation, improve synaptic transmis-
sion, and promote neuronal networks [20–24]. These
properties make MSCs prime candidates for various thera-
peutic applications especially for nervous system repair.
Different sources can be used to isolate MSCs. Some

of these resources include umbilical cord [25], placenta
[26], bone marrow [27] and adipose tissue [28]. Bone
marrow and umbilical cord are rich sources of MSCs.
Transplantation of bone marrow-derived mesenchymal
stem cells (BM-MSCs) to the injured spinal cord re-
sulted in a significant improvement in sensorimotor of
the hindlimb and reduced cavity formation, and show
substantial immunosuppressive, anti-proliferative, anti-
inflammatory, and anti-apoptotic properties [29]. Human
umbilical cord-derived mesenchymal stem cells (UC-
MSCs) can differentiate into various neural cells and have
beneficial effects on improving functional recovery after
SCI. Compared with BM-MSCs, UC-MSCs have higher
expansion ability, robust proliferation capacity, and lower
risk of bacterial/viral infection [30], while some reports
have shown that UC-MSCs evoked an immune response
when injected into injured tissues [31].
The difference in the properties of the BM-MSCs and

UC-MSCs may have impact on their efficacy in improving
SCIs. However, the effectiveness of these cells in reducing
neuropathic pain is not fully understood. Therefore, the
present study aimed to determine the effect of stem cells
derived from bone marrow and umbilical cord on SCI-
induced neuropathic pain, and to identify the stem cell
population with the highest survival and effectiveness in

transplantation to the site of nerve injury. We selected the
rat model because multiple studies of stem cell therapy
have been performed in the rat injured spinal cord, and
ethical issues do not yet allow us to transplant these cells
into human spinal cord.

Materials and methods
Study design
The present experimental study aims to compare the
effect of transplanting UCMSCs and BM-MSCs on
functional recovery and neuropathic pain caused by
SCI. The protocol of the present study was approved by
the Tehran University of Medical Sciences Ethics Com-
mittee. The researchers adhered to the principles of the
Helsinki Declaration and the principles of using labora-
tory animals as suggested in the National Institutes of
Health Guide for Care and Use of Laboratory Animals
(Publication No. 85–23, revised 1985) over the course
of the study. Most of the materials were obtained from
Sigma-Aldrich Company, Germany. For all other cases,
the relevant company is given.

Studied animals
Male Wistar rats (n = 72) with a weight range of 140–
160 g were used and randomly divided into six groups
(12 animals in each group) (Table 1). The animals were
obtained from the Laboratory Animal Breeding Center
of Iran University of Medical Sciences. All animals were
kept in special cages for at least 2 weeks before the initi-
ation of the study for adaptation to the environment.
They had free access to water and food (temperature 21
± 1 °C; 12-hour light/dark cycle). All behavioral tests
were performed between 10:00 am and 2:00 pm at room
temperature.

Cell culture
The cells were of human source in this study. All sam-
ples were obtained with written, informed consent in
accordance with the Tehran University of Medical Sci-
ences ethics committee requirements. BM-MSCs were
bought from the Royan Institute. The cells were kept in
an incubator at 37 °C, 90 % humidity, and 5 % CO2.
They were cultured in cell culture flasks containing
DMEM/F12 (Dulbecco's modified Eagle's medium/F12;
Gibco, Australia), fetal bovine serum 10 % (Gibco) and
a combination of penicillin (100 IU/ml), streptomycin
sulfate (160 μg/ml), and amphotericin B (10 μg/ml).
The medium was changed every 3 days.
UC-MSCs were isolated from Wharton's jelly as fol-

lows. After obtaining the mother’s consent, the umbil-
ical cord of a healthy infant born by C-section (n = 2)
was brought to the cell culture laboratory under sterile
conditions and in HBSS (Hank's Balanced Salt Solution)
containing penicillin (100 IU/ml), streptomycin sulfate
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(160 μg/ml), and amphotericin B (10 μg/ml). UC-MSCs
were isolated under sterile conditions. After washing
the umbilical cord with 70 % alcohol and phosphate-
buffered saline (PBS), amnion and umbilical cord blood
vessels were removed accurately and the remaining matrix
was chopped into pieces, about 5 mm in diameter. The
pieces were moved to 35 × 10 mm petri dishes, and 1 ml
DMEM/F12 with 20 % fetal bovine serum (Gibco), penicil-
lin (100 IU/ml), and streptomycin sulfate (150 μg/ml)
were added. After 10–15 days of culture and keeping cells
in an incubator, cell buds were identified next to the
pieces. After seeing cell buds, Wharton’s gel pieces were
removed from the medium and cell culture continued
until the cells reached more than 80 % confluence.
Before transplantation, the surface antigens of the cells

were checked using a flow cytometry technique to be
sure of their stem cell status. Mesenchymal cells should
be negative for CD45 and CD14 but should express
CD105, CD29, CD90, and CD44 [32, 33].

SCI induction
A clip compression model was used to induce SCI. This
method was introduced in 1978 [34] and validated in sub-
sequent studies [35–37]. Briefly, rats weighting 140–160 g
were anesthetized using ketamine (80 mg/kg) and Xylazin
(10 mg/kg). After shaving the hair on their back, a 2-cm
long incision was made in the T6–T8 area. Muscles were
set aside and the spinal cord was exposed with laminec-
tomy. Afterwards, and with much caution, the spinal cord
was compressed using a calibrated aneurysm clip provid-
ing 20 g/cm2 pressure. The force of the clip was measured
as described previously [38]. The clip was removed after
60 seconds and muscles and skin were sutured separately
to close the operation site. Since the animals were incap-
able of emptying their bladder voluntarily after injury in-
duction, their bladder was emptied at least twice a day
until they were able to do so themselves.

Stem cell transplantation
A week after SCI induction, the animals were prepared for
transplantation. They were anesthetized using ketamine

(80 mg/kg) and Xylazin (10 mg/kg) and their spinal cord
was exposed at the T6–T8 area in the same way as stated
above in the SCI induction section. About 1 million cells
in a 10-μl volume were then transplanted into the dorsal
horn of the spinal cord in two injections, 0.5 mm rostral
and caudal of the lesion at a depth of 1 mm below the
dorsal surface at a rate of 1 μl/min, using a glass micropip-
ette attached to a stereotaxic injector. Subsequently, the
muscles and skin were sutured and the animals were
returned to their cages. To confirm the number of cells,
the sample was prepared and cell count was performed
using trypan blue staining.

Behavioral evaluations
Behavioral tests were carried out every week for 8 weeks
after SCI induction. The Basso, Beattie, and Bresnahan
(BBB) locomotor scoring scale [39] was used to rate the
hind limb motor function. The rats were placed in a
container 120 cm in diameter and were studied and
rated for 4 minutes. The locomotor behavior of the
animals, including hind-limb motor function, weight-
bearing, limb coordination, and walking, was assessed
and scored.
To evaluate sensory function, four behavioral tests were

used, the details of which have been described in a previ-
ous study by the authors [40]. In summary, mechanical
allodynia was evaluated using the von-Frey test. Eight
von-Frey filaments of different diameters were used in an
up and down manner to assess the withdrawal threshold
of the animal; 50 % withdrawal threshold was then calcu-
lated based on the responses. Cold allodynia was evaluated
using the acetone test. In this test, about 100 μl acetone
was pushed onto the hind paw of the animal. The test was
repeated five times for each paw with 1-minute time inter-
vals, and the number of withdrawals was considered as
the response and presented as a percentage of the total.
Mechanical hyperalgesia was evaluated (Randall-Selitto
test) using an analgesia meter. In this test, increasing
mechanical tension was applied to both hind limbs with at
least 1-minute intervals and their average was recorded.
Heat hyperalgesia was assessed by thermal stimulation of
the animal’s hind paw (Plantar test). The test was repeated
three times and the average time was considered as the
animal’s withdrawal latency. A 25-second cut-off was used
for stopping stimulation to avoid tissue damage.

Electrophysiological evaluation
At the end of week 8, a single-unit recording of the
dorsal horn of the spinal cord was obtained to evaluate
the electrical function of neurons. For this purpose, the
animals were deeply sedated (60 mg/kg pentobarbital) and
their body temperature was kept at 37 °C over the course
of the recording. L1–L2 lamina was then removed for
electrophysiological recording. The recording site deviated

Table 1 The study groups

Experimental
group

Treatment protocol

Control Healthy animals without treatment

Sham Laminectomy without SCI induction

SCI Laminectomy + SCI induction

Vehicle Laminectomy + SCI + intraspinal injection of cell
culture media

BM-MSC Laminectomy + SCI + intraspinal injection of BM-MSCs

UC-MSC Laminectomy + SCI + intraspinal injection of UC-MSCs

BM-MSC bone marrow-derived mesenchymal stem cell, SCI spinal cord injury,
UC-MSC umbilical cord-derived mesenchymal stem cell
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0.6 mm from the middle (to the side of the spinal cord)
and its depth was 300–700 μm. This depth was selected
due to the presence of wide dynamic range (WDR) neu-
rons. These cells receive input from all three types of
sensory fibers (Aβ, Aδ, and C), and therefore respond to
the full range of stimulation, from light touch to noxious
pinch, heat, and chemicals [41]. For each animal, one
neuron was evaluated. Electrical stimulation was used to
induce responses. Neural response recording started when
a stable response from the neuron lasted for at least 1 mi-
nute. The spikes of action potential were recorded and
their frequency was counted in four delayed window pe-
riods after stimulation: 0–20 ms (for Aβ fibers), 20–90 ms
(for Aδ fibers), 90–300 ms (for C fibers), and 300–800 ms
(for post-discharge). Finally, wind-up phenomenon was
calculated based on Jergova et al. [42].

Histological evaluation
The spinal cord was prepared for tissue evaluation in
week 8. After transcardial perfusion, the spinal cord was
fixated in 4 % paraformaldehyde in 0.1 molar phosphate
buffer, pH 7.4, for 24 hours. Then it was kept in 10 %,
20 % and 30 % sucrose solutions for 24 hours each and
prepared for serial cross-sectionalizing. Luxol fast blue
(LFB) staining was performed to determine the volume
of the injury; 20-μm diameter sections were stained [43].
The sections were then observed under a light micro-
scope. The size of the cavity was divided by the total size
of the spinal cord section (three sections that had the
biggest cavity for each animal; three animals in each
group) and were presented as percentages. The data
were analyzed with ImageJ software (Wayne Rasband,
National Institutes of Health, USA).
Eight weeks after cell transplantation, survival of the

cells was evaluated by the aid of immunohistochemis-
try. The cryostat sections (20 μm) were permeabilized
in PBS-T (PBS containing 0.1 % Triton X-100) for
10 minutes and blocked with 10 % fetal bovine serum
in PBS-T for 1 hour, and then incubated overnight at
4 °C with the primary antibodies against mouse monoclo-
nal antibody against human nuclei (HuNu; Chemicon
Inc., Pittsburgh, PA, USA). Then lamels were washed and
goat anti-rabbit IgG conjugated with Alexa-Fluor 594
(Molecular Probes, Eugene, OR, USA) secondary anti-
bodies were added in a 1:100 dilution and incubated at
37 °C for 1 hour. The nucleus of the host cell was also
stained using DAPI (4',6-diamidino-2-phenylindole;
Molecular Probes, Eugene, OR, USA) and the results
were assessed using an Olympus DP72 florescent
microscope. In this type of staining, transplanted cells
are stained green. All sections were stained (three ani-
mals in each groups). The survival rates were calculated
based on following formula:

Survival rate %ð Þ ¼ total number of survived cells in 8th week
total number of transplanted cells

� 100

Statistical analyses
Data were analyzed by SPSS version 21.0 and are pre-
sented as mean and standard error. To compare the data
gathered from behavioral evaluations of the different
groups, two-way analysis of variance with Bonferroni
post-hoc test was used, and for assessment of electro-
physiological assessment and histological assays, one-way
analysis of variance was used. In all analyses, p < 0.05 was
considered as significant.

Results
Mesenchymal cell characteristics
After isolation, BM-MSCs and UC-MSCs adhered to the
bottom of the flask and formed colonies. They became
spindle-shaped and suspended cells were removed by
medium change. Figure 1 shows the surface antigen pro-
file of these spindle-shaped cells evaluated using flow
cytometry. All cells were negative for CD45 and CD14.
BM-MSCs were positive for CD44 and CD105 and UC-
MSCs expressed CD29 and CD90.

Behavioral evaluations
Motor recovery
After SCI induction, the locomotor score of the animals
significantly decreased compared to the sham group (df:
8, 63; F = 79.6; p < 0.001). Stem cell transplants did not
lead to significant improvement until the fourth week
after SCI. However, from weeks 5 to 8 of the study, BM-
MSC and UC-MSC transplantations led to progressive
improvement of motor recovery in animals compared to
the vehicle group (df: 8, 63; F = 366.4; p < 0.0001). No
difference was seen between the two cell groups regard-
ing motor recovery (p > 0.99) (Fig. 2a).

Mechanical allodynia
SCI resulted in a significant decrease in 50 % paw
withdrawal threshold of the animals (df: 8, 63; F = 48.6;
p < 0.001). This decline continued in the vehicle and
SCI groups until week 4 and then reached a plateau. In
contrast, BM-MSC and UC-MSC transplantations caused
improvements in mechanical allodynia (df: 8, 63; F =
1060.2; p < 0.001) so that in the seventh and eighth week,
this threshold was not significantly different from that of
the sham and control groups (p > 0.05) (Fig. 2b). There
was no significant difference among stem cell treated
groups (p >0.99)

Cold allodynia
The percentage of paw withdrawal responses of the ani-
mal to cold stimulation significantly increased after SCI
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induction, compared to the control and sham groups
(df: 8, 63; F = 17.7; p < 0.001). In SCI and vehicle
groups, the percentage of responses continued to in-
crease. On the other hand, BM-MSC and UC-MSC
transplantations caused improvements in the rats re-
sponse to cold stimulation compared to the SCI group
(df: 8, 63; F = 426.4; p < 0.001), although this threshold
did not return to the normal level (p < 0.05) (Fig. 2c).
There was no significant difference among stem cell
treated groups (p >0.99)

Mechanical hyperalgesia
The Randall-Sellito test revealed that SCI caused a
decrease in the animal pain threshold under painful
mechanical stimulation (df: 8, 63; F = 16.5; p < 0.001)
(Fig. 2d). Transplantation of BM-MSCs and UC-MSCs
led to significant improvement of paw withdrawal thresh-
old compared to the SCI group (df: 8, 63; F = 230.4;
p < 0.001). There was no significant difference between
transplanted animals (p > 0.99).

Heat hyperalgesia
As Fig. 2e shows, SCI led to a significant decrease in
paw withdrawal threshold due to heat stimulation (df:
8, 63; F = 24.0; p < 0.001). BM-MSC and UC-MSC
transplantations caused the threshold to rise from the
second week onwards and reach the normal level in

week 4 (df: 8, 63; F = 292.0; p < 0.0001). There was no
significant difference among stem cell treated groups
(p > 0.99).

Histological evaluation
A big cavity was seen in the SCI and vehicle groups 8 weeks
post-SCI. However, BM-MSC and UC-MSC transplanta-
tions prevented cavity formation and SCI development
(Fig. 3). The size of the cavity was significantly lower in
BM-MSC and UC-MSC groups compared to SCI and ve-
hicle groups (df: 16; F = 89.4; p < 0.001). However the size
of the cavity was not different between transplanted ani-
mals (p > 0.99).
In addition, immunohistochemistry staining showed

that transplanted cells continued to survive in the spinal
cord after 8 weeks. In Fig. 4, transplanted cells can be
seen in green. The survival rates were 0.36 ± 0.06 % and
0.57 ± 0.06 % in BM-MSC and UC-MSC groups, respect-
ively (p = 0.01). The number of surviving cells in the
BM-MSC and UC-MSC groups were 2327.0 ± 571.88
and 5728.67 ± 583.15, respectively (p = 0.002).

Electrophysiological findings
For electrophysiological investigations, a single-unit re-
cording of WDR neurons in the dorsal horn of the L4
and L5 spinal cord was obtained. The WDR neuron re-
sponse to electrical stimulation was evaluated 8 weeks

Fig. 1 Immunophenotype results of cells derived from human bone marrow mesenchymal stem cells (BM-MSCs) and umbilical cord mesenchymal
stem cells (UC-MSCs). All cells were positive for CD29, CD44, CD90, and CD105, but negative for CD14, and CD45
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after transplantation of BM-MSCs and UC-MSCs.
Compared to control and sham groups, evoked poten-
tials of the WDR neurons in the SCI and vehicle groups
were significantly higher. The response of these neu-
rons to the stimulations received from Aβ (df: 35; F = 28.9;
p < 0.001), Aδ (df: 35; F = 34.5; p < 0.001), and C (df: 35;
F = 40.6; p < 0.001) fibers, as well as post-discharge response

(df: 35; F = 31.5; p < 0.001) and wind up (df: 35; F = 30.6;
p < 0.001) were higher in the SCI and vehicle groups
compared to sham and control groups.
BM-MSC treatment caused the WDR neuron response

to stimulations from Aβ (p = 0.91), Aδ (p = 0.87) and C
(p = 0.99) fibers to reach that of the control group. Al-
though post-discharge and wind up became significantly

Fig. 2 Effect of intraspinal transplantation of human bone marrow mesenchymal stem cells (BMMSCs) and umbilical cord mesenchymal stem cells
(UMSCs) on motor function recovery (a), mechanical allodynia (b), cold allodynia (c), mechanical hyperalgesia (d), and heat hyperalgesia (e). Data are
expressed as means ± SEM (n = 12 in each group). The paw withdrawal thresholds are significantly increased following stem cell transplantation
compared to spinal cord injured animals (SCI). *p < 0.01, versus SCI group; #p < 0.01, versus sham animals. BBB Basso, Beattie, and Bresnahan
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lower than in the SCI group (p < 0.001), they did not
reach the normal level (p < 0.05) (Figs. 5 and 6).
A similar pattern was observed regarding UC-MSC

transplants. Transplantation of UC-MSCs led to WDR
neuron response to stimulations from Aβ (p = 0.99), Aδ
(p = 0.95) and C (p = 0.24) fibers reaching the control
group level. However, UC-MSCs did not cause post-
discharge and wind up to reach normal levels (p < 0.05)
although they did significantly decrease compared to the

SCI group (p < 0.001). Comparing the two treatments re-
gimes revealed that wind up in the UC-MSC group was
significantly lower than the BM-MSC group (p = 0.008).

Discussion
The results of the present study showed that transplant-
ation of BM-MSCs and UC-MSCs in the spinal cord allevi-
ate the allodynia and hyperalgesia after SCI. The efficacy of
the two types of cells was similar for symptom relief. These

a b

c d

e f

g

Fig. 3 Luxol fast blue staining for assessment of cavity size in control (a), sham (b), spinal cord injured (SCI) (c), vehicle-treated (d), human bone
marrow-derived mesenchymal stem cell (BM-MSC) (e) and umbilical cord-derived mesenchymal stem cell (UC-MSC) (f) animals. Transplantation of
human BM-MSCs and UC-MSCs resulted in significantly decreased cavity size (g). Original magnification in a–f, ×20. Data are expressed as means
± SEM (n = 3 in each group). *p < 0.001, versus SCI group
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cells survive in the spinal cord and prevent formation of
cavities due to SCI. However, the survival rate of UC-MSCs
was significantly higher than BM-MSCs. Electrophysio-
logical evaluation confirmed these findings. Evoked re-
sponse of the WDR to Aβ, Aδ, and C fiber stimulations,
post-discharge and wind up of these second order neurons
(WDR) had significantly increased 8 weeks after SCI, while
stem cell transplantation decreased the responses to painful
stimulation. Statistical analysis showed that animals trans-
planted with UC-MSCs had better recovery in wind up
phenomena. Although the pain threshold in animals trans-
planted with UC-MSCs and BM-MSCs was not at the level
of normal animals, this might be due to an inability of these
cells to fully recover post-discharge and wind up phenom-
ena when transplanted into the spinal cord.
Efficacy of MSC transplantation on neuropathic pain de-

pends on numerous factors, such as source of the cells
(donor species) [44], number and source of transplanted
cells, route of administration (at injury site or intravascu-
lar), type of injury (central or peripheral), type of trans-
plant (allogenic or xenogenic), time between injury and
cell transplantation, and follow-up duration [45–48]. This
explains why MSC transplantation has led to neuropathic
pain symptom relief in some studies [44, 45, 47, 49–58]
but not others [48, 58–60], or even symptom worsening
[46, 48]. The results of the present study revealed that
transplantation of 1 million mesenchymal cells derived
from bone marrow, umbilical cord, and adipose tissue led
to neuropathic pain symptom relief after transplantation.

To our knowledge, the present study is the first in
vivo study comparing the efficacy of MSCs derived
from different sources on motor recovery and neuro-
pathic pain symptom relief following SCI. Therefore,
our results cannot be directly compared to other
studies. However, Jin et al. [61] compared the ability
of mesenchymal cells derived from bone marrow, um-
bilical cord, and adipose tissue to differentiate to vari-
ous tissues in an in-vitro study. They found that
mesenchymal cells derived from umbilical cord had
stronger proliferation ability and anti-inflammatory ef-
fects compared to other cells. They suggest that cells
derived from umbilical cord have an advantage over
those derived from adult tissues (such as bone marrow
and adipose tissue) and can be used as an efficient
model in the clinic [61]. In addition, Kern et al. [62]
showed that, from morphologic and immune phenotype
points of view, BM-MSCs and UC-MSCs are not sig-
nificantly different. Although the number of colonies
was lower in cells isolated from umbilical cord, in the
next passages their proliferation and survival was
higher than other studied cells [62]. Baksh et al. [63]
compared proliferation and differentiation of mesen-
chymal cells isolated from bone marrow and umbilical
cord and revealed that umbilical cord mesenchymal
cells keep their mesenchymal characteristics for longer
and express signaling pathways similar to those of mes-
enchymal cells isolated from bone marrow. Panepucci
et al. [64] compared gene expression characteristics of

Fig. 4 Immunohistochemistry staining for assessment of human bone marrow-derived mesenchymal stem cell (BM-MSC) and umbilical cord-derived
mesenchymal stem cell (UC-MSC) survival. Host cells are stained by 4',6-diamidino-2-phenylindole (DAPI). Mouse monoclonal antibody against human
nuclei positive cells (transplanted cells) continue to survive in the spinal cord after 8 weeks (n = 3 in each group). The survival rates were 0.36 ± 0.06 %
and 0.57 ± 0.06 % in BM-MSC and UC-MSC groups, respectively (p = 0.002)
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mesenchymal cells isolated from bone marrow and umbil-
ical cord and demonstrated that bone marrow-derived cells
tend to express genes related to antimicrobial and osteo-
genesis processes, while umbilical cord-derived cells tend
to express genes playing a part in angiogenesis and intra-
cellular matrix renewal. Therefore, it can be suggested that,
since mesenchymal cells isolated from umbilical cord have

a higher survival rate in the tissue and show more anti-
inflammatory and angiogenic effects compared to stem
cells derived from bone marrow, they are expected to have
higher efficacy in injury healing and symptom relief in
neuropathic animals. This might be the reason that wind
up recovery in the group treated with UC-MSCs was better
than in the group treated with BM-MSCs in this study.

Fig. 5 Single-unit recording of wide dynamic range (WDR) neurons in the dorsal horn of the L4 and L5 spinal cord 8 weeks after transplantation
of human bone marrow-derived mesenchymal stem cells (BM-MSCs) and umbilical cord-derived mesenchymal stem cells (UC-MSCs). Evoked potential
of the WDR neurons to stimulations received from Aβ neurons (a), Aδ (b), and C fibers (c), post-discharge response (d), and wind up (e) are presented
as means ± SEM (n = 6 in each group). #p < 0.001, versus SCI group; *p < 0.01, **p < 0.001, versus sham animals; $p < 0.01, versus BM-MSC
treated animals. SCI spinal cord injury
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The present study showed that BM-MSCs and UC-
MSCs are able to survive until 8 weeks after transplant-
ation. Mannoji et al. [65] also reported similar results in
this regard. Kim et al. [66] evaluated the effect of bone
marrow-derived stem cell transplantation on SCI in rats
and determined that these cells are present at the site of in-
jury until 6 weeks after transplantation. They stated that
the expression level of neuronal growth factor (NGF) and
brain-derived neurotrophic factor (BDNF) in the group
treated with mesenchymal cells was higher than their SCI
group [66]. In addition, Veeravalli et al. [67] evaluated the
effect of umbilical cord-derived stem cell transplantation
and revealed that these cells were present at the site of in-
jury at the 3-week follow-up. Transplantation of these cells
had induced metalloproteinase 2 expression at the site of
injury. Inhibition of this cellular matrix protein resulted in
a decrease in the protective effect of mesenchymal cells.

They concluded that transplantation of umbilical cord-
derived stem cells prepares the environment for endogenic
regeneration by inducing metalloproteinase 2 expression
and inhibition of glial scar formation [67].
These studies all indicated that MSCs are able to sur-

vive in the tissue for a long time. Most studies show that
these cells have a protective role in the tissue and may
reduce inflammation caused by SCI. By secretion of cy-
tokines and growth factors, MSCs can also play a role in
neural regeneration [68]. Thus, it seems that they provide
a favorable environment for endogenic regeneration. In
the present study, LFB staining showed that MSC trans-
plantation from two studied sources prevented cavity for-
mation at the site of injury, which might be due to their
anti-inflammatory role.
Two inflammation phases are present in SCI. A primary

or acute phase at the time of injury causes some cells to

Fig. 6 Examples of the raw evoked responses and post-stimulus time histogram of WDR neurons in control (a), sham (b), SCI (c), vehicle-treated
(d), human BM-MSC (e) and UC-MSC (f) animals
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die or experience ischemia due to direct compression
or a decrease in blood flow. However, the major dam-
age is done in the second phase. This phase lasts weeks
or months, and causes spinal cord tissue damage by
various mechanisms: apoptosis induction, initiation of
astroglial scar formation, central chromatolysis, defi-
ciency in myelin gene expression, degradation of myelin
in remaining axons, glutamate over-induction, invasion
of immune cells to the site of injury and secretion of in-
flammatory cytokines, and endothelial damage due to
ischemia–reperfusion, and so forth. [69]. Mesenchymal
cell transplantation can reverse these damaging pro-
cesses to some extent. These cells have immunomodu-
latory characteristics [21, 70–75] and can minimize
inflammation and immune system-induced damage if
transplanted at the right time [76]. Transplantation of
these cells can decrease glial cell hypertrophy and pro-
liferation, and improve recovery with the aid of bio-
active molecules, reduction of cytokine secretion, and
growth factors. Their angiogenic role can also be used
in angiogenesis in the spinal cord [77, 78].
To our knowledge, this study is the first to compare the

electrophysiological changes of the spinal cord after BM-
MSC and UC-MSC transplantation. The findings of the
present study showed that SCI leads to an increase in
stimulations from Aβ, Aδ, and C fibers to WDR neurons
at below-injury levels, and that MSC treatment recovered
these changes to the level of those of intact groups. It has
been reported that transplantation of olfactory cells re-
sulted in improvement in touch stimulations and cord
dorsum potentials [79]. It was also shown that SCI at the
T3 level resulted in complete neural disconnection be-
tween the parts on either side of the SCI site. However,
after neural stem cell transplantation, an electrical stimu-
lation at the C7 level led to recording of an evoked poten-
tial in the T6 area [80]. Erceg et al. [81] showed that
transplantation of oligodendrocyte and motoneuron pro-
genitor cells into injured spinal cord could result in restor-
ation of motor pathways that were damaged due to SCI to
some extent, and lead to appearance of motor-evoked po-
tential in electrophysiological recordings [81]. Yasuda et
al. [82] also revealed that neural stem/progenitor cell
transplantation brings about reappearance of motor-
evoked potential post-SCI. In addition, Ziegler et al.
[83] reported that olfactory ensheathing glial cell trans-
plantation after complete SCI led to reappearance of
motor-evoked potentials. In another study, comparison
of electrophysiological findings in a rat model showed that
somatosensory evoked potential in the BM-MSC treated
group was not different from the Schwann cell group [84].
Finally, we should note that, in this study, about 1

million cells were transplanted a week after injury. The
reason for the selection of this protocol was its similar-
ity to clinical conditions. In the clinical trials performed

recently, mean injected cell count was about 1–3 million
cells [85–88]. Additionally, in most clinical conditions,
transplantation of cells at the time of injury is not possible
and preparation of the patients and cells for transplant-
ation takes at least 1 week to a few months. We cannot
determine the mechanism(s) that led to the improvement
observed. The cells might have prevented inflammation
and stopped the damaging process in the initial days with
no further function after that or, on the contrary, they
could have continued to exert a protective role. Further
study is needed to determine this.
The present study has some limitation. First, the cells

are cultured in fetal bovine serum, which is not ideal for
application in humans. However, using fetal bovine serum
is in accordance with cell culture protocols. Therefore,
when translating the result to a clinical trial an alternative
for fetal bovine serum will be needed. Second, we com-
pared the efficacy of BM-MSC and UC-MSC xenotrans-
plantation on improvement of SCI 1 week after induction
of compression injury. Since we showed the efficacy of
BM-MSCs are affected by timing of intervention, the
method used for SCI induction, and dosage of cell therapy
in a previous meta-analysis [14], generalizing our findings
should be done with caution.

Conclusion
The results of the present study showed that BM-MSC
and UC-MSC transplantations alleviated the symptoms
of neuropathic pain and resulted in subsequent motor
recovery after SCI. Efficacy of both sources was similar
for symptom relief. These cells survived in the tissue at
least 8 weeks and prevented cavity formation due to
SCI. However, the survival rate of UC-MSCs was sig-
nificantly higher than BM-MSCs. Electrophysiological
evaluations showed that transplantation of UC-MSCs
brings about better results than BM-MSCs in wind up
of WDR neurons.
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