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Abstract: Vagus nerve stimulation (VNS) is acknowledged as a highly effective therapy for various neurological conditions, 
including refractory epilepsy, depression, Alzheimer’s disease (AD), migraine, and stroke. Presently, there is an increasing focus on 
understanding the impact of VNS on cognitive aspects. Numerous studies suggest that VNS suppresses the body’s inflammatory 
response, leading to enhanced cognitive function in patients. Vascular cognitive impairment (VCI) is a severe cognitive dysfunction 
syndrome resulting from prolonged chronic cerebral hypoperfusion (CCH), where the primary pathogenesis is CCH-induced 
neuroinflammation. In this paper, we present a comprehensive overview of the research advancements in using VNS for treating 
VCI and discuss that VNS improves cognitive function in VCI patients by suppressing neuroinflammation, offering insights into 
a potential novel approach for addressing this condition. 
Keywords: cholinergic anti-inflammatory pathway, chronic cerebral hypoperfusion, cognition, neuroinflammation, vagus nerve 
stimulation, vascular cognitive impairment

Introduction
Vascular cognitive impairment (VCI) is a form of cognitive dysfunction resulting from cerebrovascular diseases.1 It is 
classified into mild and severe categories, with the latter referred to as vascular dementia (VaD). The occurrence and 
prevalence of severe VCI, also known as VaD, show a substantial rise with age, particularly in populations aged over 75 
in developed countries.2 In the elderly population over 65 years old in China, the occurrence of VaD is 1.50%. VaD ranks 
as the second most prevalent form of dementia following Alzheimer’s disease (AD).3 Moreover, it stands as the most 
common type of dementia after a stroke,4 with nearly one in ten patients experiencing cognitive dysfunction within the 
initial year following a stroke.2,5 As the population ages, the prevalence of cerebrovascular disease has been steadily 
rising, leading to a corresponding increase in the number of individuals affected by VCI. This not only has significant 
health implications but also imposes a substantial economic burden on both families and society. Chronic cerebral 
hypoperfusion (CCH) is identified as a potential factor in the development of VaD, triggering neuroinflammatory 
responses and oxidative stress.6 While the majority of studies concentrate on pharmaceutical interventions for VaD,3 

there is a limited array of evidence-based medical options for treating VCI using other therapeutic methods. Vagus nerve 
stimulation (VNS) stands out as a neural regulation technique, involving the application of electrical stimulation to the 
vagus nerve for the treatment of various brain diseases. Since the initial instance of VNS procedures for epilepsy in 1988, 
it has received subsequent approvals for the treatment of drug-refractory epilepsy from regulatory bodies such as the 
European Commission (1994), the US Food and Drug Administration (1997),7,8 and the National Medical Products 
Administration in China (2000).9 Consequently, has been employed in clinical practice for over three decades. Presently, 
it is acknowledged as one of the most efficacious methods. VNS is categorized into invasive vagal nerve stimulation 
(iVNS) and non-invasive vagal nerve stimulation, also known as transcutaneous vagal nerve stimulation (tVNS). The 
latter can be further subcategorized into transcutaneous auricular vagus nerve stimulation (taVNS) and transcutaneous 
cervical vagal nerve stimulation (tcVNS). Given that iVNS is an invasive procedure requiring general anesthesia and 
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carrying a risk of complications, taVNS has emerged as a safe, non-invasive, and well-tolerated alternative, activating 
vagal projections and pathways with effects comparable to those of iVNS. Through extensive research on VNS for 
epilepsy and AD, it has been discovered that VNS can enhance the cognitive function of patients,9,10 introducing 
innovative approaches to cognitive disorder treatment. Most studies have concluded that VNS improves patients’ 
cognitive function by suppressing the body’s inflammatory response. In contrast, VCI is a severe cognitive dysfunction 
syndrome caused by persistent CCH. The underlying pathogenic factor is mainly CCH-induced neuroinflammation. This 
review discusses that VNS improves cognitive function in patients with impaired VCI by inhibiting neuroinflammation, 
ie, the potential application value of VNS in adjunctive therapy for VCI.

VCI
Anatomical Structure--of the Cerebral Vascular Network
The brain relies significantly on a continuous supply of glucose and oxygen for its metabolism, making an 
uninterrupted and well-maintained blood supply crucial. The primary blood supply system is derived from the 
internal carotid artery and the vertebral artery, which collectively form the cerebral arterial circle, also known as 
the Circle of Willis, at the brain’s base. Surface arteries create an intricate network of cerebral microvessels, ensuring 
the delivery of nutrients and oxygen to the brain. In contrast, the perforating branches, originating from the Circle of 
Willis and proximal branches, ascend to supply the basal ganglion. Unlike leptomeningeal vessels and capillaries, 
perforating arteries have minimal collateral vessels. Consequently, the occlusion of a perforating artery is adequate to 
induce a small ischemic lesion, known as lacunar infarction. Additionally, the deep subcortical white matter (WM), 
nourished by long perforating arteries with low perfusion pressures, is particularly vulnerable to hemodynamic 
instability.2

Potential Pathogenesis of VCI
The origins of VCI are a subject of debate. Initially, many scholars linked VCI to large vessel infarction.1 However, as 
neuroimaging techniques have advanced, researchers have observed that diffuse cerebral white matter lesions (WMLs) 
are more prevalent than multiple strokes and are considered closely tied to the development of cognitive 
dysfunction.1,11,12 In recent years, an increasing number of studies have proposed that chronic cerebral hypoperfusion 
resulting from cerebrovascular injury is a major contributing factor to VCI.2,6,11,13,14 Neuroinflammation holds signifi-
cance in numerous neurodegenerative conditions. Chronic cerebral hypoperfusion-induced ischemia and hypoxia can 
trigger neuroinflammation, which, in turn, may result in neuronal dysfunction or in severe cases neuronal death, 
ultimately contributing to cognitive impairment.15 Neuroinflammation denotes a sequence of immune responses activated 
when immune cells in the central nervous system recognize signals of injury.16 These processes encompass the activation 
of microglia, elevated levels of cytokines and chemokines, the mobilization of peripheral immune cells, and damage to 
local tissues.17,18 Within the context of inflammation, immunogenic molecules can trigger microglial activation, setting 
off subsequent immune responses and oxidative stress.19 Neuroinflammation has the potential to cause harm to white 
matter and neuronal structures, resulting in learning and memory impairments, ultimately contributing to and expediting 
the progression of neurodegenerative disorders like dementia.20 The neuropathological criteria for VCI remain complex 
due to the diverse causative factors and the complexity of neuropathology.

VNS Improves Cognitive Function
The precise mechanism by which VNS ameliorates cognitive dysfunction is not yet fully understood. Initially, research-
ers noted cognitive function improvement in patients with refractory epilepsy who underwent VNS. Similar positive 
outcomes were subsequently observed in studies exploring VNS for AD, depression, and schizophrenia.9,10,21 Clinical 
investigations have even identified cognitive enhancement in healthy adults following VNS treatment (Table 1).22 

Presently, research into the mechanisms underlying the cognitive benefits of VNS primarily focuses on vagal afferent 
fibers23–25 and the cholinergic anti-inflammatory pathway (CAP).8
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Table 1 Effect of VNS on Cognitive Memory Processes in Healthy Volunteers

Researcher (Year) Stimulation Parameters Number of 
Cases

Main Findings

Current Intensity  
(mA, Mean or Range)

Frequency 
(Hz)

Pulse 
Duration (μS)

Duration 
(min)

Jacobs (2015) 0.5 8 200 17 30 Enhanced performance in tasks involving associating faces with names and tasks 
related to episodic memory

Steenbergen (2015) 0.5 25 200–300 45 A:15 

S:15

Enhanced ability to select reactions.

Colzato (2018) 0.5 25 200–300 40 A:40 

S:40

Enhanced creativity and divergent thinking abilities

Jongkees (2018) 0.5 25 200–300 45 A:20 
S:20

Enhanced selection of reactions during sequential operations

Sellaro (2018) 0.5 25 200–300 35 24 Enhanced recognition of emotions specifically on the entire face, excluding the 

body
Fischer (2018) A:1.3 (0.4–3.3) 

S:1.49 (0.6–4.8)

25 200–300 36 21 Enhanced cognitive control adjustments in response to conflict

Manon (2020) A:0.5–3.5 
S:0.5–2.5

25 200–300 23 60 Enhanced processing and memory retention of words with emotional (pleasant) 
connotations

Borges (2020) 0.5 25 200–300 8 32 Increased cognitive flexibility

Stefanie (2021) A:1.37 
S:1.89

25 250 20 83 Enhanced regulation of both cognitive and emotional functions

Notes: S represents the sham stimulation group, and A represents the stimulation group.
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Vagus
The vagus nerve (VN), constituting the tenth pair of cranial nerves, is the longest and most extensively distributed among the 
cerebral nerves. It comprises 80% sensory nerve fibers (afferent nerves) and 20% motor nerve fibers (efferent nerves). The 
efferent nerves regulate organs located below the neck, including the heart, lungs, and gastrointestinal tract. Afferent nerves 
project to various cortical and subcortical brain structures such as the hippocampus, thalamus, hypothalamus, insula, 
prefrontal cortex, and motor cortex. Originating in the medulla oblongata, the VN has four primary nuclei: Dorsal Motor 
Nucleus (DMN), Nucleus Ambiguous (NA), Spinal Trigeminal Nucleus (STN), and Nucleus of the Solitary Tract (NTS). 
Sensory nerve fibers of the VN extend into the brainstem, predominantly terminating in the NTS,23 which serves as an 
integration center for sensory information. Subsequently, these fibers project directly to the dendrites of locus coeruleus (LC) 
norepinephrine-ergic neurons. Both the NTS and LC project to various brain regions, including the thalamus, amygdala, 
medial septum, hippocampal formation, and cerebral cortex (Figure 1). Some of these regions play a significant role in 
memory storage. Specifically, VNS triggers the release of norepinephrine (NE) through the LC, NTS, and other cognitive- 
related structures like the thalamus, amygdala, hippocampus, and cerebral cortex, thereby enhancing memory.23–28 

Functional magnetic resonance imaging has revealed that VNS induces local blood flow changes in the brainstem, thalamus, 
hypothalamus, amygdala, and hippocampus. The observed changes indirectly imply that VNS may improve memory 
function by activating the aforementioned brain regions associated with cognition.10 Moreover, animal experiments have 
demonstrated that VNS stimulation enhances spatial memory and fear memory in rats, with a correlation observed with the 
release of NE during stimulation.29 Consequently, intermittent chronic electrical stimulation of VN afferent fibers activates 

Figure 1 Schematic diagram of vagus nerve afferent fibers. Thalamus; Amygdala; Hippocampus; Cerebral cortex; locus coeruleus (LC); Nodoid ganglion; Jugular ganglion; 
Pharynx, Larynx, Esophagus, Trachea and various organs in the chest and abdomen; Meninges; Auricular branch of the vagus nerve; nucleus of the solitary tract (NTS); spinal 
trigeminal nucleus (STN). Created with BioRender.com.
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the NTS-LC-NE pathway, ultimately improving cognitive function. These conclusions are predominantly affirmed in studies 
related to epilepsy, Alzheimer’s disease, depression, and cognitive function.9,10,21,23–25,28,30

Cholinergic Anti-Inflammatory Pathway
Increasing evidence suggests a connection between inflammation and the onset of cognitive dysfunction, implicating 
various neuroinflammatory factors. Consequently, there is a belief that VNS may enhance cognitive function by 
triggering anti-inflammatory pathways. Findings from an animal experiment investigating postoperative cognitive 
dysfunction in aged rats support this notion, as VNS was shown to ameliorate cognitive dysfunction by suppressing 
the expression of postoperative inflammatory cytokines.31 This provides evidence supporting the idea that VNS can 
enhance cognitive function by mitigating inflammatory responses. Furthermore, it has been demonstrated that VNS 
activates the cholinergic anti-inflammatory pathway (CAP).8,32 Specifically, vagal efferent fibers facilitate the release of 
acetylcholine (ACh), which binds to the α7 nicotinic acetylcholine receptor (α7nAChR)33 on the surface of immune cells 
like macrophages and microglia. This process activates the intracellular JAK2/STAT3 signaling pathway, inhibiting the 
release of cytokines (inflammatory factors), such as tumor necrosis factor (TNF) α and interleukin-6 (IL-6), thus 
alleviating the inflammatory response.34,35 Moreover Wang et al indicated that by regulating the CAP improve cognitive 
impairment in CCH mice.36 By activating CAP, VNS curtails the release of inflammation-associated cytokines, safe-
guarding and enhancing cognitive function. The anti-inflammatory mechanism of VNS positions it as a potential 
supplementary therapy for cognitive dysfunction.

Improvement of VCI by VNS
The precise mechanism through which VNS enhances VCI remains incompletely understood. Nevertheless, past research 
has indicated a connection between cerebrospinal fluid circulation (CSF) and cognitive function.37,38 Cheng et al 
observed that iVNS increased CSF circulation.39 Additionally, animal experiments conducted by Choi et al demonstrated 
that taVNS promotes CSF circulation40 and repetitive stimulation in animal models enhances cognitive function. In 
addition, Liu et al found that VNS improved cognitive function in cerebral ischemia-reperfusion rats, and the main 
mechanism was related to NE. Because the experiment mainly investigated the improvement of cognitive function within 
30 minutes after ischemic stroke, it could not be directly equated with VCI.29 Zhao et al41 found that tcVNS attenuates 
cerebral ischemic injury and reduces apoptosis by promoting microglial neuron M2 polarization. We elaborated in the 
potential mechanism of VCI above that blocking microglia activation improves cognitive dysfunction, ie, suggesting that 
nVNS may play a neuroprotective role by inhibiting inflammatory responses. It is important to note that there is currently 
a lack of clinical trial data related to the use of VNS for improving VCI.

Summary
The initiation of neuroinflammation due to chronic cerebral hypoperfusion-induced ischemia and hypoxia is implicated in 
the progression of VCI. This review summarized the pathological mechanisms of VCI and the mechanisms by which 
VNS improves cognitive function, and provided rationale and ideas for the use of VNS in the treatment of VCI. 
However, the lack of extensive long-term, large-scale clinical trials poses a challenge in confirming its effectiveness, 
durability, and safety. This underscores the need for further validation through randomized controlled trials with an 
adequate sample size.

Abbreviations
VCI, Vascular Cognitive Impairment; VaD, Vascular Dementia; AD, Alzheimer’s disease; CCH, Chronic Cerebral 
Hypoperfusion; VNS, Vagus Nerve Stimulation; iVNS, invasive Vagal Nerve Stimulation; tVNS, transcutaneous Vagal 
Nerve Stimulation; taVNS, transcutaneous auricular Vagus Nerve Stimulation; tcVNS, transcutaneous cervical Vagal 
Nerve Stimulation; WM, White Matter; WMLs, White Matter Lesions; LC, Locus Coeruleus; NTS, Nucleus of the 
Solitary Tract; NE, Norepinephrine; CAP, Cholinergic Anti-Inflammatory Pathway; VN, Vagal Nerve; DMN, Dorsal 
Motor Nucleus; NA, Nucleus Ambiguous; STN, Spinal Trigeminal Nucleus; Ach, Acetylcholine; α7nAChR, α7 nicotine 
acetylcholine receptor α7; TNF, Tumor Necrosis Factor; IL-6, Interleukin-6; CSF, Cerebrospinal Fluid.
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