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Abstract

The intricate molecular details of protein-protein interactions (PPIs) are crucial for function. Therefore, measuring the same
interacting protein pair again, we expect the same result. This work measured the similarity in the molecular details of
interaction for the same and for homologous protein pairs between different experiments. All scores analyzed suggested
that different experiments often find exceptions in the interfaces of similar PPIs: up to 22% of all comparisons revealed some
differences even for sequence-identical pairs of proteins. The corresponding number for pairs of close homologs reached
68%. Conversely, the interfaces differed entirely for 12–29% of all comparisons. All these estimates were calculated after
redundancy reduction. The magnitude of interface differences ranged from subtle to the extreme, as illustrated by a few
examples. An extreme case was a change of the interacting domains between two observations of the same biological
interaction. One reason for different interfaces was the number of copies of an interaction in the same complex: the
probability of observing alternative binding modes increases with the number of copies. Even after removing the special
cases with alternative hetero-interfaces to the same homomer, a substantial variability remained. Our results strongly
support the surprising notion that there are many alternative solutions to make the intricate molecular details of PPIs crucial
for function.
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Introduction

PPIs in high-resolution reveal molecular details of
network edges

The study of high-resolution three-dimensional (3D) structures

of proteins as deposited in the PDB, the Protein Data Bank [1],

began with peptides [2,3] and has increasingly included larger

complexes of interacting proteins [4]. These complexes, or PPIs

(Protein-Protein Interactions), capture the molecular details of

interaction networks. The network view, in turn, has become

increasingly important for, e.g., the ranking of genes according to

their probability of being causative for a particular disease [5–7] as

needed for Genome-wide Association Studies (GWAS).

Despite this wealth of high-resolution interaction data, the set of

interactions for which the exact molecular mechanisms are known

remains immensely incomplete [8] and with it experimental and

computational descriptions of binding positions and binding-

induced conformational changes [9–11]. Nevertheless, studies of

available structures have shown that related proteins have similar

binding sites [12], that permanent and transient interactions differ

so substantially from each other [13] that PPI hotspots can be

predicted from sequence [14,15], and that we can accurately

distinguish between specific and unspecific contacts [16]. Many

others have addressed related tasks [16–23], including even the

contribution of water to the binding modes of PPIs [24].

We study external PPIs from many new perspectives
An excellent recent work reviews various types of protein

interactions [25]. We want to complement it with a quantitative

analysis of the interface variability of external interactions, i.e.

interactions between two protein chains coming from different

genes. These typically correspond to the edges in a PPI network.

The atomic structures of their interfaces often seem to cluster into

particular architectures [16,26] and it has been suggested that they

are conserved within and between organisms [26–31]. Many

authors have also analyzed the molecular details of binding within

and between their domain families [32–37].

For example, they found that two different SCOP domain

families exhibit more than one orientation of binding about 24%

of the time [33]. Beside this number, however, only few more

details were given about the underlying biological variety and in

particular the causes of differential interfaces. The problem we see

with this approach is that members of a SCOP family only share

similar 3D structures and that the observed variability in binding

might simply be explained by sequence variation. In fact, the

inference of similarity in structure (homology modeling) is much

more accurate than the inference of protein-protein interactions

[26]. So far no studies based on significantly sized data sets have

addressed the question to which extent the interface between two

different proteins is biologically conserved, i.e. excluding diversity

due to sequential differences.
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Another challenge for the analysis of large-scale data sets have

been crystal contacts and the difficulties of automated methods to

correct such problems (e.g. the PQS [38] or the PISA [39] service).

Authors ‘‘addressed’’ these problems by either entirely excluding

different interfaces suspecting that those originated from non-

biological contacts, or by leaving it open to which extent their

results might have been created by such contacts.

Here, we address both issues. First, we realized that the number

and quality of author-assigned biological assemblies in the PDB

now suffices to enable a quantitative study like this one. For the

large majority of entries, the PDB now provides biologically

relevant structures from the crystallographers themselves. Similar

to PQS or PISA, they describe a complex as it occurs in the living

cell. At the same time, however, they are more accurate and easier

to verify than de novo predictions. Therefore, we did not discard

any high-resolution complex or interface therein.

Secondly, put most extremely, we ask the question: if X-ray

crystallographers measure the same interaction twice, do they get

the same result? The main focus is first on the variability of the

interaction between identical variants of the same two proteins

(SameSeq). In other words, we look at external interactions

corresponding to the same pair of protein sequences and estimate

how often the interfaces are different (Fig. 1A; Fig. 1B: the red

arrow compares two sequence-identical interactions). We then

extend our analysis by allowing minor sequence variations in

corresponding interactors (e.g. in the form of point mutations;

SameProt). However, we still maintain the comparison between

essentially the same proteins, because we make sure that a

sequence change does not go hand-in-hand with a change of the

original protein (Fig. 1B: for the blue interface comparisons, the

sequences have changed [S1/S3 vs. S2/S3], but the original

proteins [Px/Py] remained the same). Finally, we compared two

external interactions corresponding to the same family pair, i.e.

‘‘interologs’’ (Interolog). In a dimer-dimer comparison on this

Interolog-level, corresponding interactors still had a similar 3D

structure, but their sequences could be very different. (Several

authors have been using the term ‘‘interolog’’ [40,41]; it has the

advantage over the term ‘‘homolog’’ that no evolutionary relation

is implied in the definition; Fig. 1B, green: interfaces between

proteins Px and Py are compared to those between Pz and Py).

Methods

PPI (protein-protein interaction) data set from the PDB
Each node in a PPI network typically refers to a UniProt [42]

entry. While UniProt stores information about proteins, its first

layer of organization is genetic: every entry corresponds to a

unique location on a genome. Hence, in order to find reliable

structural evidence of PPI network edges, we mined the PDB

[43,44] for interacting proteins which map to different Uniprot/

Swiss-Prot [45] identifiers. We extracted such external protein-

protein interactions (i.e. interactions originating from two different

genes) in the following way: first, we downloaded all author

assigned biological assemblies from the PDB. We then retained

only X-ray structures that had a resolution ,2.5 Å and mapped to

at least two different UniProt/Swiss-Prot entries (author assign-

ment available for 99% of all such structures). We primarily used

the PDB, = .Swiss-Prot mapping provided by the PDB and only

performed the following step if this mapping was not available: we

BLASTed [46] the PDB SEQRES sequence (at least 30 residues

long) against the Swiss-Prot database, thresholding at E-Values

,10-3 and requiring at least 90% of the PDB chain to be aligned.

(When we found more than one hit, we took the one with the

lowest E-Value; when we had none, we discarded this complex.)

Figure 1. (A) Sketch for interface comparison. Two proteins Px
and Py always interact in the same way, do they? We compared pairs of
proteins for which we found several experimental solutions for their
interaction. Assume that we have two high-resolution protein
complexes C1 and C2. From these, we pick two hetero-dimers
(Structure A and Structure B) for the interaction between proteins Px
and Py (identified by the chains X and Y in Structure A, and by X9 and Y9
in Structure B). We then compared the interface of the same interaction
between those two experimental solutions. (B) The PPI network
induced by complexes C1 and C2. Complexes C1 and C2 contain
two protein-protein interactions: Px-Py and Px-Pz. We differentiated
between three types of interface comparisons. First, we only compared
interactions corresponding to same pair of sequences (SameSeq; red;
shown in A). Then, sequences could change as long as the original
proteins remained the same (SameProt; blue; interfaces S1/S3 are
compared to S2/S3; both sequences S1 and S3 are variants of protein
Px). Finally, we compared interologous interactions (green; interfaces
Px/Py are compared to Pz/Py; Px and Pz come from the same family).
doi:10.1371/journal.pcbi.1002623.g001

Author Summary

The number of known protein-protein interactions (PPIs)
grows rapidly, yet their molecular details remain largely
unknown. Over the last years, structural biologists have
addressed this issue with an increased output of structur-
ally resolved hetero complexes. This wealth now enables
statistically significant quantitative statements about
interface properties. Here, we addressed the question
how interfaces differ when observing the same protein-
protein interaction twice. A new dataset derived from the
entire PDB was analyzed employing different definitions
for the ‘‘same interaction’’ and a range of interface
similarity measures. The hypothesis was that the interface
between the same pair of proteins stays the same
irrespectively of how often it is measured. Although the
results mostly confirm this hypothesis, the surprising
finding was how often it was not true: for many
comparisons of interfaces, the molecular details of the
interaction differed importantly, often without the slight-
est change of amino acids. In addition, no matter how
much ‘‘special cases’’ were sieved out, the essential
message remained: interfaces appear immensely plastic.
Hand-selected sample structures largely support this view.
In general, we complement a series of recent studies
focusing either on family-family interactions or exploring
other aspects of protein-protein complexes.

The Eagle’s Eye View on PPI Network Edges
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Having found those ‘interesting’ complexes, we extracted all

interacting pairs of chains pointing to two different Swiss-Prot

entries. At this early stage of our procedure, we only required one

pair of atoms of the two chains to be closer than 0.6 nm (6 Å) in

order to consider them interacting.

Note that in an earlier version of this work, we had exclusively

used the PISA service [39] to obtain biologically relevant

assemblies. In Section S3.3 in Text S1, we give reasons why we

switched to author assigned complexes, an accuracy estimation of

PISA in the context of hetero-complexes and other results

compiled with the PISA based data set.

Definition of PPI interfaces
Having found all structures of external interactions, we

annotated their interfaces. Given a hetero-dimer with chains X

and Y (X and Y come from different genes), we considered a pair

of residues Rx and Ry as part of the interface if it contained at least

one pair of atoms closer than 0.6 nm (6 Å) or if it met all three

conditions: (i) both residues changed their accessible surface area

upon binding (dASA: replacing the binding partner by water), (ii)

Rx had no other interaction partner within 0.6 nm (6 Å), (iii) of all

residues in protein chain Y that changed their accessible surface

area (ASA), Ry was the closest to Rx. The latter included

interactions that fell slightly above the 0.6 nm (6 Å) threshold but

should still be considered interacting by their ASA change (we

present a brief analysis of the effect of including dASA in the

interface annotations in Section S3.1 in Text S1). We annotated

each interface residue by two structural descriptors: dASA and d

reflecting the distance (in Ångstrøm of the closest binding residue).

Having defined all interface residues, we removed each hetero-

dimer with fewer than five interacting residues on either chain

from our data set. Finally, we assigned each remaining hetero-

dimer its ‘‘interface copy number’’. To this end, we first

determined the original complex a hetero-dimer was extracted

from. Then we counted how many other hetero-dimers were also

extracted from this complex and had exactly the same two

SEQRES sequences as the hetero-dimer under consideration. This

‘‘interface copy number’’ was assigned to all these sequence-

identical hetero-dimers of the complex (Section S5 in Text S1 for

details).

Measures for face and interface similarity
Overall, we applied nine different interface similarity measures

to our data, covering various types of changes. They are defined in

detail in Section S2 in Text S1. The variety of these measures

guaranteed that we captured as many aspects of ‘‘interaction

similarity’’ as possible. We found significant differences between

these measures, but with respect to our overall conclusions, we

considered it more important to eschew obfuscation than to

present all necessary details. Therefore, we used only the two most

representative and intuitive measures in the main text, namely the

Face Position Similarity and the L_rms. In the following, we refer

to ‘‘interface’’ as all the residues that ‘‘touch each other’’ between

two interacting proteins (Fig. 1), and as ‘‘face’’ as all the residues

on one side of the interface. Also note that we always reduced

hetero-dimers to common residues before comparing their

interfaces. Please see Section S2 in Text S1 for details of this

procedure.

Face Position Similarity. The Face Similarity tries to

measure the conservation of face residues in both interfaces. For

instance, assume that residues 1,2,3 interact on X, and residues

1,3,7,8 on X9 (Fig. 1). The size of the intersection is then 2 (1, 3),

i.e. the two faces on X and X9 have two residue positions in

common (residues 1 and 3). The average face size is 3.5 = sqrt(3*4)

(geometric mean) and the Face Position Similarity for X-X9

becomes 2/3.5. The calculations of the same number for the pair

Y-Y9 yielded two values of Face Position Similarity. Among all the

measures that we tried, the Face Position Similarity represented a

good average interface similarity. Other measures were either

more robust against smaller changes (e.g. Sphere Radius Ratio) or

more sensitive, e.g., in terms of rotations (Interface Position

Similarity) or side chain movements (Convex Hull Overlap).

L_rms. Most notably used in the CAPRI [47] experiments,

this measure first optimally superimposes the two larger proteins

under consideration (‘receptors’) and then applies this transfor-

mation to the two smaller proteins (‘ligands’). The classical Root

Mean Square Deviation (RMSD) of the backbone atoms of the

ligands is the L_rms. Note that this approach differs substantially

from the other measures tested. Firstly, it returns a distance in Å

instead of a similarity between 0 and 1. Secondly, it measures the

displacement of the entire protein, not only the interface.

Conformational changes of the ligands can lead to high distances

as well as different binding positions. We still used this measure in

the main text in order to link our results to related work. Cross-

correlations to other measures are defined and presented in

Sections S1.4 and S6.3 in Text S1.

Grouping interfaces
Before we could apply the interface similarity measures to our

entire collection of external interactions, we needed to group the

structures so that we could differentiate between (and not mix)

different types of sequence divergence. This also addressed the

redundancy immanent in the PDB in the form of, e.g.,

overrepresented protein families. We hierarchically clustered the

hetero-dimers over three levels, corresponding to increasing levels

of sequence divergence (a more technical description of the

following procedure can be found in Section S1.1 in Text S1)

First, we assigned two hetero-dimers to the same Level

SameSeq group if they corresponded to same pair of SEQRES

sequences (Fig. 1B: we add interfaces 1 and 2 to the same Level

SameSeq group; other interfaces become single member Level

SameSeq groups). Next, we reduced the influence of over-

represented proteins. This was achieved by adding Level SameSeq

groups to the same Level SameProt group if they corresponded to

the same pair of associated Swiss-Prot identifiers (Fig. 1B: Level

SameSeq groups S1-S3 and S2-S3 go into one Level SameProt

group, S3-S4 to another). Clusters obtained in this way should

represent the classical notion of edges and nodes in a PPI network.

Our final Level Interolog addressed overrepresented families: we

merged Level SameProt groups that pointed to the same pair of

Pfam [48] families into one Level Interolog group (Fig. 1B: both

Level SameProt groups are merged into one Level Interolog

cluster; Fig. S1 in Text S1 for a graphical illustration of the

clustering).

Interface similarity distributions
Without the grouping above, any distribution of pairwise

interface similarities would have been highly dominated by large

and well-studied complexes for which many structures are

available. Avoiding this bias demanded to group PPIs differently

(Levels SameSeq to Interolog) and also to embrace this alternative

grouping when trying to infer biologically meaningful similarity

distributions. While the following procedure successfully reduced

the bias stemming from overrepresented sequences and sequence

families, we deliberately left Level SameSeq clusters unchanged in

the assumption that all binding modes are biologically meaningful

and that eliminating this redundancy would remove more biology

The Eagle’s Eye View on PPI Network Edges
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than noise (please see Section S1.2 in Text S1 for a more

mathematical description of the following procedures).

Distribution D-SameSeq. The interface similarity distribu-

tion in a SameSeq group describes the variety of the binding

modes of sequence-identical pairs of proteins (Fig. 1A; Fig. 1B:

red). We calculated this similarity distribution by using all pairwise

interface similarities of the members of a SameSeq group: we

estimated the probability that a similarity falls into a particular

similarity range (e.g. 0.0 to 0.1) and repeated this for all similarity

ranges. SameProt groups contain several SameSeq groups. Thus,

for a SameProt group distribution, we averaged over the

distributions of all its SameSeq groups. Correspondingly, Interolog

distributions originate from averaging over the distributions of the

member SameProt groups. Essentially, the above leaves us with

many Interolog distributions. For a view of all those distributions,

we simply averaged over all Interolog distributions to obtain

distribution D-SameSeq. It can be interpreted in the following

way: First, we randomly choose a family pair (Interolog group; e.g.

globin - globin). From this family pair, we randomly pick a Swiss-

Prot pair (SameProt group; e.g. bovine hemoglobin-A – bovine

hemoglobin-B) and then a sequence pair (SameSeq group; e.g.

wild-type bovine hemoglobin-A – wild-type bovine hemoglobin-

B). Distribution D-SameSeq then gives the chance that the

similarity between two interfaces of this sequence pair (‘two

observations’) lies in a specific similarity range. For example, D-

SameSeq may define the probability that two interfaces have a

similarity between 0.1 and 0.2 to be 7%. Note that the role of

SameProt and Interolog groups here is simply to reduce sequence

redundancy. We are still only comparing interfaces between

sequentially identical protein pairs. By leaving out Level Interolog

for example, we would highly bias D-SameSeq towards the globin

family. The PDB not only contains many structures of one

particular hemoglobin variant, but of many variants (for example

from different organisms). Only by combining all these variants in

one Interolog group and giving the distribution of this group the

same weight as any other group, we limit the influence of

hemoglobin. Similarly, combining SameSeq clusters in one

SameProt cluster makes sure that one hemoglobin variant does

not suppress the influence of others.

Distribution D-SameProt. Distribution D-SameSeq com-

pared observations of sequentially completely identical PPIs

(Fig. 1A; 1B: red). This provided information about native

interface variability, i.e. variability coming from environmental

and conformational changes or simply different energetic minima

between two proteins. The edge in a PPI network, however,

allowed for some sequential variation as a node only referred to a

gene, not to a specific gene product (Fig. 1B). The distribution D-

SameProt revealed how such modifications affected interface

variability. First choose a family pair and then a Swiss-Prot pair.

This yields several sequence pairs (SameSeq clusters) that all map

to the same edge in a PPI network (Fig. 1B: S1/S3, S2/S3). Pick

two of these pairs and compare all of their interface structures to

derive a similarity distribution (Fig. 1B: blue). For example, we

compared all wild-type bovine hemoglobin interfaces to those

where residue 90 of subunit A was changed from H to Y (natural

variant of bovine hemoglobin-A; P01966). Repeating this for all

sequence pairs (e.g. for all bovine hemoglobin variants) we

calculated many distributions. Averaging them yielded the overall

Level SameProt distribution (e.g., the average interface variability

of bovine hemoglobin). From here on, the same procedure as for

D-SameSeq applies: calculate all Level SameProt distributions of

the parent Interolog cluster (e.g. distributions for all globin-globin

clusters, not only bovine hemoglobine). Average over these to

obtain the Interolog distribution; calculate and average all

Interolog distributions. This yields the overall distribution D-

SameProt. Put simply, it reflects the chance that two interfaces

from the same PPI edge lie in a particular similarity range, given

small sequence changes have occurred.

Distribution D-Interolog. Finally, we want to investigate

the diversity of binding modes between proteins from the same

family pair, but different gene pairs (Fig. 1B: Px/Py, Pz/Py; green).

The procedure to derive this overall similarity distribution D-

Interolog is analogous to that for D-SameProt: first, choose a

family pair (e.g. cyclin - protein kinase) and two of its Swiss-Prot

pairs (e.g. cyclin E1 – protein kinase 2 and cyclin B1 – protein

kinase 2). Then, pick one sequence pair from each Swiss-Prot pair

(e.g. the wild-type variants), compare all of their interfaces and

calculate the Level SameSeq distribution. Repeat this for all

sequence pairs from the two Swiss-Prot pairs and obtain the Level

SameProt distribution by averaging over all Level SameSeq

distributions. This again is repeated for all possible Swiss-Prot pair

combinations in order to derive the Level Interolog distribution.

Finally, average over all single Level Interolog distributions in

order to derive the overall distribution D-Interolog. Put simply:

randomly choosing a pair of interacting families and then two of its

protein pairs, D-Interolog gives the chance that a typical

comparison of their interfaces will result in a particular similarity.

(Note that this procedure quickly leads to unfeasible amounts of

interface comparisons. We have therefore limited the number of

protein pairs per family and the number of sequence pairs per

protein pairs to a maximum of 50.)

Analyzing the influence of homo-oligomeric assemblies
The same proteins may aggregate to form a homo-oligomer and

bind as such a complex to another protein. In this case, the other

protein often ‘‘sees’’ different parts of the homomeric chain,

resulting in very different external interfaces. For example, a

homo-dimer with chains X1 and X2 might bind to another chain Y

with two different interfaces (Fig. 2). Hence, we will have two

hetero-dimers X1/Y and X2/Y with low interface similarity. As it

can be argued whether both of these interfaces should be

considered as one big interface or treated separately (Discussion),

we analyzed their influence on the distributions D-SameSeq to D-

Interolog. To this end, we defined homo-oligomers in two different

ways. Firstly, we used the classical notion, namely that all chains of

a homomer have the same SEQRES sequence. Secondly, we

introduced ‘‘structural homomers’’ as interacting chains from the

same family. This corresponded to all complexes that look homo-

oligomeric on a structural level (low RMSD; Fig. S4B in Text S1),

but can differ in sequence.

Figure 2. Filtering out interface diversity introduced by
homomers. Assume you want to compare an interface Px-Py in
complex 1 to the interfaces in complex 2. Usually, you will calculate two
similarities (0.1 and 0.6), because there are two Px-Py interfaces in
complex 2. Looking for homomers, you will find the two sequence
identical Px chains in complex 2 interacting and connecting the two Px-
Py interfaces. Now, you can correct the comparison by using only the
one best match (0.6). The comparisons of the ‘‘worse’’ alternatives are
discarded.
doi:10.1371/journal.pcbi.1002623.g002

The Eagle’s Eye View on PPI Network Edges
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Consequently, when comparing two interfaces X/Y and X9/Y9

from two different PDB entries, it was checked whether or not one

of the chains X9 and Y9 were part of homo-oligomers (i.e. whether

there were homomers X9/X91/…/X9n or Y9/Y91/…/Y9m) and

whether or not these homo-oligomers had other external interfaces

with the same interaction partner as in X9/Y9 (i.e. whether X9 had

interfaces with Y91/…/Y9m or Y9 interfaces with X91/…/X9n).

Having identified the set of all those sequence- or family-identical

interfaces (including X9/Y9), they were compared to X/Y. Only if

X/Y, = .X9/Y9 was the best match among all alternatives, the

corresponding similarity was used. Otherwise, the entire compar-

ison was discarded (Fig. 2.)

Eventually, the roles of X/Y and X9/Y9 are switched, and the

procedure is repeated because all interfaces are compared with all

others in the distributions D-SameSeq to D-Interolog. In this way

asymmetries arising from only considering the oligomeric context

of one side of the comparison were filtered out.

We applied ‘‘structural homomerization’’ only in the context of

D-Interolog. For the two other distributions, it would have led to

comparisons of interfaces between different protein pairs, thereby

invalidating the constraints of these distributions. Also note that

the above definition only allowed for comparisons of interactions

between two different families.

Results

We calculated three non-redundant interface similarity
distributions

Our complete data set of external protein-protein interactions

(PPIs) comprised 37,338 hetero-dimers. We grouped and filtered

them on three different levels with decreasing sequence redun-

dancy (Methods). For instance, the first clustering level had 634

groups that contained sequence-identical hetero-dimers from at

least two different high-resolution PDB entries. We compiled

various statistics on this data set, including the distribution of

cluster sizes on each clustering level, of oligomeric states, interface

sizes and even of the conservation of protein function (Section S3.2

in Text S1).

In order to capture different facets of interface similarity, we

introduced and evaluated nine different similarity measures

(Sections S2 and S6 in Text S1). In the following, we focused on

the results from two measures (Face Position Similarity and L_rms;

Methods), and reported only qualitative findings for the others.

The first measure (Face Position Similarity) was most representa-

tive for all other seven measures while the second (L_rms) enabled

direct comparisons of our results to related work, e.g. to the

CAPRI [47] experiments. For each measure, we used our

clustering to calculate three different interface similarity distribu-

tions, corresponding to increasing levels of sequence divergence

between interactions (D-SameSeq to D-Interolog [Methods]).

These distributions constitute the main result of this work and are

presented in the following. They were calculated such that all

proteins and families of our data set contributed equally, regardless

of their respective over-representation in the PDB. Finally, we

measured how the distributions change when excluding the

interface variability introduced by a protein binding differently

to the same homomer. We give a short summary of this after the

presentation of the unmodified distributions.

Most interfaces were mostly robust for identical pairs of
interactions (D-SameSeq)

When two different experiments measured exactly the same

external interaction (distribution D-SameSeq; Methods), usually

the interface between the two proteins was identical. Depending

on the similarity measure, the number of largely conserved

interfaces varied between 60 and 89% (Fig. S3 and Fig. S9 in Text

S1). The most representative measure (Face Position Similarity)

found the same interface in 75–79% of all cases (Fig. 3A, D-

SameSeq, rightmost bar). Conversely, interfaces largely differed

between two observations in about 12% (Fig. 3A, Face Position

Similarity ,0.5).

Other measures introduced in this work were, for instance, very

sensitive to side-chain movements (Convex Hull Overlap), or only

roughly assessed the conservation of the interface location (Sphere

Radius Ratio). Taking into account two similarity measures

simultaneously, small differences were observed in as many as 49%

of all comparisons (Section S6.3 in Text S1).

In contrast to our measures, the L_rms (used by CAPRI)

returned distances in Å for the entire protein rather than for the

interface alone. This perspective could capture conformational

changes outside the binding regions that would be missed by other

measures. L_rms found 64–69% of all ‘‘ligands’’ (per definition the

smaller of the two proteins in the interaction) not to exhibit

conformational changes and to bind to the larger proteins at the

Figure 3. Faces are similar yet different. For two different ways to
measure interface similarity - Face Position Similarity [A] and L_rms [B] -
we present the similarity distribution for all interfaces. The rightmost
interval shows largely identical faces, the leftmost completely different
faces. For each similarity range and measure, there are three bars: one
for each type of sequence divergence (D-SameSeq to D-Interolog). For
example, Face Position Similarity finds about 7% of all the interface
similarities at D-SameProt to fall in the range 0.0–0.1, i.e. suggests in 7%
of the cases completely different outcomes when experimentally
measuring the same interaction again. The error bars show standard
errors and are explained in Section S1.3 in Text S1. The inlet displays the
cumulative distribution giving the fraction of all similarities that differ
by a certain value. For instance, 21% of all interface comparisons result
in a value above 2 Å according to the L_rms in D-SameProt. In these
cases, the two smaller proteins are clearly not in the same position after
superimposing the two larger proteins.
doi:10.1371/journal.pcbi.1002623.g003

The Eagle’s Eye View on PPI Network Edges

PLoS Computational Biology | www.ploscompbiol.org 5 August 2012 | Volume 8 | Issue 8 | e1002623



same positions (RMSD ,1.0 Å). Conversely, 10–14% of the

interfaces differed very substantially between alternative experi-

ments (.9.0 Å). Considering Face Position Similarity and L_rms

at the same time suggested that about 1% of all comparisons did

not differ by the first but differed substantially (.9 Å) by L_rms

(Fig. S11 in Text S1). In other words, at least 1% of all the changes

between different experiments can be attributed to conformational

changes outside the binding region.

Another CAPRI measure, the I_rms, compared the shapes of

the interface regions common to both protein pairs. We found

these common regions to be very different in about 4% (e.g. due to

a rotation of one of the proteins) and largely conserved in 80%

(Fig. S9 in Text S1).

We confirmed the surprising result of interface variability

without sequential changes through a variety of additional

analyses. The degree to which interfaces were mostly robust (ratio

between rightmost and leftmost bars in Fig. 3) was a function of

the number of copies of a particular interaction in a complex (i.e.,

a function of the ‘interface copy number’; Methods; e.g. Fig. 1:

S1/S3 observed once in C1): the more copies, the relatively lower

the bars on the right and the higher on the left (Fig. S8 in Text S1).

But all of this also varied between families and particular complex

subgroups (Fig. S7 in Text S1). For instance, MHC (Major

Histocompatibility Complex) interactions were much less diverse

than others. In fact, they contributed importantly to our overall

results, although they constituted only a small fraction of all

interactions. Like many before us, we also had to choose key

parameters to define an interface (Methods). As previous studies

differed in these parameters, we also provided results for several

alternative choices (Section S3.1 in Text S1). For instance, we

included structures with a resolution .2.5 Å, used 4 Å instead of

6 Å as the minimal distance between two interacting residues or

did not consider the change in solvent accessibility upon binding

(dASA) when defining interface residues. These additional analyses

demonstrated that some of our quantitative results depended

crucially on the choice of critical parameters while the qualitative

findings did not.

Minor sequence variations slightly increased binding
diversity (D-SameProt)

Two hetero-dimers can differ by minor sequence variations and

still correspond to the same external interaction. Comparing these

slightly different pairs (Fig. 3, D-SameProt) suggested considerably

lower interface conservation than for the same pairs (Fig. 3, D-

SameSeq): the most conserved bin (0.9–1.0) was reduced by about

five percentage points for Face Position Similarity (Fig. 3A black

vs. dark gray) and by nine percentage points for the L_rms

measure (Fig. 3B black vs. dark gray). These reductions were

evenly distributed over the other similarity ranges. This result can

be cast into two opposing views. On the one hand, it suggested

that a PPI network accurately reflected the interactions because

different protein variants only had a small effect on interfaces. On

the other hand, there was a significant influence of small sequence

changes. For instance, the range of very different interfaces (0.0–

0.5) by the Face Position Similarity measure rose from 12% to

17%. In other words, about one interface pair in six differed

substantially.

Conservation broke down when comparing interologous
interfaces (D-Interolog)

When two experiments measured external interactions that did

not correspond to the same protein pair, but to the same family

pair (D-Interolog), interface conservation dropped significantly by

both measures (Fig. 3, D-Interolog, rightmost bars; Face Position

Similarity: 28–36%; L_rms: 7–11%). For Face Position Similarity,

these differences largely originated from a shift toward interme-

diate levels of conservation, suggesting that most changes partially

preserved the approximate interface location. The Sphere Radius

Ratio supported this interpretation (Fig. S9 in Text S1).

Nevertheless, the interfaces with clear dissimilarity also increased

from 13% (D-SameSeq) to almost 30% (D-Interolog, Fig. 3,

cumulative black to light gray bin with ,0.5). This effect was

stronger for L_rms: 33–40% of all comparisons were by this

measure clearly dissimilar (.9 Å; Fig. 3[B], light gray vs. black).

For these strong differences, the effects from conformational

changes (Fig. S5 in Text S1) and from local interfaces appeared to

act synergistically.

We hypothesized that families of interologs without alternative

binding might have similar functions and that the same could be

true for families with extreme binding diversity. Unfortunately,

only for 18 Level Interolog clusters, interfaces were always

maintained (Face Position Similarity .0.9 at 100%), while only

17 others always used very different interfaces (Face Position

Similarity ,0.5 at 100%). These numbers were too small to permit

statistically significant analyses on the functional differences

between those interactions. We still provided a list of those cases

in Section S8 in Text S1. The two most extreme findings of this

analysis were that the Gene Ontology (GO) [49] term ‘‘tetrapyr-

role binding’’ appeared over-represented in the interactions that

differed, while ‘‘cytoskeletal protein binding’’ appeared over-

represented in the interactions that did not change.

Trivially, removing alternative binding to the same
homomer reduces diversity

With a special filter, we might remove all alternative binding of

a protein to the same homomer from D-SameSeq to D-SameFam

(Methods). Obviously, filtering out diversity will reduce the signal

of diversity observed. Nevertheless, we performed this analysis. As

expected, the observed effects dropped significantly (Table 1), most

extremely for D-SameSeq, i.e. for the same pairs. The differential

behavior between D-SameSeq and D-Interolog might be ex-

plained by sequence divergence increasingly leading to very

different interfaces for the same protein pair and ultimately to

different quaternary states. Despite all the filtering for homomers,

varying interfaces remain frequent and still almost one third of the

change seen in interologous pairs (D-Interolog) is also observed

between the same pairs (D-SameSeq).

Examples illustrate that interfaces can really differ
substantially

Our finding that most interactions form identically when

repeating the experiment might not be surprising. The observation

that many interactions differed substantially, in contrast, appears

much more counter-intuitive. Readers might attribute the

difference to some mistake in the way we measure similarity or

build our data sets. We addressed these concerns by expanding our

analysis in many directions. On top, we analyzed ten case studies

in more detail. Three are discussed in detail in the following

(Fig. 4), the other seven in Section S7 in Text S1. Our entire

collection of interesting protein pairs is available in Dataset S1.

The same proteins binding at entirely different

interfaces. Our first example is the enzyme ras in complex

with the nucleotide exchange factor SOS (Son Of Sevenless; Fig. 4A).

Ras catalyzes the conversion of guanosin tri- to diphosphate

(GTPRGDP). It needs the interaction with SOS in order to

release GDP again after conversion. To this end, SOS provides a
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binding site that is highly specific for the ras-GDP complex.

However, despite this specificity to ras-GDP, also SOS and ras-GTP

can form a complex [50]. SOS has a second interface far away from

the first that is specific for ras-GTP. It accelerates the reaction ‘‘ras-

GDPRras + GDP’’. In other words, the ras-GTP-SOS complex

separates GDP from ras faster than the uncomplexed SOS.

Consequently, we have a positive allosteric modulation, in which

both the active and the allosteric site are specific for exactly the same

protein. This represents the rare case of sequence-identical protein

pairs (D-SameSeq) binding very differently without prior homo-

merization of subunits (Table 1) and with a low interface copy

number (2; Fig. S8 in Text S1). In Text S1, we discuss another

similar case (Yersinia Pestis Antigen; Fig. S12A in Text S1).

Continuum of binding modes. Related work mostly differ-

entiates alternative binding modes by clustering approaches. This

implicitly suggests the assumption that the system could fall into

alternative minima. Our results seem to support this assumption:

interface similarities follow an extreme distribution, i.e. either they

are very similar or very dissimilar (Fig. 3). When digging deeper,

however, we easily found exceptions. We discuss one case in the

following and two others in Fig. S12C,E in Text S1.

The dimeric interactions between cyclins and protein kinases

(interface copy number 1) reveal a largely conserved binding cloud

(Fig. 4B, green and cyan). Pairwise Face Position Similarities span

a range from 0.6 to 1.0. An automated clustering of the structures

would not accurately reflect the reality of this case because it

would discriminate between the interfaces. Such a clustering might

be improved by using the functions of the respective proteins in

order to find correlations between interface and functional

similarities. However, we found our current functional classifica-

tion (GO) not to be comprehensive enough for this, yet (Section

S3.2 in Text S1). Another complicating factor is that continua can

not only be observed on the D-Interolog Level (as is the case here),

but also on the Levels of D-SameProt and even of D-SameSeq

(Fig. S12C,E in Text S1; namely hemoglobin and choleraholo-

toxin). For those two examples, GO-like functional annotation

systems are trivially insufficient as they operate on the level of

proteins, not protein variants or even interfaces.

Table 1. Influence of homo-oligomerization.

Original Homomer filtered (sequence) Homomer filtered (structure)

Distribution

D-SameSeq: 0.0–0.5 11–16% 3–4% -

D-SameSeq: 0.9–1.0 75–79% 84–88% -

D-SameProt: 0.0–0.5 14–19% 4–7% -

D-SameProt: 0.9–1.0 69–75% 80–84% -

D-Interolog: 0.0–0.5 26–32% 11–16% 8–12%

D-Interolog: 0.9–1.0 29–35% 34–41% 38–47%

This table shows a summary of the Face Position Similarity distributions of Fig. 3 after excluding diversity introduced by a protein chain binding to the same homo-
oligomer at different positions. We used two different definitions for homomers: at the sequence level, all chains in the assembly come from the same protein. In a
‘structural homomer’, they only come from the same family.
doi:10.1371/journal.pcbi.1002623.t001

Figure 4. Three typical interactions exhibiting surprising variety. (A) Protein ‘ras’ binds to ‘son of sevenless’ (1NVV): alternative binding for
sequence-identical pairs of proteins and without a multimeric context; the lower left panel shows the residues of the two interfaces in purple and red.
(B) Natural dimeric interactions between proteins from the protein kinase and cyclin families (interface copy number 1; e.g. 1OI9). Cyclin chains
(green) have been structurally aligned and superimposed. Protein kinases (cyan and blue) were subject to the same geometric translations. The blue
chain has a recently discovered outlier interface (see text). (C) Superimposition of entire sequence-identical F1-ATPase complexes. Complexes were
aligned and superimposed with the gamma chains (green). Alpha (orange) and beta (cyan) subunits were subject to the same geometric translations.
In the main panel, we look at the complexes from the top. The inlet displays an interaction between a beta and a gamma subunit from the side.
doi:10.1371/journal.pcbi.1002623.g004
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Further extending the interface variability of cyclins and protein

kinases is the recently discovered interface between cyclin D1 and

protein kinase 4 (Fig. 4B, blue). Its discovery seems mainly due to

improvements in experimental methods [51]. Hence, this might

only be the beginning of an entirely new class of binding modes.

Structural homomers as a gate-way to higher-order

complexation. Homomers can bind to another protein through

alternative interfaces (Fig. S12D,F,E in Text S1). This concept can

be generalized by introducing structural homomers, i.e. assemblies

between proteins from the same family (Methods). The F1-ATPase

structure (Fig. 4C) is such a case. Here, the alpha and beta subunit

(Fig. 4[C]: orange and cyan) bind alternatingly to each other,

thereby forming a hexameric ring with a central pore. The gamma

subunit (Fig. 4C: green) winds through this pore with two long

helices. This hexameric ring alone already represents two entirely

different binding modes between the same protein pairs (D-

SameSeq) and without homomerization of subunits. Two alpha

subunits are always separated by a beta subunit and vice versa.

Furthermore, all of these six chains bind to different positions on

the gamma subunit, leading to two other interactions with great

variability. Interface clouds of different structures, e.g. under

varying conditions, reveal the dynamic nature of the interaction.

Especially a rotation of the hexameric ring around the central

helices is frequent.

The missing homo-oligomeric context is hidden: the hexameric

ring appears to be a homomer. Subunits alpha and beta have a

RMSD of 1.3 Å. Only the sequences and eventually their original

proteins, reveal that we are actually dealing with heteromers.

However, both of the proteins come from the same family, so that

we have a case of a ‘structural homomer’, i.e. an assembly that

appears to be homomeric, but has actually undergone significant

sequence divergence. Similar to traditional homomers, the

alternative binding to another protein (subunit gamma) is evident

from the structure within seconds and homomerization might be

essential (i.e. interactions between alpha and gamma subunits

might not be stable without the hexameric ring). Filtering

alternative binding to the same structural homomer (Methods),

the only remaining variability is the rotation around the two

central helices of subunit gamma. This is a good example why

homomeric filtering might come short from a biological point of

view: What if subunits alpha and beta would not have the same

family? Would it make the variability between alpha and gamma

subunits any more or less biologically relevant? Unfortunately,

current data does not lead to specific answers, yet. Similar

examples for structural homomers are some hemoglobin structures

(Fig. S11 in Text S1) and the exosome complex by Lorentzen et al.

[52] (2JE6).

Other interesting cases. We had to exclude other interest-

ing examples to limit the length of this work. These included the

D-SameProt comparisons of two nitrogenase complexes (2AFH,

1QH1) exhibiting alternating quaternary states [53]; two amine

dehydrogenase complexes (2J57, 2IUP) with different enzymatic

activities (Section S3.2 in Text S1); dual binding modes of

cohesion and dockerin (2CCL, 1OHZ); and two interologous

interactions for which the according Swiss-Prot sequences are

identical and only differ in their organisms (2PE6, 2VRR;

dimeric). Notable previous publications reporting different binding

modes include, e.g., [54] (histidine kinases; 1U0S) and [55]

(cytochrome C; 2B11).

Summary of analyzing examples. While our examples

confirmed the overall trends, they also suggested that the averages

above reveal only the tip of the iceberg: if there is one reasonable

measure for interface similarity by which two experimental

solutions differ, then this observation suggests variability. To

complicate matters further, we observe ‘‘rotational interfaces’’ (F1-

ATPase) and see that ligand binding can have great impact on

interface specificity (ras-SOS). On another note, our tests with

alternative data set parameters, e.g. changing structural resolution,

revealed that the variability that we see is not explained by

experimental or procedural inaccuracies. Thus, the PDB struc-

tures clearly tell a tale of unexpected variability and dynamics of

biological interactions.

Discussion

How can proteins interact differently?
Empirically, we found several reasons for the same two proteins

to have different interfaces (D-SameSeq). The simplest was merely

technical: some experimental findings may not have been

completely correct. We reduced this effect by excluding complexes

with resolutions .2.5 Å, but even structures at 1.2 Å can contain

errors [56,57]. Another reason was local flexibility or disorder:

many proteins have local regions that are natively unstructured

and these often form protein-protein interfaces [58]; such regions

are difficult to track experimentally. Often, the N- and C-termini

contributed to the observed interface variability. Another reason

was environmental differences: despite all efforts, we could not

entirely exclude artificial interfaces due to crystal packing.

Different pH values could trigger conformational changes, as

was the case for small ligands or other interaction partners. The

presence of another protein changing the overall structure of a

complex played a similar role. In all that, however, we still miss

one important aspect: proteins often have evolved to interact in

different ways. For such cases of biologically important alterna-

tives, we might interpret the variety observed in a single PDB

structure as an example of one protein binding to multiple copies

of the same interaction partner.

There were various reasons why variability in binding was

higher between sequentially modified proteins than for identical

proteins. The modifications that preserved the original protein (D-

SameProt) were usually point mutations (i.e. changes of single

amino acids, e.g. by site directed mutagenesis or in the form of

Nucleotide Polymorphisms [SNPs]). Others included protein tags

at the N- or C-terminus (e.g. to facilitate protein purification), post-

translational modifications (protein cleavage) and alternative

splicing. For interologs (D-Interolog), finally, there was also

evolutionary driven sequence divergence. As described before,

however, the mere presence of insertions or deletions was not

enough for low interface similarity: we reduced structures to

common residues before comparing them. Thus, the increase in

variability was actually the result of changes in the common parts

of two structures.

Continuum of binding modes rather than major clusters?
Using similar measures as we did, other groups [33,37] have

found that many families interact in more than one way. Our

analyses support this result. However, they also reveal that the

differences in interfaces span the entire spectrum of the

distribution, especially for D-Interolog. Only 18 of the 151 pairs

of families completely conserved the binding modes. This finding

suggests the model of a continuum of binding modes rather than

clearly defined groupings, e.g. as obtained by clustering at

predefined thresholds. Furthermore, in our results, about one

third of the variability observed in a family-family interaction

appeared to be protein-intrinsic in the sense that it was also

observed between sequence-identical pairs (D-SameSeq), i.e. did

not originate from sequence variations (as, e.g. for D-Interolog).
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Is variability caused by homomers a special case?
As mentioned before, alternative interfaces might be due to the

intrinsic capability of proteins to bind at different positions. This is

often encountered among homo-oligomers [59]. In our case,

however, it leads to a debatable scenario: a protein A can bind to

multiple copies of protein B, all of which alone form a homo-

oligomeric complex (Fig. 2). Do we then have to treat the various

external interfaces between the same proteins as one interface, or

are they indeed individual interfaces that ought to be differenti-

ated? We argue for the second case: first, considering the

homomer a requirement for the hetero-interactions implies that

by disabling the homomerization (e.g. through site-directed

mutagenesis), we also lose the interaction. This is not always the

case [60]. Secondly, it is unclear why such a filtering should be

limited to homo-complexes. Also the formation of a hetero-

multimer could be a requirement for the interaction with another

protein. Studying which interactions remain after disabling the

potentially highly complex hetero-multimer is much beyond the

currently available data. Finally, also the original publication of a

complex usually describes different interfaces to the same

homomer as separate interfaces.

Conclusions
Our results raise the question whether the molecular details of

protein-protein interactions (PPIs) are crucial for function. Protein

crystallography captures static views on those molecular details

along with some information about the dynamic nature of PPIs. If

the details always had to be the same to guarantee function,

different experiments would identify the same interfaces. We

applied many reasonable ways of measuring interface similarity in

order to analyze the consistency of the molecular details of

protein-protein interactions between different experiments. For

sequence-identical pairs of proteins, i.e. the same biological

interaction, most interfaces were almost completely conserved by

all measures. However, all measures also revealed an unexpected

variety. Depending on how much detail we required to be similar

in order to consider two experiments to yield the same results, we

found 11–37% of all observations to have significant differences,

and up to 10% to be completely different. One important result

was that this was a significant fraction of the difference observed

between homologous PPIs. Put differently, over a third of the

differences in the interactions between pairs of homologous

proteins are also observed between identical proteins. These

numbers may challenge the notion that the maintenance of the

molecular details is crucial for function. At least, our results suggest

that there appear to be many alternative solutions to maintain or

actually enable the intricate molecular details: change seems an

extremely frequent exception for protein-protein interfaces.

Supporting Information

Dataset S1 In this file, we list all pairs of hetero-dimers leading

to a Face Position Similarity below 0.9. Additional columns

provide the copy numbers, L_rms, an indicator for the best

homomer match and the type of sequence divergence.

(ZIP)

Text S1 In this text, we give details about various methods and

analyses found in the main manuscript and provide additional

results.

(PDF)
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