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Abstract

The transcription factors NF-κB and p53 are key regulators in the genotoxic stress response

and are critical for tumor development. Although there is ample evidence for interactions

between both networks, a comprehensive understanding of the crosstalk is lacking. Here,

we developed a systematic approach to identify potential interactions between the path-

ways. We perturbed NF-κB signaling by inhibiting IKK2, a critical regulator of NF-κB activity,

and monitored the altered response of p53 to genotoxic stress using single cell time lapse

microscopy. Fitting subpopulation-specific computational p53 models to this time-resolved

single cell data allowed to reproduce in a quantitative manner signaling dynamics and cellu-

lar heterogeneity for the unperturbed and perturbed conditions. The approach enabled us to

untangle the integrated effects of IKK/ NF-κB perturbation on p53 dynamics and thereby

derive potential interactions between both networks. Intriguingly, we find that a simulta-

neous perturbation of multiple processes is necessary to explain the observed changes in

the p53 response. Specifically, we show interference with the activation and degradation of

p53 as well as the degradation of Mdm2. Our results highlight the importance of the cross-

talk and its potential implications in p53-dependent cellular functions.

Author summary

Cells can respond to external and internal inputs by transducing information to the

nucleus where transcription factors initiate corresponding cellular responses. Cellular sig-

naling is mediated by several pathways; molecular networks that can interact with each

other, which alters signal processing and modulates cellular responses. As deregulated sig-

naling can lead to the development of tumors it is important to understand not only how

signaling pathways function but also the contribution of their interaction on the signaling

dynamics. Here, we analyzed the interplay of the IKK/ NF-κB and p53 pathway, which are

both critical for the cellular response to DNA damage and have been implicated in tumor
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development. To systematically identify interaction points between both pathways, we

perturbed IKK/ NF-κB signaling and tracked the changes in the response of p53 to DNA

damage. Using computational methods, we show that several reactions in the p53 pathway

are simultaneously affected by NF-κB signaling and that this combined action is necessary

to explain altered behaviour of the p53 pathway. Hence, our results provide new insights

into the interplay between the NF-κB and p53 pathway and help to gain a more compre-

hensive understanding of the crosstalk.

Introduction

To adjust their physiology to varying conditions, cells need to sense a multitude of internal

and external inputs, integrate the corresponding information and elicit an appropriate

response. The underlying signal processing is mediated by molecular networks and their com-

plex interactions. As interactions between networks can modulate the response of the corre-

sponding pathways to a given stimulus [1–3], the crosstalk between pathways plays an

important role in signal transduction. To gain a mechanistic understanding of signaling cross-

talk, we need systematic approaches to identify potential points of interaction. Here, we devel-

oped an approach based on quantitative time-resolved measurements and mathematical

modeling and chose the well characterized p53 response to DNA double strand breaks (DSBs)

as a paradigm [4].

The tumor suppressor p53 is a main hub in the cellular response to numerous extrinsic and

intrinsic stress factors [5]. Its crucial role as “guardian of the genome” [6] is highlighted by its

frequent mutations in human cancers [7]. In the absence of stress, p53 is kept at low levels by

Mdm2-mediated ubiquitination and subsequent proteasomal degradation [8]. Upon DNA

damage, p53 and Mdm2 get phosphorylated by the damage-sensing kinases ATM, ATR and

DNA-PK [9]. In response to DSBs, ATM also phosphorylates the checkpoint kinase Chk2,

which contributes to p53 phosphorylation. Together, these post-translational modifications

disrupt the p53-Mdm2 interaction and induce degradation of Mdm2 [10,11]. As a conse-

quence, p53 accumulates in the nucleus, where it acts as a transcription factor and induces the

expression of target genes mediating the cellular response to the stress [12]. These target genes

include the negative regulator Mdm2 and the phosphatase Wip1, which is responsible for

dephosphorylation and inactivation of ATM and its substrates including p53 [13].

The feedback loops shape the dynamics of p53 accumulation upon genotoxic stress [14–

16]. Early theoretical studies and experimental evidence from cell populations suggested that

p53 shows damped pulses of accumulation in damaged cells [17]. However, careful measure-

ments of individual living cells expressing p53 fused to a fluorescent protein demonstrated

that the tumor suppressor accumulates in pulses with uniform amplitude and duration as long

as cells retain DSBs [18,19]. The discrepancy between results from population studies and sin-

gle cell measurements could be explained by cellular heterogeneity that is caused by fluctua-

tions in protein and mRNA levels due to intrinsic and extrinsic sources of noise and leads to

asynchrony in pulse timing [20]. While intrinsic noise arises from stochasticity of biochemical

processes, extrinsic noise comprises factors which have an effect on all mRNA and protein lev-

els of an individual cell such as its volume, state or microenvironment [21]. The importance of

understanding p53 dynamics is highlighted by previous observations that revealed its role in

controlling cell fate upon genotoxic stress. Using genetic or pharmacological perturbations, it

was shown that pulsatile p53 dynamics result in cell cycle arrest concomitant with DNA

repair, whereas a sustained p53 response induces terminal cell fates like senescence or
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apoptosis [22,23]. Most studies of p53 dynamics combined quantitative experimentation with

mathematical modeling, leading to a variety of computational approaches to represent the

underlying feedback controlled molecular network [24].

Due to its central role in the stress response, the p53 network is heavily influenced by cross-

talk with other signaling networks allowing cells to adjust their response to specific states and

circumstances [25]. To get deeper insights into the mechanisms modulating the p53 response,

we focused on its interaction with the NF-κB network, a key pathway for regulating cell sur-

vival and immunity [26]. The NF-κB network is activated by extracellular ligands or intrinsic

stress signals. Extracellular ligands like TNFα bind to specific trans-membrane receptors, lead-

ing to activation of the trimeric IKK complex. The kinase IKK2 then phosphorylates IκBα
which is an inhibitor of NF-κB transcription factors [27]. Upon phosphorylation, IκB is ubi-

quitinated and degraded by the proteasome. As a consequence, NF-κB transcription factors

enter the nucleus and activate transcription of cellular response genes [28,29]. In addition to

genes required for cell survival and proliferation, these response genes include signaling mole-

cules such as IL-6 that activate further downstream signaling pathways in an auto- or paracrine

manner [30,31]. Interestingly, NF-κB can also be activated by ATM in response to genotoxic

stress [32,33]. This DNA damage-dependent NF-κB signaling represents a first important link

between p53 and NF-κB.

There is evidence for several interactions between both networks mediated primarily

through IKK2. It has been shown that IKK2 phosphorylates p53 and promotes its degradation

upon DNA damage independently from Mdm2 via the SCF complex [34]. Inhibiting IKK2

leads to increased p53 accumulation and acetylation, expression of the cell cycle inhibitor p21,

an important p53 target gene, and induction of apoptosis [35]. Other reports indicate that NF-

κB may have a stabilizing function on p53 [36].

Another important point of crosstalk may be the phosphatase Wip1, which was reported as

transcriptional target of NF-κB in breast cancer cells. Moreover, its mRNA and protein levels

are influenced by NF-κB activation or inhibition [37]. Finally, downstream pathways such as

IL-6-induced STAT3 signaling can interfere with p53 signaling as well, for example by modu-

lating the expression level of the tumor suppressor [38].

Given the extensive and partially contradicting nature of reported network interactions, we

aimed to systematically investigate how the complex interplay between both signaling path-

ways determines the cellular response to genotoxic stress. Due to the fundamental impact of

p53 dynamics on cell fate decisions, we aimed for a time-resolved understanding of this cross-

talk. To this end, we combined quantitative time-lapse imaging of hundreds of individual cells

with subpopulation-based mathematical modeling of the underlying molecular network.

Using this approach, we could show that perturbations of the IKK/ NF-κB system and its

downstream pathways modulate the p53 response to ionizing radiation and alter the subse-

quent transcriptional response. Sensitivity analysis and parameter inference showed that cross-

talk between the IKK/ NF-κB and p53 networks is not restricted to a single interaction but

comprises at least two different reactions. We predict potential mechanisms for the modulated

p53 response including the activation and degradation of p53 as well as the degradation of

Mdm2. The presented framework serves as a blueprint for further systematic analyses of path-

way crosstalk by applying targeted network perturbations.

Results

Modulation of IKK/ NF-κB signaling alters the p53 response to DSBs

To investigate the interplay of p53 and NF-κB signaling, we perturbed the IKK/ NF-κB path-

way and monitored the p53 response upon ionizing radiation in individual living cells using

PLOS COMPUTATIONAL BIOLOGY Crosstalk in p53 signaling in single cells

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007901 June 26, 2020 3 / 27

https://doi.org/10.1371/journal.pcbi.1007901


time-lapse microscopy. Without modulating NF-κB activity, we observed the expected pulsa-

tile behavior of p53 upon damage induction (control, Fig 1a). When we activated the NF-κB

network with TNFα prior to irradiation, we observed only minor changes in p53 dynamics

(Fig 1b). However, blocking basal and IR-induced activity of NF-κB by inhibiting IKK2 with

the pharmacological inhibitor TPCA-1 (IKK2i, S1a and S1b Fig) [39] prior to irradiation led to

a striking delay in the median p53 response across a population of cells (Fig 1c).

To further examine the observed alterations in the p53 response, we defined characteristic

features of p53 dynamics (S1c Fig). Quantifying the features for each single cell trajectory

revealed that upon TNFα treatment, the maxima and minima of p53 accumulation occurred

slightly earlier, while the inter-peak-interval (IPI) between the first peaks tended to be shorter

and the dampening of p53 amplitudes higher (Fig 1d). In contrast, IKK2 inhibition led to

delayed peak timing and significantly longer inter-peak intervals, compared to the control (Fig

1d). The amplitude of consecutive pulses was also damped. The delayed p53 response in single

cells could be robustly observed in biological repeats and was validated on the population level

by Western blot analysis (S1f, S1g and S2a Figs). To exclude that addition of TPCA-1 itself is

sufficient to induce a p53 response, non-irradiated IKK2i-treated cells were monitored by live

cell microscopy. No unspecific p53 response was observed (S2b Fig).

While TPCA-1 is a potent inhibitor of IKK2 activity, it also strongly interferes with STAT3

signaling [40]. To determine whether the observed modulation of p53 dynamics upon treat-

ment with TPCA-1 is caused by altered IKK2 or STAT3 activity, we tested two structurally

unrelated IKK2 inhibitors for their influence on the p53 response to genotoxic stress. Impor-

tantly, all applied inhibitors caused a delay in p53 dynamics (S2c Fig). In particular, timing of

peak maxima and minima, IPI, as well as dampening of peaks were consistently altered. Other

features such as peak amplitude were differentially effected by the inhibitors (S2d Fig).

As only TPCA-1 affected STAT3 signaling and activation of STAT3 by IL-6 did not alter

the p53 response to genotoxic stress (S2e and S2f Fig), we assumed that the observed changes

in p53 dynamics upon TPCA-1 treatment were mainly based on IKK2 inhibition.

Importantly, these altered p53 dynamics changed the cellular response to damage as we

measured altered expression profiles of p53 target genes involved in cell cycle arrest (p21),

damage repair (GADD45), apoptosis induction (PUMA, NOXA) or senescence (PML)

(Fig 1e).

Reproducing the p53 response to DSBs using subpopulation-based

modeling

To identify the molecular interactions connecting both networks and driving the observed

changes in p53 dynamics, we employed mathematical modeling based on ordinary differential

equations (ODEs). ODE models allow to assess the impact of individual model parameters on

the behavior of the entire network. Here, we aimed to link altered p53 dynamics to defined

parameter perturbations and thereby predict the processes affected by IKK2 inhibition. This

requires a model that is capable of faithfully reproducing the time-resolved p53 response to

ionizing radiation. As the p53 response among single cells is heterogeneous (Fig 1a) and we

needed to analyze quantitative changes that may be masked in population averages, the model

should be able to account for the cellular heterogeneity. We therefore developed a framework

for subpopulation-based modeling derived from the approach of Strasen et al. [41]. In this

approach, single cell trajectories with similar dynamics are clustered into subpopulations and

averaged. Note that the aim of our clustering approach is to capture the heterogeneity of the

individual cell dynamics in a given experiment rather than describing different types of
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Fig 1. Activation status of NF-κB affects the p53 response to DSBs. A549 reporter cells were tracked via live-cell time-

lapse microscopy and the p53 median nuclear fluorescence intensity was measured in cells treated with 10 Gy irradiation

(IR) in combination with DMSO (a), TNFα (b) or IKK2i (c). Light colored lines denote single cell trajectories whereas

bold lines indicate the median of trajectories. d) Quantification of selected features (timing maxima, timing minima,

inter-peak-intervals and dampening factor) of the first four p53 pulses. To test the significance of changes, we used the

Wilcoxon rank sum test in combination with the Bonferroni-Holm method to correct for multiple testing, �p<0.05,
��p<0.01, ���p<0.001. e) mRNA expression of p53 target genes was measured upon 10 Gy IR in A549 cells treated with

DMSO or IKK2i by qRT-PCR. β-actin was used as an internal control. Data were normalized to values of the sample
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dynamics. In order to reproduce all subpopulation dynamics, a pool of models is generated in

which each model is fitted to the averaged trajectories.

We applied this approach to our single cell data by establishing a framework for clustering

p53 dynamics into subpopulations. To preserve the pulsatile characteristics of single cell trajec-

tories we averaged the trajectories within a subpopulation in a peak-wise manner (peak-based

mean) by determining mean timings and mean absolute values of peaks (Fig 2a, see S1 Text

for details.) To reproduce these dynamics, we adjusted an initial model derived from Batchelor

et al. (Fig 2b, [42]) by introducing subpopulation-specific parameters. This model describes

the p53 response to DNA damage and contains the two feedback regulators Mdm2 and Wip1

as well as the kinase ATM. We extended the model by including variables for Mdm2 mRNA

and Wip1 mRNA with corresponding production and degradation rates (see S1 Text). For the

definition of subpopulation-specific parameters, we focused on parameters affecting produc-

tion rates of mRNAs and proteins, as these are susceptible to intrinsic noise [20,43,44]. In con-

trast, parameters accounting for biochemical processes such as phosphorylation reactions

remained constant across the model pool (Fig 2b).

We applied our framework to single cell data capturing the p53 response upon irradiation

(calibration data) by determining pairwise dissimilarities between trajectories, subjecting the

dissimilarities to a hierarchical clustering algorithm and calculating the Calinski-Harabasz

index to identify the number of clusters in the data set (see S1 Text for details). This analysis

suggested to employ ten subpopulations to represent the calibration data set (Fig 3a, blue

lines).

Note, that these subpopulations do not reflect distinct physiologically states. Instead, we

cluster trajectories with similar dynamics into subpopulations in order to reflect the variability

of p53 dynamics observed in the population due to cellular heterogeneity.

Next, we calibrated the model pool by fitting models simultaneously to the peak-based

mean of each subpopulation. To refine the subpopulation-specific parameters and identify

those parameters driving heterogeneity, we employed L1 regularization [45] (see S1 Text for

details). The regularization is applied to model parameters during optimization and allows to

identify parameters that are negligible for reproducing the data. With this approach, we

reduced the number of subpopulation-specific parameters from 60 (10 subpopulations with 6

parameters each) to 38 and generated minimal models sufficient to describe the variance

among subpopulation dynamics (Fig 3a, red lines).

Comparison of the subpopulation-specific parameters illustrates the quantitative differ-

ences between subpopulations that are not necessarily apparent from the dynamics (Fig 3b).

Interestingly, subpopulation-specific fold changes of parameters in the range of -0.46 and

+0.65 (on a log10 scale) are sufficient to reproduce the heterogeneity between the subpopula-

tions. Of note, basal transcription of the Wip1 gene (βwt) was identified as unspecific and

is therefore not necessary to reproduce the variability in p53 dynamics. Averaging all

subpopulation simulations again reproduced the average p53 dynamics of the cell population

(Fig 3a).

Taken together, by clustering single cell trajectories of p53 into ten subpopulations and fit-

ting a pool of ten ODE models to the peak-based representation of subpopulation dynamics,

we were able to quantitatively reproduce the dynamic response of p53 to DSBs.

harvested 0 h post IR. Error bars indicate the minimum and the maximum value for the relative quantity of three

technical replicates.

https://doi.org/10.1371/journal.pcbi.1007901.g001
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Fig 2. Scheme of the subpopulation modeling framework and the model describing the p53 network. a) Single cell

trajectories are clustered into subpopulations with similar dynamics (upper left panel). For each cluster, a peak-based

mean is calculated, representing subpopulation-specific dynamics. To account for cellular heterogeneity and to

reproduce the different dynamics of subpopulations, a pool of models is generated (upper right panel). In this example,

the model pool comprises two models, one is specific for subpopulation a, the other one for subpopulation b. The

production rates of Z and X are assumed to be susceptible to noise. Hence, parameters of these two processes are

considered subpopulation-specific and therefore specific for an individual model. While k1a and k2a are specific for

subpopulation a and thus assigned to one model, k1b and k2b are specific for subpopulation b and assigned to the
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IKK2 is predicted to act on multiple processes of the p53 network

To link the observed changes in p53 dynamics upon IKK2 inhibition to molecular processes

within the network, we performed a sensitivity analysis and compared changes induced by

parameter perturbations in the model to our experimental measurements. We focused on the

four features of p53 dynamics that were previously shown to be significantly and consistently

increased upon inhibition of IKK2 with different inhibitors (Fig 1d, S2d Fig), including timing

of pulse maxima and minima, IPI as well as dampening of pulses. For the sensitivity analysis,

the 22 kinetic parameters shared among all models were perturbed individually and the effect

on the four features was quantified in a peak-wise manner across subpopulations (S3 Fig). To

simplify the comparison between the results of the sensitivity analysis and the experimental

data, we condensed the peak-wise sensitivity coefficients to a single value using defined thresh-

old values (see S1 Text for details).

The experimental observations lead to the ‘expected pattern’ (Fig 4a): perturbation of a

parameter should lead to a consistent change, that is either an increase or a decrease, in the fea-

tures timing of maxima, timing of minima, IPI, and dampening across subpopulations. We per-

turbed parameters by +1% and considered both an increase and a decrease in all feature values,

as IKK2 may exert positive or negative influence on a given process. However, none of the

model parameters fulfilled this criterion (Fig 4b). At least one feature showed contradicting

effects in one or all subpopulations. Moreover, the parameters for basal degradation of p53

(αpi), basal degradation of ATM-P (αs) and basal transcription of the Wip1 gene (βwt) showed

no considerable effect on any feature. To assess if a stronger or negative perturbation of param-

eters would compromise these results, we performed additional sensitivity analyses in which we

perturbed parameters by +30% and -30%, respectively (S4 and S5 Figs). Note, that even stronger

perturbations greatly affect pulsatile dynamics and renders quantification of features infeasible.

The result of the sensitivity analysis showed that none of the single parameter perturbations

lead to the ‘expected pattern’ and therefore strongly indicated that modulation of the p53

response by IKK2 inhibition is due to multiple interactions between IKK2 and the p53 path-

way. We therefore hypothesized that simultaneous perturbation of two parameters might

reproduce the observed changes in all four features. To test this, we performed a sensitivity

analysis on all possible pairwise combinations of parameters. As it is not known if IKK2 inhibi-

tion has the same amplifying or attenuating effect on two processes, the sign of the perturba-

tion can be different for two parameters. We therefore performed the sensitivity analysis by

increasing both parameters or increasing one parameter and decreasing the second one. Using

this approach, we identified 13 out of 462 possible combinations that are able to reflect the

consistently observed effects of IKK2 inhibition (Fig 4c).

Parameter inference-based predictions of interactions between IKK2 and

the p53 network

Although the sensitivity analysis enabled us to make predictions about putative interaction

points of the NF-κB and p53 pathway, the analysis does not cover different perturbation

second model. Importantly, both models share parameters such as k3, assuming that for example phosphorylation

rates or degradation rates are not affected by noise. In a final step, the model pool is simultaneously fitted to the peak-

based mean of each subpopulation. b) The ODE model consists of seven variables representing phosphorylated ATM

(ATM-P), p53 in its inactive and transcriptionally active (act) form, as well as mRNAs and proteins of Mdm2 and

Wip1. Moreover, it contains 22 parameters; those marked in red are defined as subpopulation-specific since the

corresponding processes are assumed to be susceptible to noise.

https://doi.org/10.1371/journal.pcbi.1007901.g002
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Fig 3. Model pool reproduces heterogeneous p53 dynamics. a) The ten models of the model pool were fitted to the peak-based

mean of the ten subpopulations (blue lines). The red line indicates the simulation of the best fit. The number of cells assigned to a

subpopulation is stated in the upper right corner of each subpopulation plot. To visualize the simulation and experimental data on

the population level (lower right corner), the weighted mean over all subpopulations was calculated. The weight is determined by

the number of assigned cells. b) L1 regularization-based evaluation of subpopulation-specific parameters. The parameters

correspond to the six biochemical processes that were assumed to be subpopulation-specific. The processes include basal

transcription of the Mdm2 gene (βmt), translation of Mdm2 mRNA (βmtm), synthesis of p53 (βp), activation of ATM (βs), basal

transcription of the Wip1 gene (βwt) and translation of Wip1 mRNA (βwtw). Subpopulation-specific parameters are represented by
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strengths of parameters or the extent to which individual features are changed. By taking addi-

tional quantitative information into account, we sought to refine the identification of potential

interaction points in two ways. First, evaluating different perturbation strengths would enable

us to capture additive and compensatory effects in a more comprehensive way. As a conse-

quence, additional parameter combinations might be revealed which would not have been

identified by fixed perturbation strengths. Second, taking quantitative information into

account provides more stringency, as parameter combinations reflecting feature changes in a

qualitative manner might not be able to reflect changes quantitatively. Therefore, those param-

eter combinations could be excluded as potential targets of the crosstalk between the NF-κB

and p53 pathway.

Hence, in a second approach, we employed parameter inference to include quantitative

changes in dynamics and derive perturbation strengths from experimental data by fitting indi-

vidual parameters of the calibrated model pool to trajectories from IKK2i-treated cells (pertur-

bation data). All remaining parameters were fixed to their calibrated value. This allowed us to

evaluate parameters with respect to their capability to shift p53 dynamics upon DSBs to the

altered dynamics of p53 upon IKK2 inhibition. As we assume that inhibition of IKK2 affects

the same process with the same magnitude in all subpopulations, we only fitted parameters

that are shared among models of the model pool.

In order to fit those parameters to the perturbation data, trajectories of the perturbation

data had to be assigned to the ten clusters of the calibration data. The assignment is based on

the assumptions that inhibition of IKK2 i) leads to the same qualitative changes in dynamics in

all subpopulations and ii) does not affect the composition of subpopulations. For the assign-

ment, we defined nine criteria (Table B in S1 Text) that we derived from experimentally

observed changes in features upon IKK2 inhibition. Based on the criteria we assigned individ-

ual trajectories from the perturbation data to one of the ten clusters (S1 Text). In order to be

able to fit the model pool to the perturbation data, the peak-based mean of the assigned trajec-

tories was determined for each subpopulation (S6a Fig) and compared to the calibration data

(S6b Fig). The results are discussed in S1 Text.

As our previous sensitivity analysis indicated that multiple interactions points exist between

IKK2 and the p53 network, we tested if simultaneous fitting of two parameters allows to quan-

titatively reproduce the modulated p53 response. To this end, all possible combinations of

parameter pairs were fitted to the perturbation data, while the remaining parameters were

fixed to their calibrated value. However, the model pool was unable to reproduce the observed

pulsatile dynamics of p53 with any of the fitted parameter pairs as demonstrated by the param-

eter combination with the best fit quality (S7a Fig). We therefore expanded our approach to

parameter triplets and identified several combinations that yielded improved fit qualities (S7b

Fig). The model pool with the best fitted parameter combination successfully reproduced the

altered p53 response to DSBs upon IKK2 inhibition (S7c Fig, left), demonstrating that pertur-

bation of three parameters is sufficient to capture the effect of IKK2 on the p53 network. As

parameter combinations differ in their corresponding fit qualities (S7c Fig), the performed

parameter inference allows to distinguish parameter combinations based on their capability to

reproduce a targeted perturbation. This indicates that the fit quality can be used to predict

putative interfaces of the NF-κB and p53 pathway.

colored dots. Each color denotes an individual subpopulation. Parameters with a value close to zero are identified by L1

regularization as unspecific (circles).

https://doi.org/10.1371/journal.pcbi.1007901.g003
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Fig 4. Sensitivity analysis predicts existence of multiple interactions of IKK2 and the p53 network. a) Expected

change in features upon perturbation of a parameter, which indicates an interaction of IKK2 and the p53 network.

Each box represents the effect of a parameter perturbation on a specified feature for an individual subpopulation. A red

box indicates a consistent increase in the specified feature, in all considered peaks. Blue boxes represent a decrease. b)

Sensitivity analysis of single parameters. If the absolute value of sensitivity coefficients of all considered peaks are below

1�10−4, the specified parameter change has no considerable effect on the respective feature (grey boxes).

Subpopulations with sensitivity coefficients of peaks which are not consistently changed are depicted in white. c) For

the sensitivity analysis of parameter pairs, 13 pairs were selected from 462 possible combinations based on their ability
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Validation of predicted parameter combinations reveals two potential

mechanisms for the observed alterations in p53 dynamics

To validate the best ranked parameter combinations, we compared parameter inference-based

predictions with additional experimental observations. We tested the 30 best ranked parameter

combinations to gain a broader overview of model performance (S8 Fig).

As additional perturbations, we used time-resolved single cell data, where the IKK2 inhibi-

tor TPCA-1 was applied at different time points post damage (1.5h, 2.5h/3h, 5h, Fig 5a). To

systematically evaluate parameter combinations, the discrepancy between model simulations

and experimental data was determined by calculating the weighted χ2 value for each parameter

combination and each data set (see S1 Text for details). Eight parameter combinations were

able to reproduce p53 dynamics for all perturbation times with only small deviations (Fig 5b,

top 8 parameter combinations).

In order to visualize the difference between the eight parameter combinations and the

remaining combinations, model simulations with selected parameter combinations were com-

pared (S9 Fig). While the p53 dynamics upon IKK2 inhibition 1.5h post damage could be

reflected by all selected parameter combinations, the 2.5h and 3h time points of IKK2 inhibi-

tion were qualitatively less well reflected by the combinations. The strongest difference

between the three combinations selected from the best eight parameter combinations (αm &

αmpi & βmt, Ts & αm & αmpi, αmpi & βmt & βs) and the ninth parameter combination (αmpa &

αsm & βpamt) was observed when the IKK2 inhibitor was applied five hours after irradiation.

While the three combinations reflected the continuous accumulation of p53 observed in the

data, the combination αmpa & αsm & βpamt showed a sudden and strong decrease in p53 levels.

Thus, we selected the eight parameter combinations with the smallest χ2 values in all data sets

of time-variant IKK2 inhibition for further validation.

For additional validation, we used Western blot and qRT-PCR data to analyze the effect of

IKK2 inhibition on dynamics of additional components of the p53 network. Based on the

described delay in the p53 response (Fig 6a and S2a Fig), the impact on the two negative feed-

back regulators Mdm2 and Wip1 was tested first. We observed that Mdm2 as well as Wip1

protein accumulation was delayed upon IKK2 inhibition (Fig 6c and 6e and S10a Fig). More-

over, IKK2i treatment resulted in a delayed increase of Mdm2 and Wip1 mRNA levels as well,

indicating that gene expression of both feedback regulators followed altered p53 dynamics as

expected (Fig 6b and 6d). To determine ATM activity upon perturbation, we measured the lev-

els of one of its substrates, phosphorylated Chk2, over time. Surprisingly, we detected higher

phosphorylation levels upon IKK2i treatment (Fig 6f and S10b Fig).

When we compared the simulated dynamics for the previously mentioned components

with the experimental data, we noticed for all eight parameter combinations a similarly

delayed accumulation of Mdm2 and Wip1 on the mRNA level as well as on the protein level

(Fig 6h–6k). However, the best ranked parameter combination from the previous validation in

which Mdm2-mediated degradation of p53 (αmpi), basal degradation of Mdm2 (αm) and basal

transcription of the Mdm2 gene (βmt) were perturbed, predicted very high levels of Mdm2

mRNA, and very low Mdm2 protein levels (Fig 6h and 6i). This is not in line with experimen-

tal observations (Fig 6b and 6c). Moreover, the parameter combinations in which the activa-

tion of ATM is affected (βs) showed a decreased kinase activity and thus failed to reflect the

experimental data (Fig 6l and 6f) as well. Those parameter combinations were therefore not

to reflect the expected change in features in at least seven out of ten subpopulations. Arrows indicate a perturbation of

parameters by increasing or decreasing the respective parameter value by 1%.

https://doi.org/10.1371/journal.pcbi.1007901.g004
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Fig 5. Validation of the 30 best ranked parameter combination fits using time-variant IKK2 inhibition. a) A549 reporter cells

were tracked and the p53 median nuclear fluorescence intensity was measured in cells treated with DMSO or IKK2i at different time

points. Sample trajectories are shown in which IKK2 was inhibited at the indicated time points. In an additional experiment, IKK2

was inhibited at 1.5h, 2.5h and 5h after IR. b) Each box depicts the color coded log10 χ
2 value for model simulations with individual

parameter combinations and time points of IKK2 inhibition. For better visualization, the plotted log10 χ
2 value summarizes the values

of two data sets with similar time points of IKK2 inhibition (1.5h/1.5h, 2.5h/3h, 5h/5h). The inhibitor was applied at accumulating

levels of p53, resulting in the first peak (tInh = 1.5h), decreasing p53 levels (tInh = 2.5h and tInh = 3h) as well as at the accumulation

resulting in the second peak (tInh = 5h). The parameter combinations are sorted based on the corresponding summarized log10 χ
2

value. Indices of the parameter combinations are given by the numbers on the right hand side of the plot.

https://doi.org/10.1371/journal.pcbi.1007901.g005
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Fig 6. IKK2 inhibition leads to a delayed Wip1 and Mdm2 accumulation and increased pChk2 levels on the

population level. Upon 10 Gy IR in A549 cells treated with DMSO or IKK2i, the levels of p53 (a), Mdm2 mRNA (b),

Mdm2 protein (c), Wip1 mRNA (d), Wip1 protein (e) and pChk2 (f) were measured and quantified. Protein levels

were determined by Western blot analysis. Data from independent experiments were normalized to values of the

sample harvested 0 h post IR. Error bars indicate standard deviation of two biological replicates. mRNA expression was

measured using qRT-PCR. β-actin was used as an internal control. Error bars indicate the minimum and the

maximum value for the relative quantity of two biological replicates, each consisting of three technical replicates.

Simulated dynamics of total p53 (g), Mdm2 mRNA (h), Mdm2 (i), Wip1 mRNA (j), Wip1 (k) and pATM (l) are shown

for eight parameter combinations and IR alone.

https://doi.org/10.1371/journal.pcbi.1007901.g006
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considered further. Note, that the dynamics of Mdm2 on the protein level within the first hour

differ between simulation (Fig 6i) and experimental data (Fig 6c) as we did not include the

population data into model calibration. Interestingly, such an initial decrease in Mdm2 levels

was also observed experimentally [19,42].

Finally, four parameter combinations remained, which were able to reflect the data of the

second validation. Analyzing the composition of these parameter combinations, unravels two

mechanisms explaining the effect of IKK2 inhibition on p53 dynamics (Fig 7). On the one

hand, Mdm2-mediated degradation of inactive p53 and basal degradation of Mdm2 could be

increased (Fig 7a). On the other hand, ATM-mediated degradation of Mdm2 and Mdm2-me-

diated degradation of active p53 could be decreased (Fig 7b). Of note, the latter combination

was also one of the predicted parameter combinations of the sensitivity analysis. Both mecha-

nisms share a reduced activation rate of p53. These results strongly indicate that the NF-κB

and p53 networks interact at multiple independent nodes and provide starting points for fur-

ther experimental investigation.

Discussion

Crosstalks between cellular signaling pathways are essential for integrating external and inter-

nal inputs. In our approach we studied crosstalk mechanisms by capturing the effect of tar-

geted perturbations of a selected signaling network on the response of an interacting pathway.

Combining time-resolved single-cell measurements with subpopulation-based modeling

enabled us to systematically analyze such a crosstalk and predict molecular interaction points.

Using two central signaling networks of the human stress response as paradigm, we experi-

mentally observed that dynamics of p53 upon DNA damage were affected by the activity state

of the NF-κB network. Our corresponding model-based analysis indicated that none of the

previously considered network interactions alone were sufficient to explain the observed mod-

ulation of p53 dynamics. Instead, we predict that multiple parallel interactions between both

Fig 7. Scheme of the two identified mechanisms allowing to reflect the effects of IKK2 inhibition on p53

dynamics. a) The first mechanism comprises the two parameter combinations αmpi & αm & βsp and αmpi & αm & Ts.

The dotted lines indicate that the parameter combinations differ in the corresponding parameters (βsp and Ts), but the

affected process is the same. In both parameter combinations the process is predicted to be reduced, which is denoted

by the blue color. In contrast, the red solid lines represent the two processes shared among the two combinations,

which are predicted to be increased. b) The parameter combinations αmpa & αsm & βsp and αmpa & αsm & Ts constitute

the second mechanism. In accordance to the first mechanism, the two parameter combinations differ in parameter βsp

and Ts. The two parameters affecting ATM-induced degradation of Mdm2 (αsm) and Mdm2-mediated degradation of

activated p53 (αmpa) are predicted to be reduced upon IKK2 inhibition.

https://doi.org/10.1371/journal.pcbi.1007901.g007
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networks shape the signaling response and suggest possible molecular mechanisms for further

validation.

With our approach, we predicted two possible mechanisms how the p53 network is modu-

lated by the applied pharmacological perturbations. For each mechanism, three processes are

affected: degradation of inactive or active p53, degradation of Mdm2 as well as activation of

p53. Although a further confinement of our predictions was not possible, a number of studies

exist that support the predictions and provide a molecular basis for our proposed interaction

with the IKK/ NF-κB network. IKK2 was shown to interfere with the degradation of p53

[34,35]. Inhibiting IKK2 activity resulted in both studies in a decreased degradation rate of p53

which is in line with our prediction that inhibition of IKK2 reduces the degradation of active

p53 (αmpa). However, the degradation of p53 was reported to be independent of Mdm2 which

is not in agreement with our prediction [34]. More recently, Ishak Gabra et al. uncovered that

IKK2 phosphorylates p53 at serine residue S392 [46], which was previously shown to affect

p53 degradation as well as its DNA binding and tetramerization [47–50]. Preventing phos-

phorylation of p53 at S392 resulted in a reduced degradation of p53 [49,50]. Interestingly, Du

et al. could link the degradation to ubiquitination of p53 by the ubiquitin ligase UBE4B [50],

which is known to promote Mdm2-mediated degradation of p53 [51]. Thus, one can hypothe-

size that IKK2 inhibition reduces the Mdm2-induced degradation of p53 by preventing its ubi-

quitination by UBE4B.

Another prediction of the model was that IKK2 affects degradation of Mdm2. In particular,

inhibition of IKK2 was predicted to either increase the basal degradation of Mdm2 (αm) or

reduce the ATM-dependent degradation of Mdm2 (αsm). Indeed, IKK2 can phosphorylate

Mdm2 at S166 [52]. A previous study has indicated that inhibition of Akt-mediated phosphor-

ylation of Mdm2 at this serine residue prevented translocation of Mdm2 to the nucleus and

caused increased p53 levels [53]. Consequently, it is possible that inhibition of IKK2 decreases

the amount of Mdm2 that is available in the nucleus for the degradation of p53. Reduced levels

of Mdm2 upon IKK2 knockout [54] support this notion and favor our predicted increase in

the degradation of Mdm2 (αm). Conversely, preventing the activation of NF-κB by overexpres-

sion of a non-degradable IκBα mutant led to increased levels of Mdm2 [36]. As IKK2 inhibi-

tion prevents activation of NF-κB, the latter result supports our predicted reduction in the

degradation of Mdm2 (αsm).

Moreover, the model predicted a reduced ATM-mediated activation of p53 upon IKK2

inhibition. This is in line with results of Ishak Gabra et al. who analyzed the phosphorylation

of p53 at S15 and S392. Phosphorylation of p53 at S15 is known to be mediated by ATM [55].

Blocking the phosphorylation of p53 at S392 resulted in delayed phosphorylation of p53 at S15

[56]. These results indicate that IKK2 could indeed reduce ATM-mediated activation of p53.

Taken together, these experimental observations corroborate most of our predicted interac-

tion points between the IKK/ NF-κB and p53 network (S10c Fig). However, we can currently

not fully exclude further contributions from other signaling pathways. TPCA-1 is a known

inhibitor of STAT3 signaling, which we verified in our experimental system. While the other

IKK2 inhibitors used in this study did not directly block STAT3 phosphorylation, they may

indirectly alter STAT3 activity due to reduced expression of activating ligands such as IL-6

upon loss of NF-κB activity in damaged cells. STAT3 was reported to regulate p53 expression

by binding to its promoter [38]. As the fluorescent p53 reporter is expressed from a constitu-

tive promoter, it is however unlikely that this proposed interaction caused the observed

changes in p53 dynamics.

While the detailed molecular interactions need to be further analyzed in future studies, our

systematic approach clearly indicates that the networks employ several interaction points

simultaneously.
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Our approach is based on three key features: selecting suitable molecular perturbations,

obtaining time-resolved quantitative measurements and devising an appropriate modeling

strategy. While the proposed approach can be used as a blueprint to investigate crosstalk in

other signaling systems the features need systems-specific consideration. For the molecular per-

turbations, we here used characterized ligands and pharmacological inhibitors to perturb cellu-

lar signaling. Pharmacological inhibitors have the advantage that they act almost immediately

upon treatment, providing flexibility for time-variant perturbations and little opportunity for a

network to compensate the loss of essential activities [57]. However, small-molecule inhibitors

are often restricted by limited specificity, leading to off-target effects that can hinder the inter-

pretation of a given perturbation [58]. We addressed this constrain by employing multiple

structurally independent inhibitors and focusing on features of dynamics that were consistently

altered by all molecules. Moreover, most pharmacological inhibitors target signaling proteins

with enzymatic functions, mainly kinases, which restricts the network nodes amenable to per-

turbations. Alternative strategies would rely on genetic perturbations such as siRNA- or

shRNA-mediated knockdown or CRISPR/Cas9-mediated knockout of selected network com-

ponents. However, most of these approaches require extended incubation periods, limiting the

precision of perturbation timing and allowing compensation through altered network states.

Another important consideration for designing a perturbation is the position of the tar-

geted network node. Upstream factors provide a broad spectrum of possible interactions.

However, their function is often pleiotropic, making it harder to distinguish direct effects on

pathway interactions from more indirect effects due to alterations of the cellular state. Con-

versely, downstream factors provide more defined alterations, but their perturbation may pro-

vide a limited scope for analysis. In this study, we focused on the central kinase IKK2, which

can affect processes of the p53 network directly or via altered target gene expression.

Upon applying a targeted perturbation, our approach requires time-resolved quantitative

measurements to characterize the resulting alterations in the interacting signaling pathway.

Therefore, we applied time-resolved live-cell imaging of fluorescent reporter cell lines as a

non-invasive measurement technique that allows to follow a population of individual cells

with high temporal resolution over an extended observation period [59]. The drawback of

live-cell imaging is the low number of readouts it provides, limiting the ability for multiplexed

measurements. We therefore supplemented the single cell p53 measurement by Western blot

and qPCR data for measurements of Mdm2, Wip1 or ATM activity. An alternative approach

would be flow cytometry which allows for a higher number of simultaneous read outs, but,

due to fixation of cells, lacks information about the read out of individual cells over time [60].

The third challenge is the choice of an appropriate level of model abstraction for success-

fully analyzing and predicting signaling crosstalk. A model should be compact as computa-

tional costs for parameter inference correlate with the dimensions of the model and smaller

models are less prone for overfitting. However, it needs to include sufficient detail to provide

meaningful entry points for network interactions and to allow predicting the underlying

molecular mechanisms. We decided to base our efforts on a previously published model focus-

ing on the feedback structure of the p53 network that shapes its dynamic response [24,61]. We

introduced minor changes to make it amenable for our approach while retaining a high level

of abstraction. Upon analyzing the general processes affected by network crosstalk, it would

now be feasible to expand the model correspondingly and include additional molecular detail

along with further experimental validations.

Full reconstruction of cell-to-cell variations on the level of single cell dynamics might be

possible by employing nonlinear mixed-effect modeling [62,63]. This approach allows to

reproduce single cell trajectories by simultaneous inference of shared and cell-specific parame-

ters. The advantage of such an approach would be that a model-based comparison between
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different experimental conditions does not require an assignment of trajectories from one con-

dition to the other in contrast to our subpopulation-based approach. However, such mixed-

effect modeling approaches are computationally demanding as it requires fitting of the model

to each single cell trajectory and is therefore better suited for more confined models. More-

over, it requires a model that is able to capture heterogeneity in the oscillations on the single

cell level. Hence, we decided to employ a subpopulation-based approach which reduces the

computational costs and facilitates reproduction of pulsatile dynamics of p53 while heteroge-

neity in dynamics is still reflected. To capture the effect of the inhibitor on the subpopulation

level we assigned trajectories from the perturbation data to the clusters of the calibration data

using defined criteria and assuming equal effects on subpopulations (see S1 Text for details).

To evaluate the impact of IKK2 inhibition on the assignment, we tested whether the percent-

age of cells from the perturbation data that is assigned to a cluster is in the range of the corre-

sponding percentage of cells from the calibration data. While three subpopulations (a, f and h)

show very similar percentages, there are also cases (e.g. subpopulation b) with strong devia-

tions (S6c Fig). Thus, we cannot rule out that we underestimate to a certain extent the effect of

the inhibitor on the dynamics. However, based on the assigned cell numbers, subpopulations

are weighted for fitting the model pool to the calibration and the perturbation data. Thus,

some subpopulations have a higher impact on the fit than others. Comparing the impact of

subpopulations on the fit with respect to deviations in the percentages shows that the subpopu-

lations with the smallest deviation in percentages have the highest impact (S6d Fig). Hence,

our parameter inference-based approach is less affected by subpopulations with deviating per-

centages than by subpopulations with similar percentages.

By employing the subpopulation-based approach, we were able to establish, to our knowl-

edge, the first quantitative model capturing heterogeneous dynamics of p53. While our model

calibration is based on time-resolved single cell p53 it also reflects the relevant characteristics

of Mdm2, Wip1 and ATM dynamics on the population level (Fig 6). However, we did not

include experimental data of those dynamics into the model calibration which can lead to

uncertainties in estimated parameter values. Therefore, we expect that additional data captur-

ing single cell dynamics of those network components could help to further refine the quanti-

tative model and might improve the inference of the crosstalk mechanism.

We used the quantitative model to identify interactions of the IKK/ NF-κB and p53 net-

work by applying two different approaches. Of note, both approaches, the sensitivity analysis

and inference of perturbed model parameters pointed to a similar parameter combination

(αmpa & αsm) that allows to reflect the perturbation data. The results of the sensitivity analysis

are based on experimentally observed changes in features of p53 dynamics upon IKK2 inhibi-

tion. As those features were consistently changed by three structurally independent IKK2

inhibitors, the sensitivity analysis provides robust results which are independent of the applied

inhibitor and therefore unaffected by off-target effects. In contrast, the parameter inference

approach is based on a single data set. Consequently, inhibitor specific effects influence the

model-based predictions. However, comparing the effects of the three different inhibitors on

the features of p53 dynamics revealed that most of the changes in features are shown by at least

two inhibitors (S2d Fig).

Taken together, our approach provides a framework to systematically analyze crosstalk

between signaling pathways using perturbation experiments. It can be applied to other systems

to get more detailed insights into the highly interconnected network of signaling systems that

controls proliferation, cell cycle arrest and apoptosis and therefore the fate decision of every

cell in response to stress. Such an understanding will provide the foundation for new strategies

for using combinations of targeted pharmacological inhibitors in the treatment of human

malignancies such as cancer.

PLOS COMPUTATIONAL BIOLOGY Crosstalk in p53 signaling in single cells

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007901 June 26, 2020 18 / 27

https://doi.org/10.1371/journal.pcbi.1007901


Material and Methods

Cells

We cultured A549 cell lines in McCoy’s 5A (GE Healthcare Life Sciences, Freiburg, Germany)

plus 10% fetal calf serum (FCS; Thermo Fisher Scientific, Darmstadt, Germany) at 37˚C. The

medium contained penicillin and streptomycin. For A549 p53-Venus reporter cells [64,65],

selective antibiotics (400 μg/ml G418 (Carl Roth, Karlsruhe, Germany) and 50 μg/ml hygromy-

cin (Thermo Fisher Scientific)) were added to maintain transgene expression.

For corresponding treatment of the cells, the medium was replaced with fresh one contain-

ing dimethyl sulfoxide (DMSO; Sigma-Aldrich) as a control, IKK2 inhibitor (15 μM TPCA-1,

120 μM sc-514 or 0.93 μM BMS-345541 (MedChemExpress, Sollentuna, Sweden)), 10 ng/ml

or 50 ng/ml IL-6 (PeproTech, Hamburg, Germany) or 10 ng/ml TNFα (Enzo Life Science, Lör-

rach, Germany) 1 h before irradiating cells (if not stated otherwise) with X-rays at a dose rate

of 1 Gy/26 s (250 keV, 10 mA).

Time-lapse microscopy

We seeded cells in poly-d-lysine-coated glass-bottom plates (MatTek, Ashland, MA) or 24 well

ibiTreat polymer-bottom plates (ibidi, Martinsried, Germany). The day of the experiment,

medium was replaced with fresh one lacking phenol red and riboflavin (FluoroBrite, Thermo

Fisher Scientific). Cells were imaged on a Nikon Ti inverted fluorescence microscope with a

Nikon DS-Qi2 camera and a 20× plan apo objective (NA 0.75) using appropriate filter sets

(CFP: 438/24 nm excitation (EX), 458 nm dichroic beam splitter (BS), 483/32 nm emission

(EM); mVenus: 500/24 nm EX, 520 nm BS, 542/27 nm EM). We acquired images every 15 min

for the duration of 24 h using Nikon Elements software. The microscope was surrounded by

an enclosure to maintain constant temperature (37˚C), CO2 concentration (5%), and humidity

(OkoLab). The inhibitors were prepared in 500 μl media and added them, if not specified oth-

erwise, 1 h before irradiation to achieve the final concentration in 2.5 ml media. We started

imaging 30 min after irradiation. For experiments in the 24 well plate format, we prepared the

inhibitors in 125 μl media and added them 1 h before irradiation to get the final concentration

in a total volume of 1.125 ml media. Here, imaging was started directly after irradiation.

Image and data analysis

Cells were tracked throughout the duration of the experiment using custom-written Matlab

(MathWorks, Natick, MA) scripts based on code developed by the Alon lab [66] and the Cell-

Profiler project [67]. In brief, we applied flat-field correction and background subtraction to

raw images before segmenting individual nuclei from nuclear marker images using adaptive

thresholding and seeded watershed algorithms. Segmented cells were then assigned to corre-

sponding cells in following images using a greedy match algorithm. Only cells tracked from

the first to last time point were considered. Cells were tracked in forward direction. Upon cell

division, we followed the daughter cell closest to the last position of the mother and merged

tracks from mothers and offspring. We quantified the nuclear fluorescence intensity of

p53-Venus for each cell over time and analyzed the resulting single-cell trajectories. For fur-

ther details on data preprocessing, see Strasen et al. 2018 [41] and S1 Text.

Western blot analysis

We harvested cells at the indicated time points and lysed them in the presence of protease and

phosphatase inhibitors. After extraction, proteins were quantified using Bradford assay (Carl

Roth). Equal protein amounts were separated by electrophoreses on 4–12% Bis-Tris gradient
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gels (Thermo Fisher Scientific) and transferred to PVDF membranes (Thermo Fisher Scien-

tific) by electroblotting. We blocked membranes with 5% nonfat dried milk (Carl Roth) or 5%

bovine serum albumin (Carl Roth) and incubated them overnight with primary antibody. The

next day, we washed the membranes, incubated them with secondary antibody coupled to per-

oxidase, and washed them again. Protein levels were detected using chemiluminescence (ECL

Prime, GE Healthcare or WesternBright Quantum, Biozym).

We used antibodies against p53 (DO-1, sc-126), Mdm2 (SMP14, sc-965), Wip1 (H-300, sc-

20712) from Santa Cruz Biotechnology (Dallas, TX), phospho-Chk2 (Thr-68), pSTAT3 (Tyr-

705) from Cell Signaling (Danvers, MA) and glyceraldehyde-3-phosphate dehydrogenase

(GAPDH) from Sigma-Aldrich.

Reverse transcriptase quantitative PCR

We harvested cells at the indicated time points and extracted mRNA using High Pure RNA

Isolation kits (Roche, Mannheim, Germany). Concentrations were measured with a photo-

spectrometer (NanoDrop 2000, Thermo Fisher Scientific). We generated cDNA from 1μg

RNA using M-MuLV reverse transcriptase (NEB, Ipswich, MA) and oligo-dT primers. Quanti-

tative PCR was performed in triplicates using SYBR Green reagent (Roche) on a StepOnePlus

PCR machine (Thermo Fisher Scientific). We used the following primers: β-actin forward

(GGC ACC CAG CAC AAT GAA GAT CAA), β-actin reverse (TAG AAG CAT TTG CGG

TGG ACG ATG), Wip1 forward (ATA AGC CAG AAC TTC CCA AGG), Wip1 reverse

(TGG TCA ATA ACT GTG CTC CTT C), Mdm2 forward (GAT GAA AGC CTG GCT CTG

TGT GT), Mdm2 reverse (TTC GAT GGC GTC CCT GTA GAT TCA), p21 forward (TGG

ACC TGT CAC TGT CTT GT), p21 reverse (TCC TGT GGG CGG ATT AG), GADD45a for-

ward (GCA ATA TGA CTT TGG AGG AAT TCT C), GADD45a reverse (TGA CTC AGG

GCT TTG CTG), PUMA forward (CGA CCT CAA CGC ACA GTA CG), PUMA reverse

(GGG TGC AGG CAC CTA ATT GG), PML forward (AGA CTC AGA TGC CGA AAA

CTC), PML reverse (GGT CAG CAA GGT TCT CGT C) and NOXA forward (GGA GAT

GCC GCC TGG GAA GAA G), NOXA reverse (TGC CGG AAG TTC AGT TTG TC).

Immunofluorescence

We seeded cells on coverslips coated with poly-l-lysine (Sigma-Aldrich). The day of the experi-

ment, cells were treated as indicated, fixed with 2% paraformaldehyde (Carl Roth) and per-

meabilized with 0.1% Triton X-100 (Carl Roth) in phosphate-buffered saline. We blocked with

10% goat serum (PAN-Biotech) and incubated with antibody against p65 (C-20, sc-372) from

Santa Cruz Biotechnology (Dallas, TX). Cells were washed, incubated with secondary antibody

coupled to Alexa Fluor 488 (Thermo Fisher Scientific) and washed again. Finally, cells were

stained with Hoechst and embedded in Prolong Antifade (Thermo Fisher Scientific). We

acquired images with a 20× Plan Apo objective (NA 0.75) using appropriate filter sets (mVe-

nus: 500/24 nm EX, 520 nm BS, 542/27 nm EM, DAPI: 387/11 nm EX, 409 nm BS, 447/60 nm

EM). Automated segmentation was performed in Matlab (The Mathworks Inc., Natick, MA)

with algorithms from CellProfiler [67].

Mathematical modeling

For simulations and parameter inference Matlab (R2017b, The Mathworks Inc., Natick, MA)

and the open source toolbox Data2Dynamics [68,69] were used. Descriptions of model param-

eters as well as the inferred parameter values are given in S1 Table. For additional information

and detailed description of methods, see S1 Text.
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Supporting information

S1 Text. Supporting information on data sets and applied methods. In this supplement,

additional information is given on time lapse microscopy data sets, quantification of features

of dynamics, clustering of trajectories, subpopulation-based modelling, parameter inference,

sensitivity analyses, as well as calculation of the weighted χ2 value.

(PDF)

S1 Fig. Definition of features of p53 dynamics and reproducibility of results. a) Immuno-

fluorescence was performed in A549 cells treated with TNFα, DMSO or IKK2i showing p65

translocation. b) Quantification of immunofluorescence data acquired in A549 cells treated

with DMSO or IKK2i before irradiation with 10 Gy showing p65 translocation. c) Scheme of

the defined features of p53 dynamics. Depicted are the timing of maxima (tmax), timing of min-

ima (tmin), inter-peak-interval (IPI), dampening factor (DF), absolute values of maxima (Fmax),

absolute values of minima, peak width, positive slope of peaks, negative slope of peaks and

amplitude of peaks. The absolute values of maxima (Fn
max) are used to calculate the dampen-

ing factor (DFn ¼
Fmax

1

Fmax
n
Þ for peak n. d) The raw and smoothed trajectories of four random cells

are depicted in blue and orange, respectively. The trajectories are smoothed by using a gauss-

ian-weighted moving average. e) Distributions for the peak timing of the first five peaks are

illustrated for raw and smoothed trajectories. f) A549 reporter cells were tracked and the p53

median nuclear fluorescence intensity was measured in cells treated with 10 Gy IR in combina-

tion with DMSO or IKK2i. Three independent experiments were performed, the cell numbers

of each replicate are given in brackets. g) Quantification of selected features (timing maxima,

timing minima, inter-peak-intervals and dampening factor) of the first four p53 pulses. The

significance was tested by using the Wilcoxon rank sum test in combination with the Bonfer-

roni-Holm method to correct for multiple testing, �p<0.05, ��p<0.01, ���p<0.001.

(PDF)

S2 Fig. Validation and specificity of IKK2 inhibitors. a) Western blot analysis of p53 and

GAPDH upon 10 Gy IR in A549 cells treated with DMSO or IKK2i. b) Using live-cell time-

lapse microscopy, A549 reporter cells were tracked and the p53 median nuclear fluorescence

intensity was measured upon 0 Gy or 10 Gy IR in cells treated with DMSO or IKK2i. c) A549

reporter cells were tracked and the p53 median nuclear fluorescence intensity was measured

upon 10 Gy IR in cells treated with DMSO or different IKK2 inhibitors. d) The specificity of

IKK2 inhibition was tested by comparing the effect of the IKK2 inhibitor TPCA-1 on features

of p53 dynamics with the effects of two structurally independent IKK2 inhibitors (BMS and

SC). For comparison, 17 criteria were defined which are derived from altered features, induced

by application of TPCA-1. A green box indicates that an inhibitor induced the same specified

effect as the TPCA-1 inhibitor. A red box represents a mismatch for the observed effect of the

specified inhibitor. e) Western blot analysis of pSTAT3 and GAPDH in A549 cells treated with

DMSO or the corresponding IKK2i prior to IL-6 addition. f) Using live-cell time-lapse micros-

copy, A549 reporter cells were tracked and the p53 median nuclear fluorescence intensity was

measured upon 10 Gy IR in cells treated with DMSO, IKK2i or IL-6.

(PDF)

S3 Fig. Sensitivity analysis for all 22 kinetic parameters, which are shared among the mod-

els of the model pool. Boxes represent the computed sensitivity coefficient for specified

parameters, subpopulations and features for a single peak. The color of boxes depicts the value

of the sensitivity coefficient. For the sensitivity analysis the first four peaks were evaluated.

(PDF)
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S4 Fig. Sensitivity analysis for single parameters for a perturbation strength of +30%.

Changes in features that exceed a threshold of 1�10−3 are depicted in red if the change is posi-

tive and blue if the change is negative. Grey boxes indicate changes in features below 1�10−4.

The corresponding parameter perturbation is considered to have no considerable effect. Sensi-

tivity coefficients of peaks that are not consistently changed are depicted in white.

(PDF)

S5 Fig. Sensitivity analysis for single parameters for a perturbation strength of -30%.

Changes in features that exceed a threshold of 1�10−3 are depicted in red if the change is posi-

tive and blue if the change is negative. Grey boxes indicate changes in features below 1�10−4.

The corresponding parameter perturbation is considered to have no considerable effect. Sensi-

tivity coefficients of peaks that are not consistently changed are depicted in white.

(PDF)

S6 Fig. Assigning trajectories of the perturbation data to the ten subpopulations of the cal-

ibration data. a) Blue dots and lines represent the peak-based mean of trajectories from the

calibration data. The red dots and lines depict the peak-based mean of trajectories from the

perturbation data, assigned to the respective subpopulation. The number of trajectories which

are assigned to a subpopulation and used for computing the peak-based mean, are stated by

the cell numbers in the upper right corner of each subpopulation plot. The first number

denotes the subpopulation-specific number of cells for the calibration data, the second number

accounts for the perturbation data. The peak-based mean for the total population is shown in

the lower right corner of the figure and was determined by calculating the weighted mean over

all subpopulations. The weight is given by the number of cells assigned to a subpopulation. b)

Evaluation of fulfilled criteria of the peak-based mean of the perturbation data. Green boxes

indicate that a certain criterion, described on the left-hand side, is fulfilled by an individual

subpopulation (a to j). Red boxes represent unmet criteria. c) The percentages denote the rela-

tive amounts of cells assigned to a subpopulation for the calibration data (IR+DMSO) and the

perturbation data (IR+IKK2i). d) The grey boxes represent the ten subpopulations. To deter-

mine the impact of a subpopulation on the model fit, the sum of cells assigned to a subpopula-

tion of both conditions (IR+DMSO and IR+IKK2i) is normalized to the total amount of cells

in both conditions. Deviation d for a subpopulation is determined by the difference in percent-

ages (f) between both conditions which is normalized to the maximal percentage of the two

conditions: d ¼ jfIR � fIKK2i j

maxðffIR ;fIKK2igÞ
�100%.

(PDF)

S7 Fig. Fitting parameter triplets to the perturbation data allows to reproduce the modu-

lated p53 dynamics upon IKK2 inhibition. a) Simulation of the best fit of all tested parameter

pairs. For a better visualization, the weighted mean over all subpopulations is shown for the

simulation (red line) and the peak-based mean (black line with dots). b) Each dot represents a

combination of parameter pairs (light red) or triplets (dark red) and the corresponding dis-

crepancy between simulation and experimental data. c) The plots show simulations of three

representative parameter combination fits, resulting in different fit qualities.

(PDF)

S8 Fig. Simulations of the 30 best ranked parameter combination fits. The black line with

dots represents the peak-based mean. The red line depicts the simulation of the specified

parameter combination fit. For a more compact visualization, the peak-based mean and the

simulation of individual subpopulations is represented by the weighted mean, which is
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determined by averaging over all subpopulations. The weight is derived from the number of

cells assigned to a subpopulation.

(PDF)

S9 Fig. Time-variant IKK2 inhibition used to validate the 30 best ranked parameter combi-

nations. The experimental data (black dots) shows mean p53 dynamics upon IR and IKK2

inhibition at the specified time points. Simulations of four selected parameter combinations

are represented by the colored lines, denoting the weighted mean of subpopulation dynamics.

The index of each parameter combination derived from the corresponding summarized log10

χ2 value (Fig 5b) is given by the number in brackets.

(PDF)

S10 Fig. Mechanisms of crosstalk in the p53 network. Western blot analysis of Wip1 and

Mdm2 (a) as well as pChk2 (b) and GAPDH upon 10 Gy IR in A549 cells treated with DMSO

or IKK2i. c) Summary of previously reported interactions between IKK2 and p53.

(PDF)

S1 Table. Description and estimated values of parameters of the calibrated model pool.

(PDF)
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