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Abstract: WRKYs play important roles in plant development and stress responses.
Although MaWRKYs have been comprehensively identified in the banana (Musa acuminata), their
in vivo roles and direct targets remain elusive. In this study, a transcript profile analysis indicated the
common regulation of MaWRKYs transcripts in response to fungal pathogen Fusarium oxysporum f. sp.
cubense (Foc). Among these MaWRKYs, MaWRKY24 was chosen for further analysis due to its higher
expression in response to Foc. The specific nucleus subcellular location and transcription activated
activity on W-box indicated that MaWRKY24 was a transcription factor. The correlation analysis
of gene expression indicated that MaWRKYs were closely related to autophagy-associated genes
(MaATG8s). Further analysis showed that MaWRKY24 directly regulated the transcriptional level
of MaATG8f/g through binding to W-box in their promoters, as evidenced by quantitative real-time
Polymerase Chain Reaction (PCR), dual luciferase assay, and electrophoretic mobility shift assay.
In addition, overexpression of MaWRKY24 and MaATG8f/g resulted in disease susceptibility to Foc,
which might be related to the activation of autophagic activity. This study highlights the positive
regulation of MaWRKY24 in transcriptional activation of autophagy-related gene 8f/g in the banana
and their common roles in disease susceptibility to soil-borne Foc, indicating the effects of MaWRKY24
on autophagy and disease susceptibility.

Keywords: autophagy; banana (Musa acuminata); soil-borne Fusarium oxysporum f. sp. cubense;
transcription factor; WRKY

1. Introduction

In recent years, the widespread soil-borne fungus Fusarium oxysporum (Fo) has caused vascular
wilt disease and serious yield loss in crops [1,2]. Fusarium wilt of the banana (Panama disease) caused
by soil-borne Fusarium oxysporum f. sp. cubense (Foc) is one of the most destructive [3–6]. What is worse,
the soil-borne disease spreads rapidly, and no sustainable control method has been developed so far,
thus posing a great threat to banana production all over the world [3,6–8]. Based on different banana
hosts, at least three strains of Foc have been identified: Foc strain 1 (Foc 1), Foc strain 2 (Foc 2), and Foc
strain 4 (Foc 4) [4,6]. The initial symptom of banana wilt is blister damage on the leaves, followed by
progressive leaf yellowing from the lower leaves to the upper leaves in response to Foc infection [8].
Unfortunately, although some differently expressed genes have been identified in response to Foc
infection [2], their roles remain unclear in vivo. Therefore, functional analysis of Foc-regulated genes
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might be helpful to better understand the molecular processes related to disease resistance and develop
a disease-resistant variety through genetic breeding.

WRKY transcription factors are defined based on their DNA binding domain with WRKY amino
acid sequences of 60 residues in the N-terminus. Moreover, they have an atypical zinc finger structure
of Cx4-5Cx22-23HxH or Cx7Cx23HxC in the C-terminus [9–11]. WRKY transcription factors are widely
involved in plant development and stress responses. On the one hand, WRKYs can be served as
activators or repressors to modulate various plant processes [12,13]. On the other hand, WRKYs
can interact with other proteins, such as mitogen-activated protein (MAP) kinase (MAPK) [10,14–16],
MAP kinase kinase kinase (MEKK) [10,16,17], calmodulin [10], and histone deacetylases (HDAs) [10].
For example, the phosphorylation of WRKY7/8/9/11 by MAPK accelerates WRKY-dependent respiratory
burst oxidase homolog (RBOHB) expression via binding to the cognate W-box in the promoter, resulting
in ROS burst in Nicotiana benthamiana [18]. Interestingly, AtWRKY53 is phosphorylated by MEKK1;
this may increase the binding of AtWRKY53 to its own promoter and regulate senescence [10].

WRKYs have been widely investigated in plants. For example, CsWRKY31 (Camellia Sinensis, Cs)
and CsWRKY48 can inhibit the transcriptions of biosynthesis-related genes leucocyanidin reductase
(LAR), dihydroflavonol-4-reductase (DFR), and caffeoyl-CoA 3-O-methyltransferase (CCoAOMT)
through binding to the W-box elements, served as negative regulators of O-methylated catechin
biosynthesis [12]. WRKYs can also regulate leaf senescence by interacting with DELLA protein repressor
of ga1-3-LIKE1 (RGL1) in the gibberellin signaling pathway [19], the epithio specifying senescence
regulator (ESR/ESP) in salicylic acid (SA), and the jasmonic signaling pathway [20], respectively.
Furthermore, the ectopic expression of VqWRKY52 (Vitis quinquangularis, Vq) in Arabidopsis thaliana
enhances the resistance to powdery mildew and Pseudomonas syringae pv. tomato (Pst) DC3000 [21].
Similarly, SlWRKY8 (Solanum lycopersicum, Sl) is positively involved in disease resistance against Pst
DC3000 via activating the transcription levels of the SlPR1a1 and SlPR7 [22]. Interesting, PtrWRKY18
(Populus trichocarpa, Ptr) and PtrWRKY35 activate pathogenesis-related (PR) genes, and increase the
resistance to the biotrophic pathogen Melampsora [23]. In the banana, MaWRKY69 and MaWRKY92
are highly upregulated in the susceptible cultivar, but downregulated in the resistant cultivar after
infection by the root lesion nematode Pratylenchus coffeae [24]. MaWRKY71-overexpressing transgenic
bananas have increased salt and oxidative stress resistance compared to wild-type bananas, with
no effect on the disease resistance against Foc [25]. Additionally, MaWRKY1/2 can directly bind to
the promoters of MaPR1-1, MaPR2, and MaPR10c to regulate SA- and methyl jasmonate-induced
pathogen resistance [10,26]. A recent study showed that MaWRKY31, MaWRKY33, MaWRKY60, and
MaWRKY71 directly bind to the W-box elements in the promoters of 9-cis-epoxycarotenoid dioxygenase
1 (MaNCED1) and MaNCED2 and activate their expression, thereby regulating abscisic acid-induced
cold tolerance in banana fruit [27]. Although MaWRKYs are comprehensively identified in the banana,
the in vivo roles remain elusive [9,24], and need to be investigated further.

In this study, gene expression analysis revealed that some MaWRKYs might be involved in
the defense response to fungal pathogen Foc. Further analysis revealed the subcellular location and
transcription-activated activity on the W-box (TTGACC/T) of MaWRKY24. Notably, the transcriptional
activation of MaWRKY24 on several autophagy-associated genes (ATGs, MaATG8f/g) and their roles in
plant disease susceptibility to soil-borne Foc were also highlighted. This study provided novel insight
into MaWRKY24i mediated autophagy in soil-borne disease susceptibility.

2. Materials and Methods

2.1. Plant Materials and Growth Conditions

The banana variety BaXi jiao (BX) was used in this study. Tissue culture seedlings of bananas from
the Tropical Seedling Tissue Culture Center (Danzhou, Hainan, China) were cultivated in Murashige
and Skoog (MS) in the greenhouse, with 12 h light/ dark cycles and 120–150 µmol quanta m-2 s-1

irradiance at 26 ◦C.
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The Arabidopsis seeds were sterilized by 70% ethanol for 1 min, followed by 4% NaClO for 5 min,
and then washed at least five times with sterile, distilled water. After being kept at 4 ◦C in the dark
for 24 h, they were placed on plates containing MS medium with 2% sucrose (pH 5.8). Arabidopsis
seedlings were cultivated in a greenhouse (12 h light/ dark cycles and 120–150 µmol quanta m-2 s-1

irradiance at 22 ◦C).
Foc 4 was cultured on potato dextrose agar (PDA) medium for 7 d at 28 ◦C in the dark, and

then fresh Foc 4 was washed out using sterilized water. The washed Foc 4 solution was filtered by
sterilized six-layer gauze to remove the mycelium, and the spore solution concentration was adjusted
to 5 × 106 spores/mL for pathogen inoculation [6].

2.2. Phylogenetic Analysis of MaWRKYs

Obtaining sequences of 147 MaWRKYs and 82 AtWRKYs from Phytozome v12.1 (https://phytozome.
jgi.doe.gov/pz/portal.html) and the Arabidopsis Information Resource (TAIR) version 10 (https://www.
arabidopsis.org/), respectively, then the corresponding phylogenetic tree was structured by using
Clustalx 1.83 and MEGA5.05 [28].

2.3. RNA Isolation and Quantitative Real-Time PCR (qRT-PCR)

RNA isolation was performed using a kit (DP441, TIANGEN, Beijing, China), and qRT-PCR
was performed using the LightCycler® 96 Real-Time PCR System (Roche, Basel, Switzerland), as
Wei et al. [29] previously described. qRT-PCR profiles were determined following the protocol: 95 ◦C
for 10 min, 45 cycles of 95 ◦C for 30 s, 55 ◦C for 30 s, and 72 ◦C for 20 s. Based on the Ct values,
the corresponding gene expression levels were analyzed with the comparative 2(-∆∆Ct) method [23].
The primers are listed in Table S1.

2.4. Subcellular Localization Analysis

The coding sequences of MaWRKY24 were cloned into pEGAD vector [30] to form the constructions
of 35S::GFP-MaWRKY24. The primers are listed in Table S2. Subsequently, the GV3101 strains harboring
an empty vector or the recombinant plasmids were syringe-infiltrated into Nicotiana benthamiana leaves,
as previously described by Sparkes et al. [31]. Two days post-infiltration, the GFP signals of 35S::GFP
and 35S::GFP-MaWRKY24 and 4′, 6-diamidino-2-phenylindole (DAPI)-stained cell nuclei were detected
via a confocal laser-scanning microscope (TCS SP8, Leica, Heidelberg, Germany).

2.5. Dural Luciferase (LUC) Assay through Transient Expression

5×TTGACC/T (W-box) and the promoter sequences of MaATG8s were cloned into the pGreenII
0800-LUC vector to form the constructions of 35S::REN-5×W-box/proMaATG8s-LUC. The primers are
listed in Table S2. After 12 h of transformation in leaf protoplasts, as Yoo et al. [32] previously described,
the LUC and REN were quantified in the transformed protoplasts using a dual luciferase reporter gene
assay kit (RG027, Beyotime, Haimen, Jiangsu, China).

2.6. Chromatin Immunoprecipitation Quantitative Real-Time PCR (ChIP-qPCR)

Banana protoplast isolation was performed according to Sagi et al. [33]. The banana nucleus was
extracted using Plant Nuclei Isolation/Extraction Kit (CELLYTPN1, Sigma, Missouri, USA) according
to the instruction. Then each sample was divided into two parts, protein A/G (C40091707, GenScript)
and GFP antibody (G1546, Sigma) or IgG (A4416, Sigma) was added, and the solution was mixed
and incubated for 6 h at 4 ◦C. DNA isolation was performed using a kit (32817KC1, AXYGEN), and
qRT-PCR was performed. The primers are listed in Table S1.

https://phytozome.jgi.doe.gov/pz/portal.html
https://phytozome.jgi.doe.gov/pz/portal.html
https://www.arabidopsis.org/
https://www.arabidopsis.org/
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2.7. Electrophoretic Mobility Shift Assay (EMSA)

The coding sequences of MaWRKY24 was cloned into the pET28a vector to form the constructions of
pET28a-MaWRKY24. The primers are listed in Table S1. The BL21 strain harboring pET28a-MaWRKY24
was induced by 1 mM IPTG for protein expression and purification (His-tag Protein Purification Kit,
P2226, Beyotime, Haimen, Jiangsu, China), and the synthesized double-stranded probes were used for
EMSA, as Ream et al. [34] previously described.

2.8. Generation of Transgenic Plants and Observation of the Autophagosome

The coding sequences of MaATG8f/g have been cloned into the pEGAD vector [30] as per a
previous work [29]. Then the recombinant plasmids (35S::GFP-MaWRKY24, 35S::GFP-MaATG8f and
35S::GFP-MaATG8g) were transformed into Agrobacterium tumefaciens GV3101, which was further
used to obtain transgenic Arabidopsis plants via the floral dip method [35,36]. The positive transgenic
plants were chosen by Basta resistance and confirmed by PCR. For the observation of autophagosomes,
14-day-old seedlings of wild-type (WT) and MaATG8f/g-overexpressing lines were transferred into a
MS medium with or without Foc 4 spore solution for 8 h. Thereafter, the GFP fluorescence in Arabidopsis
roots was detected using biotechnical microscopy (DM5000, Leica, Wetzlar, Germany).

2.9. Statistical Analysis

In this study, at least three biological replicates were carried out for all experiments, and the
average means ± SD are shown. After comprehensive analysis by Duncan’s range test using Statistical
Analysis System (SAS) v9.4 software (SAS Instituteinc, North Carolina, USA), asterisks (*) show
significant difference at p < 0.05.

3. Results

3.1. Evolutionary Analysis and Expression Profiles of MaWRKYs

To analyze the evolutionary relationships between MaWRKYs and AtWKRYs, an unrooted
neighbor-joining phylogenetic tree was constructed based on the predicted amino acid sequences.
As shown in Figure 1, a neighbor-joining phylogenetic tree, with five groups, was constructed to
investigate the evolution between 147 MaWRKYs and 82 AtWRKYs. The groups contained 39, 14, 42,
27, and 25 MaWRKYs. Among them, MaWRKY24 belonged to the second group, and showed high
homology with AtWRKY48, AtWRKY49, and AtWRKY54. Moreover, both AtWRKY48 and AtWRKY54
are negative regulators in plant basal defense response [37,38]. Based on previously published data [2],
we analyzed the transcript profiles of MaWRKYs in banana roots’ response to Foc 1/4 infection. In brief,
60 of 147 MaWRKYs were significantly induced in response to Foc infection, with at least 2-fold changes
(Figure 2). Some MaWRKYs, such as MaWRKY28/73/145, were generally upregulated by Foc 1/4 infection,
while some MaWRKYs (MaWRKY76, 82, 84, 103, and so on) were commonly downregulated by Foc
1/4 infection (Figure 2). Interestingly, MaWRKY24 was significantly upregulated at 3 and 51 h, but
downregulated at 27 h by Foc 1/4. According to Li et al. [2], 27 h post-inoculation, spores and hyphae
are attached to the banana roots inoculated with Foc 1

4 ; 51 h post-inoculation, hyphae spread into the
vascular tissues of the roots infected with Foc 1/4. Therefore, the induction of MaWRKY24 might be
involved in early and later stages of banana-Foc 1/4 interaction, and the dual transcriptional changes
of MaWRKY24 also indicate its precise modulation in the banana-Foc 1/4 interaction. In addition,
MaWRKY24 showed high homology with AtWRKY48 and AtWRKY54, which are negative regulators of
plant basal defense response [37,38]. Therefore, MaWRKY24 was selected for further functional analysis.
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Figure 1. A neighbor-joining phylogenetic tree was constructed to investigate the evolution of 
MaWRKYs and AtWRKYs. The green and red shapes show AtWRKYs and MaWRKYs, respectively. 
The phylogenetic tree was established on the basis of the coding sequence using Clustalx 1.83 and 
MEGA5.05. The red asterisk indicates the location of MaWRKY24. 

Figure 1. A neighbor-joining phylogenetic tree was constructed to investigate the evolution of
MaWRKYs and AtWRKYs. The green and red shapes show AtWRKYs and MaWRKYs, respectively.
The phylogenetic tree was established on the basis of the coding sequence using Clustalx 1.83 and
MEGA5.05. The red asterisk indicates the location of MaWRKY24.
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3.2. Subcellular Localization and Transcriptional Activated Activity of MaWRKY24 

In the transient N. benthamiana leaves, the fluorescence of 35S::GFP was located in both the 
cytoplasm and nucleus, while that of 35S::GFP-MaWRKY24 was specifically colocalized with DAPI-
stained nucleus (Figure 3). As transcription factors, plant WRKYs are widely recognized as binding 
to the W-box (5’-TTGACC/T-3’). Using dual LUC assay in plant leaf protoplasts, the overexpression 
of MaWRKY24 significantly activated the LUC of 5×W-box-pGreenII 0800-LUC (Figure 4). Therefore, 

Figure 2. The significant relative transcription levels of MaWRKYs in response to Foc 1 and Foc 4.
The values of transcriptomic data of corresponding genes were downloaded from the Supplementary
Table S4 in Li et al. [2], and have also described in the Supplementary Table 5 in Goel et al. [9]. In the
assay, banana roots were inoculated by the control or Foc 1 or Foc 4 for 3 h, 27 h, or 51 h. A heatmap of
gene expression profile was constructed using CLUSTER and Java Treeview. The red asterisk indicates
the location of MaWRKY24.

3.2. Subcellular Localization and Transcriptional Activated Activity of MaWRKY24

In the transient N. benthamiana leaves, the fluorescence of 35S::GFP was located in both
the cytoplasm and nucleus, while that of 35S::GFP-MaWRKY24 was specifically colocalized with
DAPI-stained nucleus (Figure 3). As transcription factors, plant WRKYs are widely recognized
as binding to the W-box (5’-TTGACC/T-3’). Using dual LUC assay in plant leaf protoplasts, the
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overexpression of MaWRKY24 significantly activated the LUC of 5×W-box-pGreenII 0800-LUC
(Figure 4). Therefore, the specific nucleus subcellular location and transcription-activated activity on
the W-box indicated that MaWRKY24 was a transcription factor.
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Figure 4. The transcriptional activated activity of MaWRKY24. In the dual LUC assay in plant leaf
protoplasts, 35S::GFP and 35S::GFP-MaWRKY24 were used as the effectors, and 35S::REN-5×W-box-LUC
was used as the reporter. Asterisks (*) show significant difference at p < 0.05.

3.3. Overexpression of MaWRKY24 Regulated Expression Level of MaATG8s

In previous studies, we found that MaATG8s were also commonly regulated by Foc 1 and Foc 4 [29].
Interestingly, the promoters of some MaATG8s are widely distributed with the W-box. To investigate the
relationship between these MaWRKYs and MaATG8s, we performed a cluster analysis of the correlation
between MaWRKYs and MaATG8s expression. The result showed that the expression of MaWRKY24
was most closely related to that of MaATG8f/g (Figure S1). Consistently, we found that the relative
transcriptional levels of MaATG8f/g were significantly upregulated in MaWRKY24-overexpressing
protoplasts (Figure 5), indicating that MaWRKY24 could activate the expression of MaATG8f/g.
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Figure 5. The effect of MaWRKY24 overexpression on the relative transcription levels of MaATG8f/g in
leaf protoplasts. Asterisks (*) show significant difference at p < 0.05.

3.4. MaWRKY24 were Transcriptional Activators of MaATG8f/g

In addition, we investigated the direct effect of MaWRKY24 overexpression on the promoter
activities of MaATG8f/g. Dual LUC assay in leaf protoplasts showed that overexpression of MaWRKY24
significantly activated the LUC of MaATG8f/g promoters (Figure 6A). To determine whether MaWRKY24
combined with the W-box element, ChIP-qPCR analysis was performed. The result showed that the
relative enrichment of promoter regions of MaATG8f/g with W-box was higher than that of control
(Figure 6B).

To confirm the direct binding of MaWRKY24 to the promoter region of MaATG8f/g with the W-box,
the protein of MaWRKY24 was induced and purified for EMSA analysis. The result confirmed that
MaWRKY24 direct binding to the corresponding probes containing W-box in MaATG8f/g promoters
in vitro (Figure 7). In summary, these results suggested that MaWRKY24 bound to the W-box regions
in the promoter of MaATG8f/g and served as a transcriptional activator of MaATG8f/g.
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Figure 6. MaWRKY24 as a transcriptional activator of MaATG8f/g. (A) In the dual LUC assay, 35S::GFP
and 35S::GFP-MaWRKY24 were used as the effectors, and 35S::REN-pMaATG8s-LUC was used as the
reporter in plant leaf protoplasts. (B) Analysis of the relative enrichment of the MaATG8s promoter by
ChIP-qPCR in banana leaf protoplasts. Asterisks (*) show significant difference at p < 0.05.
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Figure 7. Assay of the interaction between MaWRKY24 and MaATG8f/g promoters.
(A) MaWRKY24-pET28a induced expression by SDS-PAGE. The red line indicates the induced
recombinant protein. (B) MaWRKY24-pET28a was purified. 1-6 indicate the first to sixth tubes of the
collected purified protein by elution. The red line indicates the corresponding induced recombinant
protein. (C) The probe sequences of the wild type and the mutation. (D) The binding of MaWRKY24
to the W-box of MaATG8f/g promoters through EMSA. The arrow and square frame indicate the
probe-protein complex.

3.5. Overexpression of MaWRKY24 and MaATG8f/g Negatively Regulate Plant Disease Susceptibility to Foc 4

To further study the roles of MaWRKY24 and MaATG8f/g in response to Foc 4 infection, 14-day-old
MaWRKY24 and MaATG8f/g overexpressing Arabidopsis seedlings were grown under control and Foc
4 infection conditions. Under control conditions, there were no significant differences in phenotype
between the WT and transgenic lines (Figure 8A–B). Under Foc 4 infection, both MaWRKY24- and
MaATG8f/g-overexpressing Arabidopsis seedlings showed worse growth and lower chlorophyll (a+b)
content than WT (Figure 8A–B). Therefore, overexpression of MaWRKY24 and MaATG8f/g might
negatively regulate plant disease susceptibility to Foc 4 infection in Arabidopsis.
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then the phenotype was observed. Bar = 1 cm. (B) Relative chlorophyll (a + b) of WT and transgenic
seedlings. Asterisks (*) show significant difference at p < 0.05.

To investigate whether Foc 4 affected autophagy in Arabidopsis roots, the roots of WT, 35S::GFP and
35S:GFP-MaATG8f/g seedlings were infected with a Foc 4 spore solution for 8 h. The green fluorescent
spots indicated that autophagosomes were stronger after Foc 4 infection in MaATG8f/g transgenic
Arabidopsis, but not in the WT and the 35S::GFP transgenic line (Figure 9). The results indicated that
Foc 4 might induce the formation of autophagosomes.
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4. Discussion and Conclusions

Although the banana is one of the most popular fresh fruits in the world, it is seriously affected
by Foc in subtropical and tropical areas [2]. Furthermore, no strong and continuous disease-resistant
banana variety is effective in the banana cultivation [39]. Therefore, it is essential to construct strong
disease-resistant banana varieties through molecular and genetic breeding.

WRKY transcription factors are widely involved in plant stress responses [18,40–44]. In plants,
most WRKY transcription factors are activated by plant-pathogen interaction, and regulate multiple
downstream genes via binding to W-box elements in the promoter [45–47]. Herein, we found that
60 of 147 MaWRKYs were significantly affected by Foc infection. Additionally, the overexpression of
MaWRKY24 negatively regulates plant disease susceptibility to Foc 4. In Arabidopsis, flg22 induces
the transcripts of AtWRKY18, AtWRKY33, and AtWRKY40, resulting in the activation of hundreds
of genes with W-box elements [45]. AtWRKY8 has a positive effect on the resistance to Pseudomonas
syringae, B. cinerea, and salinity stress [48,49]. Consistently, SlWRKY8 functions as a positive regulator
in resisting Pst DC3000 [22]. However, AtWRKY18 and AtWRKY40 act as negative resistance against
the obligate hemibiotrophic fungus Golovinomyces orontii [50], and PtrWRKY40 also negatively regulates
disease resistance against Dothiorella gregaria in the poplar [51]. Similarly, overexpression of GhWRKY25
enhances disease susceptibility to Botrytis cinerea by inhibiting the expression of SA or ethylene
signaling-related genes [52]. It is widely known that the conservation of the WRKY domain can
recognize and bind with the W-box [10,53]. We also found that the overexpression of MaWRKY24 could
significantly recognize and bind with the W-box. For example, PcWRKY1, a transcriptional activator,
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mediates fungal elicitor-induced gene expression by binding to W-box elements [54]. HvWRKY38
binding to W-box elements are involved in cold and drought response [55]. In this study, MaWRKY24
had significant effects on the W-box, together with the specific nucleus subcellular location, indicating
that it is a real WRKY transcript factor.

As the key regulator of cellular homeostasis, autophagy is a transport pathway that mediates
the transfer and degradation of cytoplasmic materials [56]. Briefly, autophagy breaks down the
damaged cytoplasmic constituents in a cell and recycles the cellular cytoplasmic components [57].
Autophagy is coordinated by evolutionarily conserved ATGs that are essential for biotic and abiotic stress
responses [58–62]. For example, autophagic activity is induced by necrotrophic fungal pathogens [63,64].
Herein, the green fluorescence spots in MaATG8f/g-overexpressing lines were stronger after Foc 4
spore solution treatment compared to the control, indicating the activation of autophagosomes and
autophagic activity by Foc 4. Meanwhile, MaATG8f/g played a negative role in disease susceptibility
to Foc 4. Recently, we have highlighted the effects of MaATG8s on hypersensitive-like cell death
and immune responses, which are directly related to autophagy [29]. Moreover, ATG8s are central
parts of the latter process among autophagy-related proteins [58]. The results showed that the
expression of MaWRKY24 was closely related to that of MaATG8f/g. MaWRKY24 was the transcriptional
activator of MaATG8f/g, due to the direct binding of MaWRKY24 to the W-box in the promoter of
MaATG8f/g. AtWRKY33 interacts with ATG18a and both are involved in plant responses to necrotizing
trophic pathogens [65]. Previous studies have shown that the crosstalk of WRKYs and ATGs as
well as autophagy may be involved in plant resistance to necrotrophic pathogens and bacterial
pathogens [65–67].

This study highlights the positive regulation of MaWRKY24 in the transcriptional activation of
MaATG8f/g and their common roles in plant disease susceptibility to Foc 4, indicating the correlation
between MaWRKY24, autophagy, and disease susceptibility (Figure 10).
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