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Abstract: The Internet of Things (IoT) is based on objects or “things” that have the ability to commu-
nicate and transfer data. Due to the large number of connected objects and devices, there has been a
rapid growth in the amount of data that are transferred over the Internet. To support this increase, the
heterogeneity of devices and their geographical distributions, there is a need for IoT gateways that
can cope with this demand. The SOFTWAY4IoT project, which was funded by the National Education
and Research Network (RNP), has developed a software-defined and virtualized IoT gateway that
supports multiple wireless communication technologies and fog/cloud environment integration.
In this work, we propose a planning method that uses optimization models for the deployment of
IoT gateways in smart campuses. The presented models aimed to quantify the minimum number
of IoT gateways that is necessary to cover the desired area and their positions and to distribute IoT
devices to the respective gateways. For this purpose, the communication technology range and the
data link consumption were defined as the parameters for the optimization models. Three models are
presented, which use LoRa, Wi-Fi, and BLE communication technologies. The gateway deployment
problem was solved in two steps: first, the gateways were quantified using a linear programming
model; second, the gateway positions and the distribution of IoT devices were calculated using the
classical K-means clustering algorithm and the metaheuristic particle swarm optimization. Case
studies and experiments were conducted at the Samambaia Campus of the Federal University of
Goiás as an example. Finally, an analysis of the three models was performed, using metrics such
as the silhouette coefficient. Non-parametric hypothesis tests were also applied to the performed
experiments to verify that the proposed models did not produce results using the same population.

Keywords: Internet of Things (IoT); smart campus; IoT gateway; cluster; optimization

1. Introduction

Information technology has become essential in the daily lives of people and businesses
and the Internet of Things (IoT) concept directly contributes to changes in everyday life [1–7].
The IoT is a communication paradigm in which objects communicate with each other
and with users via network communication technologies, mostly wireless networks [8].
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This paradigm enables interaction between several devices (called things), such as elec-
tronic appliances, home appliances, vehicles, hospital equipment, sensors, surveillance
cameras, etc. The technologies that are used in the IoT context directly contribute to the
evolution of services that are associated with smart cities and smart campuses. Hence,
smart campuses are integrated work, study, and living environments that are based on the
Internet of Things [9]. A multitude of data types that correspond to distinct applications
are transmitted over the IoT infrastructure and need to be processed in different units [10].

Two of the main challenges that are analyzed and faced by IoT are interoperability
and heterogeneity [11]. One solution to these challenges is the deployment of IoT gateways
that support multiple communication technologies [12]. Deploying IoT gateways in smart
campuses requires prior planning. Consequently, it is necessary to deploy IoT gateways
that address the communication needs of IoT devices in university campuses, such as
bandwidth, communication technologies, energy efficiency, etc. The SOFTWAY4IoT project
was funded by the National Education and Research Network (RNP) and developed an IoT
gateway that can establish communication within an Internet of Things environment. This
gateway is virtualized, utilizes software-defined networking (SDN) and fog computing
that is integrated with cloud computing, and supports multiple wireless communication
technologies [13]. The area coverage of wireless networks is also a challenging problem.
The challenges start with the choice of the communication technology that is to be used
through to the architectural characteristics of the environment, the number of things or
people that access the network simultaneously, the mobility of the people or things that
connect to the network, etc. It is possible to find several works that have focused on area
coverage in the literature.

We found several works in the literature that focused on area coverage [14–19]. Ser-
vices that require communication infrastructures need a guarantee of the quality of the
communication. Distributing the gateways within these environments is a big challenge
comprising many factors that are relevant to the positioning and quantification of the
devices that aim to meet the presented demand.

In this context, this work proposes a method for the planning and optimization of the
deployment of IoT gateways, with the SOFTWAY4IoT IoT gateway as its motivation. Hence,
this paper presents three optimization methods for gateway infrastructure planning that
aim to minimize the number of required gateways and maximize the coverage area, con-
sidering the communication capacity of the data link and the range of the communication
technology. A comparison of the models is also presented in order to evaluate the obtained
results. The study focused on the LoRa, BLE, and Wi-Fi communication technologies.

The LoRa technology was chosen because it has a long communication range that
increases the coverage area, as well as a low energy consumption. On the other hand,
the BLE technology opposes LoRa technology in terms of range, as it covers a small area
(personal area) but has a similarly low power consumption. Finally, we chose Wi-Fi because
it is one of the most popular communication technologies within wireless networking. It
has an area coverage that has a larger range than the BLE but a smaller range than the LoRa
and has a high power consumption.

However, the determination of how many IoT gateways to use and where to place
them in order to maximize the coverage area and minimize the number of gateways is
an NP-hard problem, called the WMN node placement problem. The complexity of this
problem grows exponentially with small changes in the size of the problem. Therefore, we
tested three different hybrid methods to find near optimal solutions [20].

The presented optimization model aimed to minimize the number of required IoT
gateways and to position them within the area to be covered, taking into account the
size of the area, the range of the communication technology, and the location in which
the devices are deployed. The gateway deployment problem was split in two steps: (a)
the determination of the number of required gateways by solving a linear programming
problem (LPP), which aimed to minimize the gateways quantities; (b) the K-means and
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particle swarm optimization (PSO) algorithms were employed to establish the gateway
positioning.

The use case scenario was a university campus and the chosen areas and the size and
characteristics of the environment (indoor/outdoor) are presented in Table 1. We tested
larger and smaller areas with different architectural characteristics.

Table 1. The measurements of the areas that were used in the use case.

Desired Area Size of Area (m2) Type of Environment

INF 2.425 Indoor
Samambaia Campus 761.380 Outdoor

Academic Blocks 26.664 Indoor

The contributions of this article can be summarized as follows:

• The proposal of an optimization model that uses linear programming for the quantifi-
cation and positioning of gateways to minimize network deployment costs;

• The proposal of an algorithm that uses the K-means clustering method to define the
positioning of gateways within a (predefined) area;

• The proposal of an algorithm that uses the PSO clustering method to define the
positioning of gateways within a (predefined) area via two different initialization
approaches;

• A comparative evaluation of the methods to establish which method produces the
best results for area coverage, using the silhouette coefficient as the metric [21];

• The employment of non-parametric hypothesis testing to verify that the different
metaheuristics did not produce results using the same population [22].

This paper is organized as follows. Section 2 presents the related work. Section 3
presents the modeling of the optimization methods that were applied in this study. Section 4
presents the application scenario and Section 5 presents the evaluation of the results. Finally,
the final considerations and directions for future work are presented in Section 6.

2. Related Works

We considered studies regarding the Internet of Things, intelligent environments, opti-
mization models, clustering methods, and signal propagation, among others, as relevant to
the development of this work [23–28]. Some studies have analyzed area coverage using
equipment for different communication technologies; however, our research considered an
intelligent environment using IoT gateways for heterogeneous networks.

The related works were found using the keywords “optimization”, “coverage”, “IoT
gateway”, “placement”, and “planning”. These keywords were used to search for works
that were related to area coverage and the placement of IoT gateways. We also searched for
papers that were related to network signal propagation and smart environments (smart
campuses, smart cities, etc.). Initially, the search focused on papers that were published
from 2015 onward, but relevant papers were found also from earlier periods. As a search
tool, we first used Google Scholar and then we mostly used the IEEE and Springer databases.
The searches for related papers were based on the topics of wireless network area planning
and coverage, with a greater focus on IoT networks, although this was not restrictive.

A proposal for multi-hop network planning that aimed to minimize hardware (gate-
ways) and operational costs was presented by [14]. Path loss was also considered as an
operational cost. The work presented a mathematical optimization model and used three
evolutionary algorithms that were based on swarm intelligence [14]. Although the work
had similar goals and metrics to this research, there was no application in real space. Our
work presents results that were obtained directly from the study environment using three
communication technologies and three optimization models.

The model presented by [29] aimed to minimize the latency of communication between
fog nodes and gateways. To meet this objective, ref. [29] developed a mathematical
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formulation that considered the activation of a minimum number of fog nodes. Compared
to the proposal presented in this paper, the model in question did not present any study
of applied scenarios and adopted empirical parameters in the experiments. There was no
quantification of the number of gateways, only a comparison of the executions that varied
the numbers.

A study developed by [15] presented a model for application in IoT systems, with a
focus on smart cities. The study aimed to reduce the costs of the deployment of an IoT
system by considering the use of two gateway models for communication. One of the
gateway models communicated with the Internet and the other did not. The presented
study used three technologies (Wi-Fi, ZigBee, and RFID) to establish communication
between the systems. The work also developed an algorithm to minimize the number of
gateways, with the objective of reducing the costs of deployment, and a mechanism to
tolerate communication failure.

A smart city scenario integrates several applications of different technologies and may
have hundreds of networks using different domains. Each network is coordinated by a
coordination device (CD) and each CD needs to transmit its data to the Internet via its
own connection that is established using a gateway. To reduce costs, this work proposes
two gateway models: an IGW (IoT gateway), which establishes communication using the
Internet, and an SSGW (solution-specific gateway), which has no direct communication
with the Internet. The gateway presented in our study has features such as SDN usage,
virtualization, and integration between the edge and the cloud. These features allow all
gateways to communicate with the Internet and can use anything from machines with low
processing power, such as a Raspberry, to more robust machines, such as servers with high
processing power.

A study on multi-objective planning in WLAN networks was conducted in [16]. The
study developed a planning tool that was capable of finding the best position for an access
point (AP) and load balance within a WLAN network, which minimized the interference
between access points. In this work, a multi-objective evolutionary algorithm with a greedy
heuristic was used. The IEEE 802.11 standard was also used, but the study did not address
other communication technologies and was restricted to the communication that was
established by the access points. For IoT scenarios, heterogeneity is a latent challenge and
thus, a study that focuses on IoT needs to consider multi-technology communication. In
this regard, our work presents an access point that can integrate multiple communication
technologies, i.e., a gateway with multiple communication technologies.

The determination of gateway placements within a network to connect IoT devices is a
crucial point when it comes to deployment costs. To solve this problem, ref. [10] presented
a solution using integer linear programming (ILP) that minimized the total network costs in
relation to deployed devices, while taking into account mandatory quality of service (QoS)
requirements. A gateway could be placed anywhere within a given area, but an initial set
of candidate positions was considered. Communication took place over multiple hops. To
obtain the lowest deployment costs and guarantee the QoS of the fixed transmission range,
the specific data rates, end device costs, gateway costs, generated traffic, and the distance
between the nodes were used as data. In order to provide QoS, the capacity of the links
had to be sufficient to handle multiple simultaneous transmissions.

An optimization approach for gateway deployment in heterogeneous sensor net-
works was presented by [17]. This study focused on ILP-based optimization and wireless
gateway locations. The goal was to minimize the installation costs and maximize the
energy efficiency of the wireless sensor network, considering multi-hop coverage and
connectivity constraints. Although this study addressed the overheads of sensors that
are considered to be critical, multiple hops could demand more time before the message
reached its destination.

A gateway placement approach was presented by [18]. This approach aimed to
optimize the number of gateways, the average number of mesh routers, and the variations
in gateway loads within wireless mesh networks (WMNs). Minimizing the average hop
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count of the network was one of the objectives since long paths reduce the throughput. The
proposed work used two stages to achieve their objectives.

The works of [10,17,18] took into consideration communication using multiple hops.
Direct connections between devices and gateways may present higher costs, but the mes-
sage delivery time tends to be shorter, thereby improving network performance. The
particularities of each deployment environment have to be considered, along with issues
regarding device density, which involve denser environments or more spacious environ-
ments, and other factors. The proposed work considered an intelligent scenario that focused
on indoor and outdoor environments and direct communication using software-defined
and virtualized gateways. Our optimization model aimed to minimize the number of
required gateways as a function of the number of deployed devices to improve the range
of the communication technology and the communication capacity of the gateways.

A study developed by [19] addressed the optimal deployment of IoT gateways in
smart home environments (smart homes). The work in question solved the optimization
problem using the branch and bound method with the goal of minimizing the gateway
deployment costs, subject to the constraint that all service areas of the home must be
covered. The smart home environment is relatively small compared to a smart campus or
smart city. A small environment assumes the use of a single gateway and few devices. For
a small environment, the model in question proved to be effective; however, its application
in larger environments is necessary to evaluate the effectiveness of the model since there
are large areas with high densities of IoT devices.

A literature review article presented by [20] surveyed the optimization approaches
that have been implemented to solve the node placement problem in WMNs. In the
literature, several WMN node positioning approaches have been proposed. This paper
presented a classification that was based on the type of method that was used. The
classification was split into four categories: methods that are based on exact approaches,
methods that use heuristics, methods that use metaheuristics, and methods that apply
hybrid approaches. Additionally, their paper presented a case study using the greedy
algorithm (GA), simulated annealing (SA), particle swarm optimization (PSO), and the
firefly algorithm (FA) to investigate the impacts of varying the number of mesh clients, the
number of mesh routers, and the coverage radius.

Table 2 presents a comparison of the related work, according to network planning.
There were works that did not have a focus on IoT networks and others that did not have a
focus on gateways, but all of them proposed an optimization model for network planning.
All of the works presented map positioning for the devices that established the network
communication, although each paper had its own particularities and metrics for mapping.
Hence, in this work (and contrary to the related work), our goal was to quantify and
position IoT gateways (considering the range of the communication technology that was
employed) and the maximum number of devices that could be supported by the gateways.

Section 3 presents the optimization models that were employed in this work and
shows the particularities that were adopted in each model.
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Table 2. Comparison of network planning related works.

Author Objective Method of
Optimization

Technology
Comunication Quantifies

Gravalos, Ilias, et al. [10] Minimize coast/
QoS LP - Yes

Ali, Hafiz Munsub, et al. [14] Minimize coast evolutionary
algorithms - No

Maiti, Prasenjit, et al. [29] Minimize latency

randomized,
greedy,

k-median,
K-means and

simulated
annealing

- No

Karthikeya,
Surabhi Abhimithra,
J. K. Vijeth, and
C. Siva Ram
Murthy [15]

Minimize coast Heuristics
Wi-Fi,

ZigBee,
RFID

Yes

Matni, Nagib, et al. [30] Minimize coast/
QoS

Fuzzy
C-means Lora Yes

Lima,
Marlon Paolo,
Eduardo G. Carrano,
and
Ricardo HC
Takahashi [16]

Minimize AP/
load

Genetic.
Algorithm Wi-Fi Yes

Capone, Antonio, et al. [17] Minimize coast/
Max. energy efficiency LP - Yes

Wu, Wenjia,
Junzhou Luo, and
Ming Yang [18]

Minimize gateways/
position

LP/
Heuristics - No

Lin, Po-Chiang [19] Minimize coast LP - No

3. Optimization Model for IoT Gateway Planning, Coverage, and Positioning

Several wireless communication technologies are available that can meet the heteroge-
neous characteristics that guide the Internet of Things paradigm. The application scenarios
of this paradigm may include residences, offices, stores, hospitals, industries, universities,
cities, etc. The implementation of systems within the context of the Internet of Things
demands prior study. In the first instance, this study aimed to analyze the coverage area,
the devices that are to be deployed, and the communication technology that would best
meet the needs of the environment.

The focus of this work was the planning of IoT gateway deployment within intelli-
gent environments. This research evaluated the signal coverage of three communication
technologies (Wi-Fi, LoRa, and BLE) in a smart campus scenario. LoRa is an emerging
communication technology with a long range and low power consumption. Wi-Fi is a
mid-range technology with a higher power consumption; however, it is widespread in
communications and has great relevance to indoor environments. BLE is a short-range
communication technology with a low power consumption and personal area coverage.

The proposed work was split into two steps. The first step defined the number of
gateways using an optimization model with linear programming. In the second step, the
linear programming model, the K-means clustering method, and the PSO method were
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used to define the positions of the IoT gateways, considering the number of gateways that
was defined in the first step. Finally, a comparison was made between the three gateway
positioning models, which had the aim of evaluating the results of each model. Figure 1
shows the flowchart of the optimization model.

Figure 1. The flowchart of the optimization model.

The candidate points matrix was implemented with the goal of determining the
possible installation sites for gateways and IoT devices. We considered the matrix to be a
key point for area coverage as its implementation reproduced the floor plan of the scenario,
which allowed the algorithm to check each point within the desired area.

The linear programming model developed in this work had a relevance to quantifi-
cation. The constraints that were associated with the objective allowed for reductions in
the deployment costs. The methods, such as K-means and PSO, were used based on the
proposed locations of the gateways within the search space that was delimited by the floor
plan of the scenario, which is reproduced in this paper in the form of points on a Cartesian
plane. These details allowed the quantification and positioning to come closer to the real
circumstances of the deployment.

The advantages of the linear programming model over the K-means and PSO models
involved the gateway positioning being restricted by the range of the technology; in
this case, no device could connect to a gateway when the distance between the points
exceeded the range of the technology. On the other hand, the dispersion of devices in
relation to the gateways was greater. In the clustering models, there was no restriction on
range; however, the degree of dispersion was lower because the devices were positioned
considering proximity to the gateways.

The presented models enabled the association of the devices and the experiments
were implemented in a real environment with distinct architectures. In this way, it was
possible to evaluate their applicability as close to reality as possible. It is noteworthy that
the range of the technology needed to consider the study of signal propagation within the
deployment scenario. Although this study did not consider the actual coordinates of the
deployment of devices, the models were developed with this objective; therefore, when
we had the coordinates of the installation site of a device, we inserted them as an input
parameter and obtained a result that was even more realistic.

3.1. Gateway Quantification and Positioning Using Linear Programming

The planning and optimization of IoT gateway deployment for communication net-
works aimed to calculate the minimum gateway quantity that is required to cover a defined
area and the number of IoT devices per gateway. For the quantification, the range of
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the employed wireless communication technology and the gateway communication link
capacity were considered. The ultimate goal was to minimize the number of gateways
while maximizing the coverage for devices within the desired area.

The area coverage was calculated based on the signal propagation of the commu-
nication technology. The signal propagation of each communication technology had
distinct characteristics and also varied with respect to the propagation environment (in-
door/outdoor). The signal propagation models allowed the range of the communication
technology to be abstracted as a function of path loss.

The coverage area was an input parameter for the optimization model. Using Google
Earth as a tool (available online: https://www.google.com.br/intl/pt-BR/earth/ (accessed
on 10 May 2021)), it was possible to ascertain the measurements (dimensions) of the
desired area. This area needed to be delimited and the possible locations of the devices
and gateways needed to be plotted. In the optimization model, the points were plotted
according to the coordinates of a Cartesian plane, as shown in Figure 2. In this case, we
obtained an area of 2425 m2 that was considered for the possible device locations. Each m2

was one positioned point (i.e., a possible point in the desired area), totaling 2425 possible
IoT device installation points.

Figure 2. An example of area mapping using the Institute of Informatics, UFG.

Each pair of coordinates for the plotted points in the specific area was used as an input
parameter for the linear programming-based optimization model. The proposed model
chose the installation points of the IoT devices randomly using a seed, but they could also
be defined according to the reality of their deployment (i.e., their real positions). When
using the real positions, it was necessary to have the coordinates of the location in which
the device was to be deployed.

As input parameters, we also used the range of the communication technology, the
number of devices, the gateway data link capacity, and the IoT device link demands. The
presented metaheuristic quantified the IoT gateways within the desired area, considering
the coverage of the devices that were deployed in that area. Table 3 presents the param-
eters that were used for the optimization model that was based on linear programming.
Considering the goal of minimizing the number of gateways, the decision variables were
defined first. Then, we obtained:

• Xi,j as the matrix that associated a device to a gateway;
• Yi as the vector that received the gateways that were activated to meet the demand of

the devices.

Given the coordinates of the IoT devices (Di,j), the optimization model associated each
device with a gateway (Yi). The gateway had to be within the range of the technology (r).
This association occurred via the decision variables. Each device was assigned to a gateway
but each defined gateway could have multiple devices associated with it. The model used

https://www.google.com.br/intl/pt-BR/earth/
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these constraints to make associations that obeyed the necessary criteria in order to meet the
proposed objective. The objective of the optimization model is represented by Equation (1):

min
n

∑
i=1

Yi (1)

where Yi represents the active gateways. Equation (1) represents the objective of minimizing
the number of gateways (Yi). Note that each Di,j is a candidate gateway point. Using this
logic, a gateway could always be activated at one of the points Di,j, which was equivalent
to an IoT device point.

Table 3. The variables that were used for the LP optimization model, including the input parameters
and data that were generated from the input parameters.

Variable Description

r Range of the communication technology
n Number of deployed devices
c Device bandwidth consumption
cb Total link communication capacity

Ai,j All possible points within the desired area
Di,j Coordinates of the deployed devices

Mdisti,j
Distance matrix (measured between the point of a
device and the points of the other deployed devices)

Mativi,j

Binary matrix (where 0 indicates that the distance between the
devices is not within range and 1 indicates that the distance
between the devices is within the range of the technology)

Constraints were defined to achieve the goal of ensuring coverage for the IoT devices
using the lowest number of gateways. As constraints, we used:

n

∑
j=1

Xi,j = 1, i = 1, . . . , n. (2)

Xi,j ≤ Mativi,j ∗ Yi i, j = 1, . . . , n (3)

n

∑
j=1

Xi,j ∗ c − cb ≤ 0 (4)

Xi,j ≥ 0, i, j = 1, . . . , n (5)

Yi ≥ 0, i, j = 1, . . . , n (6)

The restrictions caused by Equations (2) and (3) aimed to associate a device with
a single gateway. Equation (4) limited the number of devices per gateway, considering
the link transmission capacity, and did not allow for the exceedance of the defined max-
imum transmission capacity. In this case, when the maximum capacity was exceeded,
another gateway was activated to meet the required demands. The constraints caused by
Equations (5) and (6) were non-negative constraints.

Running the optimization model produced the active gateways (Yi) and the associa-
tions between the devices and their corresponding gateways (Xi,j) as solutions . From those
results, a graph could be plotted using the plant model represented by Figure 2, which
showed the positions of the gateways and the respective IoT devices, thus forming a cluster.
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3.2. Gateway Placement Using the K-Means Clustering Algorithm

The K-means clustering method is used in data mining [31]. This method aims to
partition n observations into k clusters. In this research, the K-means algorithm was used
to define the gateway placements and the distribution of devices per gateway.

The definition of a cluster quantity in the K-means approach was used as an input
parameter. The input parameters that were used in this model are presented in Table 4.

Table 4. The variables that were used in the K-means clustering model, including the input parameters.

Variable Description

k Number of gateways/devices to be deployed
equals the number of centroids

n Number of deployed devices
Di,j Coordinates of the deployed devices

Ai,j
All coordinates of the possible points
within the desired area

The K-means method uses the distance between points for clustering and attempts
to separate samples into n clusters of equal variance by minimizing a criterion, which is
known as inertia, or the sum of squares within the cluster according to Equation (7):

n

∑
j=1

(‖ xj − µ ‖2) (7)

The proposed algorithm divided a set of n IoT devices into k groups. The center of
the groups (centroid) represents the position of the IoT gateway and Di,j represents the
coordinates/position of the IoT devices within the defined area Ai,j. In the performed
experiments, the devices (Di,j) were defined randomly using points within the desired
area (Ai,j). It is worth pointing out that they were defined randomly because it was an
experiment. The points of a device must have its position defined as coordinates on a
Cartesian plane in a real situation.

As the number of gateways was defined by the results (C.f. Figure 3) of the first stage
of execution, it was understood that the areas and positions of the devices had to be the
same for the execution of the second stage (clustering). In order to retain the same position
of the devices, the same seed was used for all execution steps. In this way, the devices were
randomly chosen based on the same seed.

The K-means algorithm selected the position of the centroids randomly. The input
K-means parameter from the scikit-learn library was applied to initialize the centroids
more intelligently in order to speed up convergence. Using this parameter, the K-means
algorithm randomly positioned a first centroid, then the other centroids were positioned so
that they were as far away from each other as possible. This initial positioning helped the
algorithm to converge faster.

Algorithm 1 positioned all gateways (c) and assigned to them the nearest devices (Di,j),
so that all devices were associated with a gateway. The process of assigning and reallocating
centroids was repeated until the positions of the centroids were stable (convergence). The
goal was make the sum of the distances between the devices (Di,j) and the gateways (c) as
small as possible.
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Algorithm 1: The K-means pseudocode.
input : N, k, Ai,j, Di,j

begin
Define number of clusters (cluster = k)
Initialize centroids - (c← init = KMeans ++)
Receives data to be clustered - (. f it(Di,j))
repeat

assign each Di,j to c - smallest distance between points criterion
reposition c by minimizing the distance between Di,j and c;

until centroids remain stable;
output :Grouping the devices to the respective gateway forming the clusters
output :Reports with metrics related to the clustering process

Figure 3. An example of the results of device and gateway placement using the K-means method.

3.3. Positioning of Gateways Using the PSO Optimization Algorithm

The particle swarm optimization model is so named because it is an evolutionary
algorithm that arose from studies on algorithms that modeled the social behavior of animals
(e.g., bird flocking and bee swarming behavior).

It had the same parameters as the K-means method: the number of gateways (c), the
number of devices (n), the desired area (Ai,j), and the device positions (Di,j). The number
of particles (p) was a unique parameter for the PSO model. The number of particles was
then defined as an input parameter. Each particle was a vector that contained the same
number of positions as gateways, so we obtained Pi = (P1, P2, . . . , Pc).

Each particle in the population represented one possible solution. The particles moved
around the search space, looking for the position that best met the objective function (fitness
function). These particles moved at a certain speed (v) and had a “memory” that saved
their best position (pbest). A “collective memory” was considered for the swarm and
represented the best global position that was reached (gbest). Table 5 presents a summary
of the variables that were applied to the PSO model that was developed in this research.
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Table 5. The variables that were used for the PSO model.

Variable Description

n Number of deployed devices
g Number of gateways/centroids

Ai,j Desired area/all possible points
Di,j Coordinates of the deployed devices
w Inertia factor (winitial/w f inal)
mi Maximum iterations

c1, c2 Constants (equivalent to the cognitive and social coefficients)
r1, r2 Random constants (generated with values between 0 and 1)
pbesti Best position of each particle
gbest Best global position

pi Position vector of particle i within the search space
vi Velocity vector of particle i

The initialization of the particles took place randomly within the search area. Once
initialized, the gbest was updated with the positions of the particles. This model positioned
the gateways considering the best global position of the particles. Following the flow, the
particle velocity was updated, as presented in Equations (8) and (9), which updated the
particle positions within a given iteration:

v(t+1)
i = w(t)v(t)i + c1r1(pbest(t)i − p(t)i ) + c2r2 ∗ (gbest(t)i − p(t)i ) (8)

where v(t+1)
i is the velocity to be updated, w(t) is the inertia factor at iteration t, c1 and

c2 are the cognitive and social coefficients, respectively, r1 and r2 are the random values
between 0 and 1, and pbest(t)i is the best local point and best global point at iteration t.

p(t+1)
i = p(t)i + v(t+1)

i (9)

where p(t+1)
i represents the new position of the particle, p(t)i is the current position of the

particle, and v(t+1)
i is the new velocity, as calculated by Equation (8).

The inertia factor (w) contributes to particle convergence. Larger values of w contribute
to a global search that explores new areas of the search space. As values of w decrease, they
favor local searches, which is interesting when the particles are close to a good solution.
The presented PSO model applied a linear variation of the inertia factor over the number of
iterations, as shown in Equation (10):

w(t) = winitial − (winitial − w f inal)
t

mi
(10)

where w(t) is the inertia at iteration t, winitial is the initial inertia, w f inal is the inertia for the
last iteration, t is the current iteration, and mi is the maximum number of iterations.

The coefficients c1, c2, and winitial/w f inal were input parameters, while the coefficients
r1 and r2 were random values between 0 and 1 that were calculated by the system.

The PSO updated the positions of the particles until it reached the maximum number
of iterations, as presented in Algorithm 2. The particles converged to a point that was
considered to be the best global position.
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Algorithm 2: The PSO pseudocode.

Inputg, mi, Ai,j, Di,j, c1, c2, winitial , w f inal begin
Starts the population randomly (pi, vi)
Evaluates all particles and updates pbesti
repeat

updates velocities
updates particle position
Evaluates and updates pbesti and gbest

until up to maximum iterations (mi);
output :Grouping of the devices to the respective gateway forming the clusters
output :Reports with metrics related to the clustering process

4. Description of the Application Environment

The proposed models were applied in a case study in order to evaluate their results.
The models allowed for the quantitative measurement of gateway positioning within the
coverage area.

From the point of view of the deployment of IoT devices in a smart campus, several
possibilities are envisioned to meet diverse demands, such as: monitoring the environment,
humidity, gas levels, and temperature; monitoring parking lots; access monitoring via
video cameras; and intelligent lighting control. All of these examples contribute toward
facilitating daily activities and improving the quality of life of the academic community.

This section discusses the case study scenario and presents the characteristics and
parameters that were explored.

Scenario Description

Smart campus deployment is marked by the heterogeneity of services, assuming the
heterogeneity of the technologies that can be used to deploy services within the environ-
ment. The application of the optimization model to three communication technologies was
proposed in this work: one with a personal area coverage with low power consumption
(BLE); one with local and commonly known area coverage (Wi-Fi); and one with long range
areas with low power consumption (LoRa).

Each technology has a different range. It has also been observed in published studies
in the literature that each environment has objects and structures that interfere with the
propagation of wireless network signals. For the case study, we searched the literature
for signal propagation studies regarding BLE, Wi-Fi, and LoRa technologies. The signal
propagation studies were based on the received signal strength indication (RSSI). From
the measurement of the RSSI and the application of signal propagation models, it was
possible to determine the range of the technology. The RSSI for the range radii of the tested
technologies was below −90 dBm. In this work, we adopted the range measurements
according to Table 6.

Table 6. The ranges of the communication technologies that were adopted in the use case.

Technology Range (m) Environment Reference

BLE 5 Indoor [32]
Wi-Fi 25 Indoor [33]
LoRa 70 Indoor [34]

The case study was applied in a smart campus scenario. As an outdoor environment,
we could use the whole area of the Samambaia Campus at the Universidade Federeal de
Goiás (UFG). In this work, we considered an area of 761,380 m2, excluding the woods and
unbuilt areas (Figure 4a). The indoor environment was the INF with 2425 m2 (Figure 4b)
and an area of academic blocks with 26,664 m2 (Figure 4c), comprising the Institute of
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Biological Sciences (ICB I and II), Institute of Chemistry (IQ), Institute of Physics (IF),
Faculty of Philosophy (FAFI), Faculty of History (FH), and Faculty of Communication and
Librarianship (FACOMB). The measurements were taken using Google Earth.

(a)

(b)

(c)

Figure 4. The Samambaia Campus and departments of UFG: (a) the Samambaia Campus; (b) the
Institute of Informatics; (c) the academic blocks.

The presented optimization model recognized the desired area by defining points on a
Cartesian plane (x and y coordinates). These coordinates indicated where an IoT device
or gateway could be deployed. Figure 5 shows an example of plotting the points on a
Cartesian plane, with an area of 100 m2 containing 10 deployed IoT devices. The points
in gray are all possible deployment points, while the points in red represent the deployed
IoT devices.



Sensors 2022, 22, 4710 15 of 34

Figure 5. An example of how IoT points and devices are plotted within the desired area by generating
an x,y coordinate matrix.

A real application of the optimization model should have the coordinate pair of each
device as an input parameter. For the purposes of these experiments, the coordinates of
the IoT devices were set randomly among the points in the desired area. Once the device
coordinates were defined, a distance matrix between the device points (see Table 7) was
calculated, which was the basis for the generation of the gateway activation matrix (see
Table 8).

The distance matrix was generated from the calculation of the Euclidean distance
between one point and all of the other points. In the example presented in Tables 7 and 8,
10 IoT devices and a range of 25 m were considered. The activation matrix was binary and
was generated from the distance matrix. When the distance was less than the range, it was
assigned the value of 1 (one); when the distance was greater than the range, it was assigned
the value of 0 (zero).

The parameters that were used in the proposed models were presented in Section 3. In
particular, the PSO model used the following values as the initial values for the execution
of the experiments: winitial = 0.9, w f inal = 0.3, np = 20, mi = 150, c1 = 2.1, and c2 = 1.9.

In Section 5, the results of the experiments and an analysis of the comparison of the
three metaheuristics are presented.

Table 7. The matrix of the distances between devices, which was used by the LP model to generate
the activation matrix.

0 1 2 3 4 5 6 7 8 9

0 0.0 25.5 10.2 10.44 21.38 11.7 11.4 21.93 23.77 22.36
1 25.5 0.0 18.38 33.42 7.28 13.89 34.06 20.22 5.0 3.16
2 10.2 18.38 0.0 15.26 12.53 6.08 15.81 12.21 15.26 15.62
3 10.44 33.42 15.26 0.0 27.78 19.8 1.0 23.02 30.53 30.48
4 21.38 7.28 12.53 27.78 0.0 10.0 28.3 13.04 2.83 6.08
5 11.7 13.89 6.08 19.8 10.0 0.0 20.52 15.81 12.17 10.82
6 11.4 34.06 15.81 1.0 28.3 20.52 0.0 23.09 31.06 31.14
7 21.93 20.22 12.21 23.02 13.04 15.81 23.09 0.0 15.3 19.0
8 23.77 5.0 15.26 30.53 2.83 12.17 31.06 15.3 0.0 5.0
9 22.36 3.16 15.62 30.48 6.08 10.82 31.14 19.0 5.0 0.0
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Table 8. The matrix that was used by the LP model to generate the gateway activation.

0 1 2 3 4 5 6 7 8 9

0 1 0 1 1 1 1 1 1 1 1
1 0 1 1 0 1 1 0 1 1 1
2 1 1 1 1 1 1 1 1 1 1
3 1 0 1 1 0 1 1 1 0 0
4 1 1 1 0 1 1 0 1 1 1
5 1 1 1 1 1 1 1 1 1 1
6 1 0 1 1 0 1 1 1 0 0
7 1 1 1 1 1 1 1 1 1 1
8 1 1 1 0 1 1 0 1 1 1
9 1 1 1 0 1 1 0 1 1 1

5. Presentation and Evaluation of Results

In order to achieve the proposed goal, the research aimed to present three algorithms
that focused on planning and optimizing the deployment of IoT gateways. The first was
based on linear programming, which aimed to quantify and position the gateways. The
second and the third employed clustering using the K-means and PSO algorithms, which
aimed to position the gateways.

The research relied on the case study to refine the results; then, the results were
compared to evaluate the three methods that were applied to the case study. The initial
parameters were set. A floor plan of the studied environment with the plots of the relevant
points on a Cartesian plane and the definition of the points of the installed IoT devices
were used as input parameters, as well as the range of the technologies and the capacity
of the data links. The same parameters were applied to the three metaheuristics. After
the experiments, the results were compared to analyze the positioning of the gateways
and the distribution of the devices. Three environments were used in the case study
(indoor and outdoor environments) to evaluate the behavior of the metaheuristics and the
obtained results.

5.1. LP Optimization Model: Gateway Quantification and Positioning

The experiments presented in this section aimed to evaluate the optimization model
that was based on linear programming. Table 9 presents the results of the run, considering
the defined values.

Table 9. The number of required gateways considering the INF area and bandwidth consumption
variations.

Tech
Comms

Quantity
Devices

Range
(m)

Gateways
(Demand 3%)

Silhouette
(Demand 3%)

Gateways
(Demand 0%)

Silhouette
(Demand 0%)

BLE 100 5 35 0.35794 35 0.35794
BLE 300 5 37 0.28183 37 0.29547

Wi-Fi 100 25 4 0.10635 3 0.35984
Wi-Fi 300 25 10 −0.07833 3 0.33021
LoRa 100 70 4 −0.23305 1 -
LoRa 300 70 10 −0.15928 1 -

The first experiment took into account the deployment of 100 or 300 devices for
each communication technology. It was observed that for the BLE technology, with a
demand of 0% or 3% of the data link for each device, we obtained the same results of
35 and 37 gateways, respectively. The value remained the same because the range was the
parameter that prevailed in the definition of the quantity of gateways. The opposite was
observed with the Wi-Fi and LoRa technologies. When Wi-Fi technology consumed 30% of
the link demand, it was necessary to have 4 gateways to serve 100 devices and 10 gateways
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to serve 300 devices; the same occurred with LoRa. This equality between LoRa and Wi-Fi
occurred because the same bandwidth consumption was defined for both technologies.
Thus, when analyzing the same technologies with 0% bandwidth consumption, it was
observed that Wi-Fi communication required 1 less gateway to serve 100 devices and 7 less
gateways to serve 300 devices. It was also found that LoRa demanded 3 fewer gateways to
serve 100 devices and 9 fewer gateways to serve 300 devices. This variation in the number
of required gateways proved that the presented optimization model considered the range
and the demand for the data links.

The main goal of this optimization model was to quantify the gateways. The model
was proposed based on gateway activation criteria as a function of the Euclidean distance
between the IoT devices and the corresponding gateway and the transmission capacity of
the communication link to the gateway. When the gateway was activated, it was assigned
the devices that were within its range, while obeying the established constraints. The
process was repeated until the smallest possible number of gateways was found to serve
all of the deployed devices.

The association between the devices and the gateway allowed for a map of their
positions to be plotted, as shown in Figure 6. In the LP model, the association was defined
considering the range of the communication technology, whereas in the clustering process,
the association was based on the proximity of the devices to the gateway.

The association between the devices and the corresponding gateway is represented
by the alternating colors of the devices in the graph. These figures were equivalent to the
execution, the results of which are shown in Table 9. A device could be at different ends
of the defined area, but when it was within the range of coverage, it could be associated
with the gateway. There are two columns called “Silhouette” in Table 9: this metric is a
coefficient that indicates how cohesive a data cluster is. This coefficient ranged from −1 to
1 in this study. The closer to 1 the coefficient, the more cohesive the data; the closer to −1,
the wider the dispersion.

As mentioned above, the distribution of the gateway devices that is represented
by Figure 6e had the lowest Silhouette coefficient, indicating that the distribution was
the least cohesive. This coefficient proved that dispersion when distributing the devices
was significant.

Although a graphical representation of the positions of the devices/gateways with
a bandwidth consumption that was equal to zero is not presented, it was observed that
the distribution was more cohesive, according to the silhouette coefficients that are seen
in Table 9. The silhouette coefficient can only be calculated when there are two or more
clusters, thus justifying the absence of this coefficient from some of the presented results.

The optimization model could be applied to different areas, each with its own archi-
tectural characteristics. In this work, it was applied in three areas: two indoor areas (INF
and the UFG academic blocks) and one outdoor area (the entire Samambaia Campus area
of the UFG). The measurements of these areas are presented in Table 1 and the ranges of
the technologies are presented in Table 6.

The experiments that were performed in other areas produced the results that are
shown in Figure 7a,b. In these experiments, we tested the Samambaia Campus with 300 IoT
devices and 31 gateways to serve a 100-m range (Wi-Fi outdoor environment) with a 3%
bandwidth consumption and we tested 300 IoT devices and 19 gateways in the academic
blocks of the Samambaia Campus with the same bandwidth consumption and a 25-m range
(indoor environment).

The LoRa communication technology has as a remarkable long-distance range. Taking
this characteristic into account, we conducted the experiments at the Samambaia Campus
(outdoor environment). We considered a range of 500 m for the LoRa technology in the
outdoor environment. The distribution of the gateways and IoT devices are presented in
Figure 8. In the scenario in question, 7 gateways were required for 200 devices with 3%
bandwidth consumption, as shown in Figure 8a. Figure 8b presents the results for the
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same scenario but for 300 devices with 3% bandwidth consumption, which demanded
10 gateways.

(a) (b)

(c) (d)

(e) (f)

Figure 6. The plots of the devices and their respective gateways with a3% data link consumption (LP
method): (a) BLE technology with 100 devices and 35 gateways; (b) BLE technology with 300 devices
and 37 gateways; (c) Wi-Fi technology with 100 devices and 4 gateways; (d) Wi-Fi technology with
300 devices and 10 gateways; (e) LoRA technology with 100 devices and 4 gateways; (f) LoRA
technology with 300 devices and 10 gateways.
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(a)

(b)

Figure 7. The plots of the devices and their gateways (Wi-Fi technology): (a) the Samambaia
Campus with 300 devices (outdoor environment); (b) the academic blocks with 300 devices (indoor
environment).

Table 10 presents a report of the execution of the optimization model when applied to
the academic blocks of the Samambaia Campus. Table 10 shows the number of IoT devices
that were served by each gateway. Taking into account the bandwidth consumption of 3%,
each gateway could serve a maximum of 33 devices. In the presented results, the number
of clusters/gateways that served the most IoT devices was the 17, serving 31 devices. The
second column of the table shows the largest calculated distance between a device and the
corresponding gateway within the respective cluster. It can be seen that no value in that
column exceeded the range of the technology (25 m).

The results that are presented in these three scenarios show that the optimization
model could be applied in different scenarios by changing the parameters according to the
desired situation.

Some of the experiments that were applied to the INF scenario considered 100 devices
that were communicating via Wi-Fi technology with varying demands for link capacity. The
results are presented in Table 11. It can be seen that an increase in demand for bandwidth
consumption caused an increase in the number of gateways, so the dispersion of the devices
within the clusters was noticeable. Evidence for the dispersion can also be seen in the
variations in the silhouette coefficient. Figure 9a shows the increases in the bandwidth
demand and the number of gateways and Figure 9b shows the decrease in the coefficient.
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(a)

(b)

Figure 8. The plots of the devices and their gateways (LoRa technology; outdoor environment): (a)
the Samambaia Campus with 200 devices and 7 gateways; (b) the Samambaia Campus 300 devices
and 10 gateways.
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Table 10. The result of the gateway quantification experiments in the academic blocks scenario with
300 devices that were communicating via Wi-Fi technology, as presented in Figure 7b.

Quantity of
Devices/Gateways

Increased Distance
Between Device/Gateway

Sum of the Distance Between
Device/Gateway Cluster Silhouette

Coefficient

21 25 338.62 0

0.31363

19 25 286.12 1
21 24.7 361.36 2
17 24.02 205.54 3
16 24.7 263.59 4
20 25 283.56 5
10 22.56 153.04 6
11 24.35 143.4 7
17 24.08 231.6 8
18 24.17 242.7 9
11 24.76 179.06 10
15 25 268.54 11
13 24.33 185.21 12
15 23.41 230.15 13
13 23.19 197.4 14
16 24.02 247.65 15
10 23.71 155.17 16
31 24.7 499.38 17
6 22.47 107.08 18

Total Distance: 4579.17

Table 11. The results of the experiments with variations in the demand for data link consumption
(LP method).

Area Technology Quantity of Devices Demand Quantity of Gateways Silhouette Coefficient

INF Wi-Fi 100 0 3 0.35984
INF Wi-Fi 100 2 3 0.34473
INF Wi-Fi 100 3 4 0.09411
INF Wi-Fi 100 4 4 0.05009
INF Wi-Fi 100 5 5 0.06368
INF Wi-Fi 100 10 10 −0.12747
INF Wi-Fi 100 15 17 −0.20703
INF Wi-Fi 100 20 20 −0.21001
INF Wi-Fi 100 30 34 −0.38046

(a)
(b)

Figure 9. Graphs showing the results of the experiments with variations in the demand for data link
consumption: (a) the data link consumption × quantity of gateways; (b) the silhouette coefficient.

The obtained results confirmed that varying the range of the communication technol-
ogy and the demand for data link consumption directly influenced the required number of
gateways.

It was also observed that the distribution of gateways and devices using this opti-
mization model was not achieved using a clustering technique. In Sections 5.2 and 5.3, the
results from the placement of gateways using the K-means clustering model and the PSO
model are presented, respectively.
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5.2. K-Means Model: Clustering and Gateway Placement

The K-means clustering model uses Euclidean distance as a metric to divide the
devices into n groups. The center of each group (centroid) is considered to be a gateway.
This section presents the results of the application of the clustering model, taking into
account the parameters presented in Table 9, which show the comparison between the three
communication technologies (Wi-Fi, BLE, and LoRa) when varying the number of devices
that were distributed in the area.

Table 12 presents the silhouette coefficients after running the K-means model. The re-
sults shown by the silhouette coefficients were good, proving the cohesion of the clustering.
A comparative analysis between the silhouette coefficients from the K-means model and
those from the other clustering models is presented in Section 5.4.

Table 12. The silhouette coefficients after applying the K-means model, considering the number of
gateways that resulted from the application of the LP model.

Communication
Technology

Number of
Devices

Range
(m)

Number of Gateways
(Demand 3%)

Silhouette Coefficient
(Demand 3%)

BLE 100 5 35 0.42388
BLE 300 5 37 0.38236

Wi-Fi 100 25 4 0.50848
Wi-Fi 300 25 10 0.37390
LoRa 100 70 4 0.50848
LoRa 300 70 10 0.37390

Graphically, it can be observed in Figure 10 that the clusters were formed by the devices
that were close to the centroids, unlike the dispersion that was observed in Figure 6. The
dispersion was verified by the silhouette coefficient. Analyzing the resulting positions from
the K-means model using the LP model, it could be seen that the K-means model treated
the gateways as the center of the cluster and, in this case, the radius of the technology was
not a limiting factor in the clustering process (unlike the treatment from the LP model). In
Section 5.3, the PSO model is addressed and in Section 5.4, a comparative analysis between
the proposed models is presented, which found that in some cases with the clustering
model, the distance between a device and a gateway could be greater than the range of
the technology.

5.3. PSO Model: Clustering and Gateway Placement

The PSO positioning model was inspired by the collective movement of animals,
such as a flock of birds or a school of fish. The model proposed in this research had two
approaches: a simple PSO and a hybrid PSO. The difference between the approaches
was in the initialization of the particles. In the simple approach, the particles initialized
randomly within the search space and, depending on their initial position, moved during
each iteration in search of the best global position. In the hybrid approach, the initial-
ization of the particles occurred using the initialization model that was adopted in the
K-means algorithm, called K-means++. The results of the two approaches are presented in
Sections 5.3.1 and 5.3.2, respectively.

5.3.1. Simple PSO

As with the K-means clustering model, Table 13 demonstrates the silhouette coefficient
values from the simple PSO model. The variations in these coefficients came from variations
in the adopted parameters, but they still showed good results regarding the cohesion of
the clusters.
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(a) (b)

(c) (d)

(e) (f)

Figure 10. The clustering of IoT devices and their respective gateways using the K-means model: (a)
BLE technology with 100 devices and 35 gateways; (b) BLE technology with 300 devices and 37 gate-
ways; (c) Wi-Fi technology with 100 devices and 4 gateways; (d) Wi-Fi technology with 300 devices
and 10 gateways; (e) LoRa technology with 100 devices and 4 gateways; (f) LoRa technology with
300 devices and 10 gateways.
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Table 13. The silhouette coefficients after applying the PSO positioning model (simple approach),
considering the number of gateways that resulted from the application of the LP model.

Communication
Technology

Number of
Devices

Range
(m)

Number of Gateways
(Demand 3%)

Silhouette Coefficient
(Demand 3%)

BLE 100 5 35 0.23778
BLE 300 5 37 0.24597

Wi-Fi 100 25 4 0.45798
Wi-Fi 300 25 10 0.31159
LoRa 100 70 4 0.45150
LoRa 300 70 10 0.31159

Figure 11 shows the distribution of gateways and IoT devices that was achieved using
the PSO model (simple approach). In this model, it could be seen that the distribution
of gateways allowed for a higher concentration in certain regions of the search area as
well as other sparser regions, as shown in Figure 11b. This occurred because of the
randomness of the initial positions of the particles, which interfered with the positioning
results across the iterations. The initial positions could be concentrated in one region and
by updating the positions of the particles using the velocity and the cognitive and social
factors, this positioning was achieved.

(a) (b)

(c) (d)

Figure 11. Cont.
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(e) (f)

Figure 11. The clustering of IoT devices and their respective gateways using the PSO model (simple
approach): (a) BLE technology with 100 devices and 35 gateways; (b) BLE technology with 300 devices
and 37 gateways; (c) Wi-Fi technology with 100 devices and 4 gateways; (d) Wi-Fi technology
with 300 devices and 10 gateways; (e) LoRa technology with 100 devices and 4 gateways; (f) LoRa
technology with 300 devices and 10 gateways.

5.3.2. Hybrid PSO

The hybrid PSO approach was a clustering model that aimed to improve the initial
positioning of the particles using the initialization method that was adopted in the K-means
model. The initialization was used in the first iteration and forced the centroids to be
further away from each other.

When comparing the silhouette coefficients from the simple PSO model (Table 13) to
those from the hybrid PSO model (Table 14), it could be seen that the larger coefficients
were always from the hybrid approach, which confirmed that the better initial positioning
of the particles resulted in better final positions.

Table 14. The silhouette coefficients after applying the hybrid PSO model, considering the number of
gateways that resulted from the application of the LP model.

Communication
Technology

Number of
Devices

Range
(m)

Number of Gateways
(Demand 3%)

Silhouette Coefficient
(Demand 3%)

BLE 100 5 35 0.36686
BLE 300 5 37 0.37331

Wi-Fi 100 25 4 0.50842
Wi-Fi 300 25 10 0.37530
LoRa 100 70 4 0.50842
LoRa 300 70 10 0.37530

The distribution of IoT devices and their corresponding gateways that resulted from
the hybrid PSO model is presented in Figure 12. When comparing these results to those
from the simple PSO model, it could be visually observed that the gateway positioning
in the hybrid PSO model always maintained a better distribution within the desired area,
especially when looking at Figures 11b and 12b.
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(a) (b)

(c) (d)

(e) (f)

Figure 12. the clustering of IoT devices and their respective gateways using the PSO model (hybrid
approach): (a) BLE technology with 100 devices and 35 gateways; (b) BLE technology with 300 devices
and 37 gateways; (c) Wi-Fi technology with 100 devices and 4 gateways; (d) Wi-Fi technology
with 300 devices and 10 gateways; (e) LoRa technology with 100 devices and 4 gateways; (f) LoRa
technology with 300 devices and 10 gateways.

Figure 13 presents a comparison of the two PSO approaches. The comparison was
carried out by summing the calculated Euclidean distances between the IoT devices and
their respective gateways. The larger the sum of the distances, the less cohesive the cluster.
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In all of the presented runs, the hybrid PSO model had smaller sums of the distances,
thereby proving that the clustering in the hybrid model was better.

Figure 13. The comparison of the total distances between the IoT devices and their gateways using
the simple and hybrid PSO models.

The experiments presented in Sections 5.1–5.3 were mainly aimed at testing how
well the models worked. From those experiments, it was proved that it was possible to
quantify, assign, and cluster the IoT devices and their gateways. A comparative analysis
was performed to evaluate the four models: LP, K-means, simple PSO, and hybrid PSO.
The analysis is described in Section 5.4.

5.4. Discussion: Comparative Analysis and Evaluation of Presented Results

The present work proposed three optimization models. The LP model aimed to
quantify and position gateways by assigning IoT devices to a respective gateway within
the desired area as a function of the radius and data link demand. The K-means model
and the PSO model positioned the gateways according to the number that was defined
by the LP model and distributed the IoT devices by considering the Euclidean distance
between them.

For the three models in question, metrics could be abstracted for a comparative
analysis. The silhouette coefficient was one of the metrics considered. Another factor taken
into consideration was the sum of the Euclidean distances between the devices and their
respective gateways. This result was calculated for each cluster and then totaled.

The models could be applied in several scenarios. In this work, we considered three
scenarios: INF, the Samambaia Campus, and the academic blocks. The architecture of the
buildings does not represent a regular geometric figure, which aroused interest in analyzing
the behavior of the models.

Since we tested different scenarios, Table 15 presents the comparisons between the
models within the same scenario. It can be seen that the total distances and the best
silhouette coefficients were found by the K-means and hybrid PSO models. The K-means
model defined the position of the centroids and, at each iteration, repositioned them to
the center of the cluster. In this way, the clusters always had their gateways in the center.
The hybrid PSO model defined the initial positions of the particles using the K-means
initialization technique and led the particles to better initial positions, which was reflected
throughout each iteration, thereby proving that once initialized well, particle movements
tend to finalize well. The LP model showed good summations and silhouette coefficients,
proving that they were cohesive. The simple PSO model did not perform as well as the
hybrid approach in terms of clustering. When there was a good silhouette coefficient, it
could be observed that the summation always tended to be lower because the devices were
more cohesive with the centroid.
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Table 15. The distance summations and silhouette coefficients of the experiments that were performed
in the three scenarios, considering 300 devices and Wi-Fi communication technology.

Model Area Range
(m)

Number of
Gateways

Summed
Distance Silhouette Coefficient

Increased Distance
Between Devices

and Gateways

LP Samambaia
Campus 100 31 17,359.73 0.38812 95.82

Simple
PSO

Samambaia
Campus 100 31 20,554.47 0.29233 120.49

Hybrid
PSO

Samambaia
Campus 100 31 14,796.27 0.40764 92.98

K-means Samambaia
Campus 100 31 14,965.47 0.40943 114.85

LP Academic
block 25 19 4604.6 0.30675 24.74

Simple
PSO

Academic
Blocks 25 19 5384.96 0.27088 24.52

Hybrid
PSO

Academic
Blocks 25 19 3982.1 0.39224 29.57

K-means Academic
Blocks 25 19 3974.86 0.38964 27.01

In relation to the greatest distance that was found between a device and a gateway
(Table 15), it was observed that in some cases the greatest distance was greater than the
range of the technology. In the LP model, this distance was always less than the radius,
while in the K-means model and the simple PSO and hybrid PSO models, values that were
greater than the range were found, which occurred because these models did not adopt
the range as a restriction to the clustering process. Out of the proposed models, the only
method that guaranteed the range was the LP model; on the other hand, this model was
the only one to present a negative silhouette coefficient, as shown in Table 9. In the LP
model, the gateways were activated to serve the devices that were in range. So, the larger
the range, the more likely the silhouette coefficient was to be bad. Although the clustering
models did not use the range as a criterion, they clustered the devices by considering the
best position; in this case, it was a clustering process, not a gateway activation process.

In the presented clustering models, the number of gateways was informed based on
the results of the LP model. It was possible to enter a larger number of gateways and obtain
the greatest distance within the range of the technology. It is worth noting that the idea was
to quantify the smallest possible number of gateways and the model achieved the expected
result, as did the clustering process.

Throughout Sections 5.1–5.3, the experiments were described considering the same
parameters for each proposed model. It was concluded that the models corresponded to
expectations. The experiments with the LP model only had one sample. In the performed
tests, it was found that repetition with several samples and the same parameters returned
the same result, matching the search for the best result. The clustering models presented
different results for each sample because a random initial position was defined for each
sample, which interfered with the final results. For evaluation purposes, 32 samples were
run and the average of the silhouette coefficients and the total distances within the clusters
were calculated to compare the models.

Table 16 presents the parameters that were applied in the experiments. In order to
compare the results, six experiments were performed, all of which were applied in the INF
scenario with an area of 2425 m2 in an indoor environment.
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Table 16. The parameters that were applied in the experiments.

Experiment Communication
Technology

Range
(m)

Number
of Devices

Number of Gateways
(Demand 3%)

1 BLE 5 100 35
2 BLE 5 300 37
3 Wi-Fi 25 100 4
4 Wi-Fi 25 300 10
5 LoRa 70 100 4
6 LoRa 70 300 10

The results presented in Tables 17 and 18 show a comparison between the six experi-
ments, using the total distance and the silhouette coefficient as metrics. The higher the total
distance, the greater the distance between the devices and their respective gateways. The
silhouette coefficient represented the cohesion of the clusters.

Table 17. The comparison of the total distance metric (average), considering the experiments that
were performed using the same parameters.

Experiment K-Means
Summed Distance

LP
Summed Distance

Simple PSO
Summed Distance

Hybrid PSO
Summed Distance

1 196.80823 220.14000 315.47147 196.06500
2 809.21433 939.62000 1154.32925 1779.13501
3 885.48468 1289.35000 1056.12834 885.49252
4 1776.56160 4261.13000 2206.50263 1775.86463
5 885.50771 1289.35000 1050.06652 885.48468
6 1776.56160 8916.60000 2206.50263 1775.86463

Table 18. The comparison of the silhouette coefficient metric (average), considering the experiments
that were performed using the same parameters.

Experiment K-Means
Silhouette Coefficient

LP
Silhouette Coefficient

Simple PSO
Silhouette Coefficient

Hybrid PSO
Silhouette Coefficient

1 0.42334 0.35794 0.23778 0.42535
2 0.38212 0.28193 0.24597 0.37331
3 0.50842 0.09411 0.42984 0.50845
4 0.37390 −0.07833 0.31159 0.37530
5 0.50848 0.09411 0.45149 0.50842
6 0.37390 −0.15928 0.31159 0.37530

When analyzing the results, the smallest distance found was from the hybrid PSO
model in Experiment 1 and the largest distance was from the LP model in Experiment 6. In
almost all of the experiments, the largest distance found was from the LP model.

When comparing the total distances in each experiment, it was found that the hybrid
PSO model stood out as having the smallest distance in four experiments; the K-means
model was second in this ranking. Regarding the greatest distance, the LP model achieved
the greatest total distance in four experiments, followed in the ranking sequence by the
simple and hybrid PSO models.

The same evaluation was conducted for the silhouette coefficient. The lowest silhouette
coefficient out of the experiments was verified using the LP model in Experiment 6, which
was equivalent to the highest distance summation that was found. As can be observed in
Figure 6f, there was no cohesion between the devices and the gateways as the negative
coefficient that was ascertained by the model characterized a high degree of dispersion. The
K-means model showed the best silhouette coefficient in Experiment 5, with a value above
0.5; the closer to 1, the more cohesive the cluster. There were other results of above 0.5:
Experiment 3 with the hybrid PSO model ranked second; Experiment 3 with the K-means
model and Experiment 5 with the hybrid PSO model ranked in joint third position. When
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only comparing the models within the same experiment, it could be seen that the hybrid
PSO model stood out in four experiments (1, 3, 4, and 6) and the K-means model stood
out in two (2 and 5). The smallest silhouette coefficients were from the LP model, which
achieved the smallest results in four experiments (3, 4, 5 and 6), followed by the simple
PSO model with the smallest results in Experiments 1 and 2.

It was possible to observe that each model had its own contribution that could be
improved by inserting other parameters or constraints. The K-means and hybrid PSO
models were the best models for clustering, but the linear programming model was the
only one that restricted the devices within a range.

A statistical analysis using the Friedman test is presented in Section 5.5.

5.5. The Friedman Test

The Friedman test is a non-parametric statistical test that was developed by Milton
Friedman, who was an economist, statistician, and writer [35]. This test is used to detect
differences between treatments in various experiments, allowing a choice to be made
between two or more hypotheses using the data from a given experiment. The objective of
this test is to determine whether there are at least two samples that represent the populations
of distinct means out of a set of n samples (n ≥ 2). In this way, it is possible to detect
significant differences between the behaviors of two or more metaheuristics [36].

The Friedman test was applied to our experiments in order to evaluate the optimization
models. The arithmetic means of the silhouette coefficients and the summation of the
distances were used as metrics.

The Friedman test is based on ranking the data, so the lowest ranking value is assigned
to the best performing algorithm. This test returned a p-value that allowed the similarities
between the proposed models to be evaluated. The p-value was compared to an α value,
which represented the significance of the test. α = 0.05 was adopted; when the p-value < α,
it was concluded that the algorithms were different. The degree of confidence was equal to
1− α. For α = 0.05, we obtained a confidence level of 0.95 (or 95%).

Although the results showed whether or not there was a difference between the
algorithms, it was not possible to know what was different. In view of this, the Friedman
test compared the models and evaluated the differences between them. This comparison
is called a post hoc test. Each comparison returned a value of p, which represented the
similarity between the compared algorithms.

The tests were applied using the Keel (Knowledge Extraction based on Evolutionary
Learning) software, which is a free software that was developed in Java by a group of
researchers from Spain and the UK and is capable of performing various experiments
involving data mining, including the Friedman test [36].

The test was applied using the data from the experiments presented in
Tables 17 and 18. The results are shown in Tables 19–22. The standard deviations and the
arithmetic means and medians of the silhouette coefficients were considered, along with
the total distances between the gateways and the IoT devices.

Table 19. The results from the Friedman test: the ranking applied to the arithmetic mean values and
the sums of the distances between the gateways and the IoT devices.

Model Ranking

LP 1.50000
Simple PSO 1.83330
K-means 3.33330
Hybrid PSO 3.33330
p-value 0.01694
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Table 20. The results from the Friedman test: the comparison between each metaheuristic using the
arithmetic means of the sums of the distances between the gateways and the IoT devices.

Comparison p-Value With α = 0.05

K-means vs. LP 0.01391
LP vs. Hybrid PSO 0.01391
K-means vs. Simple PSO 0.04417
Simple PSO vs. Hybrid PSO 0.04417
LP vs. Simple PSO 0.65472
K-means vs. Hybrid PSO 1.00000

Table 21. The results from the Friedman test: the ranking applied to the arithmetic mean values of
the silhouette coefficients.

Models Ranking

Hybrid PSO 1.33330
K-means 1.66670
Simple PSO 3.33330
LP 3.66670
p-value 0.00200

Table 22. The results from the Friedman test: the comparison between each metaheuristic using the
arithmetic means of the silhouette coefficients.

Comparison p-Value With α = 0.05

LP vs. Hybrid PSO 0.00175
Simple PSO vs. Hybrid PSO 0.00729
K-means vs. LP 0.00729
K-means vs. Simple PSO 0.02535
K-means vs. Hybrid PSO 0.65472
LP vs. Simple PSO 0.65472

When analyzing the ranking results presented in Tables 19 and 21, it could be ob-
served that the models all had a degree of similarity of less than 0.05, indicating that the
optimization models were different. When analyzing the rankings, the hybrid PSO model
performed the best in terms of the silhouette coefficient metric. In terms of the sum of
the distances between the devices and the gateways, we obtained a different result for
each metric.

When evaluating the post hoc tests, which aimed to compare the models to each
other, it was observed that the K-means and hybrid PSO models had a p-value of greater
than 0.05 in all of the presented cases, which confirmed that these metaheuristics were
similar. It is noteworthy that the hybrid PSO model initialized the particles using the same
initialization technique as the K-means model, which justified the similarity that was found
in the Friedman test. The LP and simple PSO models showed a similarity when evaluating
the arithmetic means of the silhouette coefficients and the sums of the distances between
the gateways and the IoT devices.

The four models presented in this paper contributed to the planning and deployment
of IoT gateways in a smart campus environment. Based on the results, it was possible to
choose which model best fit a specific case. In Section 6, the final considerations of this
work are presented.

6. Conclusions

This paper presented an approach for planning and deploying IoT gateways in smart
campus environments, using the minimum number gateways that was required for the
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desired area coverage. The application scenario for the experiments was the Samambaia
Campus of the UFG. In this environment, some departments were chosen for indoor and
outdoor experiments. The heterogeneity of IoT devices led us to think about environ-
ments with multiple communication technologies, considering the characteristics of each
technology. Thus, the proposed model focused on the LoRa, Wi-Fi, and BLE technologies.

The linear programming-based model considered the desired area, the range of the
technology, the consumption capacity of the data link, and the deployed IoT devices to
return the lowest possible number of gateways and to subsequently position them. For
positioning, we presented the linear programming, K-means, and PSO models.

The experiments were applied to four scenarios (INF, academic blocks, Samambaia
Campus, and IFTO Palmas) and achieved considerable results for both the quantification
model and the gateway positioning models. The problems that were addressed by the
model have been considered as difficult to solve and as the number of devices increased,
the size of the area and the demand for processing and memory also increased.

With the results of these experiments, a comparative analysis was conducted that
allowed for the evaluation of the behavior of each model and the determination of their
advantages. It was concluded that the results were satisfactory and proved the efficiency
of the models in relation to the proposed objective. The IoT gateway quantification was
accurate and respected the established range and data demands. The positioning models
defined the positions of the gateways and created clusters of devices that were associated
with a gateway.

With the presented optimization models, it would be possible to plan the required
area coverage for establishing wireless communication technologies. This planning would
reveal the amount of communication equipment that is needed and would define the best
positions for that equipment to be installed.

This work offers contributions to the field of IoT gateway planning and deployment
through the optimization model. Throughout the research, we envisioned studies that
could be developed in the future.

For future work, we intend to improve the optimization models, both from a quantifi-
cation and positioning point of view by:

• Considering other parameters and constraints that may contribute to gateway quan-
tification, with the goal of obtaining results that are even closer to the existing design;

• Associating weights with the objective functions or processes that could improve
gateway positioning using the clustering models;

• Working on a model that can consider all three communication technologies simulta-
neously for gateway quantification.
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