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Abstract

Monoclonal gammopathy of undetermined significance (MGUS) is a plasma cell dyscrasia

that can progress to malignant multiple myeloma (MM). Specific molecular biomarkers to

classify the MGUS status and discriminate the initial asymptomatic phase of MM have not

been identified. We examined the serum peptidome profile of MGUS patients and healthy

volunteers using MALDI-TOF mass spectrometry and developed a predictive model for

classifying serum samples. The predictive model was built using a support vector machine

(SVM) supervised learning method tuned by applying a 20-fold cross-validation scheme.

Predicting class labels in a blinded test set containing randomly selected MGUS and healthy

control serum samples validated the model. The generalization performance of the predic-

tive model was evaluated by a double cross-validation method that showed 88% average

model accuracy, 89% average sensitivity and 86% average specificity. Our model, which

classifies unknown serum samples as belonging to either MGUS patients or healthy individ-

uals, can be applied to clinical diagnosis.

Introduction

Monoclonal gammopathy of undetermined significance (MGUS) is a pathological condition

in which plasma cells undergo a proliferative disorder associated with a lifelong risk of pro-

gression to malignant multiple myeloma (MM) [1,2]. MGUS is defined as having serum M-

protein (monoclonal immunoglobulin) < 3 g/dL, less than 10% clonal plasma cell population

in the bone marrow, and the absence of end-organ damage [3,4]. In people aged 50 years and

older, MGUS is the most common plasma cell dyscrasia [5]. At present, a lifelong clinical fol-

low-up of individuals diagnosed as having MGUS is suggested because patients often remain
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stable for years without treatment. Although little is known about the events that promote the

evolution of MGUS and its progression to MM [6–8], patients who develop MM have been, in

most cases, previously diagnosed with MGUS [1,2,7,9]. Therefore, the diagnosis and the clini-

cal control of MGUS status are important for an earlier detection and treatment of MM and its

better clinical performance [10]. While diagnostic to detect the transition of MGUS to MM at

an early stage is based on repeated blood tests, X-rays analysis, and bone marrow biopsies, it

seems necessary to develop alternative methods to characterize the MGUS disease status. Sev-

eral boundaries exist in the capacity of laboratory assays for detecting and discriminating

between the MGUS status and the initial asymptomatic phase of MM, thus a variety of tests are

used to encompass the diverse nature of the M-protein [11,12]. Hence, an enhanced interest

exists in developing new analytical approaches such as differential scanning calorimetry of dis-

eased blood serum and to improve the new MALDI-TOF mass spectrometry methods [12–

14].

Proteomic techniques are useful to describe novel biomarkers in diseased serum because

differences in serum protein and peptide profiles can provide potential insights into the

MGUS status and its transition to MM, consistent with the changes observed in gene expres-

sion [15,16]. In this context, both MGUS and MM show peculiarities in the blood serum prote-

ome, which have been examined by differential scanning calorimetry (DSC), in which

thermogram parameters can distinguish patients having MGUS or MM from healthy people

[13,14,17,18]. Further work on biomarkers for MGUS in biological fluids is required to estab-

lish DSC and changes in blood proteome as reliable diagnostic tools, and for distinguishing

the disease status in MGUS patients.

MALDI-TOF mass spectrometry is a powerful tool for sample differentiation and identifi-

cation of proteomic markers in biofluids [19–23]. It can complement the diagnostic equipment

available for clinical diagnosis [12,19,23], and it has been used for the proteomic analysis of

MM [24,25]. MGUS patients would contain certain proteins described as having peculiar pat-

terns of expression in this dyscrasia [26]. Proteomic profiling of serum samples has detected

markers that would be indicative of early event pathogenesis and disease progression in

MGUS patients [27].

Here, we used MALDI-TOF to examine sera obtained from MGUS patients and a control

group of healthy volunteers. The main objective of our approach was to build and validate a

predictive model to be used for the clinical diagnosis of individuals suffering from MGUS. The

goal was to achieve the highest prediction quality without identifying individual proteins as

putative biomarkers. The predictive model was built using a support vector machine (SVM)

supervised learning method tuned by applying a 20-fold cross-validation scheme. The general-

ization performance of our predictive model was evaluated by a double cross-validation

method.

Materials and methods

Materials

Trifluoroacetic acid (TFA) and acetonitrile (CH3CN) were from Sigma-Aldrich (Madrid,

Spain), and alpha-cyano-4-hydroxycinnamic acid (CHCA) from Fluka Analytical (Sigma-

Aldrich, Madrid, Spain). Reversed-Phase C18 Resin ZipTip Pipette Tips were purchased from

Millipore (Madrid, Spain).

Study population and institutional approval

A total of 103 patients clinically diagnosed with MGUS at the University Hospital Son Espases

(HUSE) (Palma de Mallorca, Spain), as well as 108 healthy volunteer donors (HC) from the
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“Fundació Banc de Sang i Teixits de les Illes Balears” (Gobierno Balear, Spain) were recruited

for this study. Demographic details and clinical characteristics are displayed in Table 1. The

Clinical Research Ethics Committee of the Balearic Islands (CEIC-IB) approved both the study

protocol and patient consent procedures (IRB#: IB 1914/12 MB). All the enrolled volunteers

gave written informed consent for their blood to be used in this study. Serum collection and

processing were done according to the analytical protocols of the Hospital. Samples were ali-

quot and de-identified by the Biobank HUSE (University Hospital Son Espases) or the “Funda-

ció Banc de Sang i Teixits de les Illes Balears” (Gobierno Balear, Spain) and stored at -80˚C

until they were delivered to the basic science research team. In this way, all samples were anon-

ymized and blinded for unbiased data collection as described previously [13]. The associated

demographic information was collected by the clinical study personnel and provided to the

basic science team for data analysis (Table 1).

The diagnosis of MGUS was based on standard clinical criteria [28]. Serum samples were

classified according to the monoclonal serum protein as: IgG κ, IgG λ, IgA κ, IgA λ, IgM κ,

and IgM λ. MGUS patients had serum M-protein concentration < 3 g/dL. The control group

consisted of healthy apheresis blood donors (HC). The presence of monoclonal protein was

ruled out by performing total protein and serum protein electrophoresis testing in all samples

from apheresis blood donors at the first donation and at least every year thereafter, according

to the National and European regulations (available at: https://www.edqm.eu/en/blood-

transfusion-guides-1608.html). All HC serum samples were negative in analytical tests for

HIV, Hepatitis B and C, and Treponema pallidum infections.

Serum sample collection and preparation

Serum samples of MGUS patients were obtained at the time of routine clinical procurement.

Samples from healthy apheresis blood donors were obtained of volunteer donation. Sample

collection and handling were conducted according to the approved experimental protocols of

the hospital, as described elsewhere [13]. In brief, blood was collected in 9 mL red-top glass

tubes with serum clot activator (Vacuette España, San Sebastian de los Reyes, Spain), allowed

to sediment for 30 min at room temperature and centrifuged at 4000 rpm in a Heraeus Mega-

fuge (Heraeus, Madrid, Spain) for 15 min. Pooled samples were aliquot and immediately

stored frozen at -80˚C until their use within one month. No aliquot underwent more than one

freeze-thaw cycle before analysis. Collected serum samples were randomly divided into two

groups: a training set (95 MGUS and 100 healthy controls (HC) serum samples) and a blinded

test set (consisting of 8 MGUS and 8 HC serum samples).

Serum samples were purified and concentrated by using reversed phase C18 Resin ZipTip

pipettes, following the manufacturer’s instructions. 12 μl serum was mixed with 3 μl of 5%

TFA and applied to the C18-ZipTip Pipette. The solution was passed through the Zip-Tip

pipette repetitively (20 times). After washing with 10 μl of 0.1% TFA, the bound proteins/

Table 1. Patient demographics and disease characteristics.

Sample seta Number of samples Male/Female Age range Age

(Mean ± SD)

M-protein (g/dL)

(Mean ± SD)

Healthy controls 108 67/41 21–66 46 ± 9 Below cut off

MGUS patientsb 103 50/53 41–88 66 ± 12 0.65±0.41

a All serum samples were from Caucasian people. Clinical data were collected at the time of diagnosis.
b MGUS encompasses serum samples of the following isotypes: IgG κ (38), IgA κ (12), IgM κ (7), IgG λ (27), IgA λ (13), IgM λ (2), IgG κ + IgM κ (1), IgG κ + IgM λ (1),

IgA κ + IgA λ (1), IgM κ + IgM λ (1).

https://doi.org/10.1371/journal.pone.0201793.t001
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peptides were eluted with 6 μl of 0.1% TFA:CH3CN (1:2, v/v). The eluted proteome fraction

was mixed with 6 μl of CHCA matrix solution (5 mg of CHCA in 1 ml of 0.1% TFA:CH3CN,

1:3, v/v) and 2 μl of this mixture were spotted on the MTP 384 target plat polished steel (Bruker

Daltonics, Leipzig, Germany) and air-dried. Serum samples were randomly selected and mea-

sured in experiments conducted in the same and different days. Three-six technical replicate

spectra were obtained for each sample. Biological replicates of MGUS and HC samples were

also run alongside to monitor intra- and inter-experimental variations.

MALDI-TOF mass spectrometry analysis

Sample measurements were performed in an Autoflex III MALDI-TOF/TOF mass spectrome-

ter (Bruker Daltonics, Leipzig, Germany) equipped with a 200-Hz Smart beam laser and using

the Flex control v.3.4 software. Samples were analyzed with manual laser positioning. Spectra

were generated by averaging 1000 single laser shots (100 shots at 10 different spot positions) at

a laser frequency of 200 Hz and detected in linear positive mode. The IS1 voltage was 20 kV,

the IS2 voltage was maintained at 18.4 kV, the lens voltage was 6.5 kV, and the extraction delay

time was 180 ns. Protein peaks between 2–10 kDa were selected for analysis. Mass accuracy

was calibrated externally using the Protein Calibration Standard I and the Bacterial Test Stan-

dard, from Bruker (Madrid, Spain).

Data pre-processing and feature selection

Pre-processing of raw mass spectra, peak detection and alignment were performed using

MALDIquantForeign and MALDIquant packages [29] in R [30]. Processing of single spectrum

included the square root transformation for variance stabilization, a Savitzky-Golay filter to

smooth the spectra, the SNIP algorithm to correct the baseline, and the normalization of the

intensity values by the Total-Ion-Current (TIC) calibration. In the spectral alignment step, a

series of spectral peaks appearing with a frequency greater than 90% in the training set was

used as a reference. The criteria applied to align, detect and bin peaks were 0.17% tolerance in

mass accuracy and a signal-to-noise ratio of 3. After spectra alignment and binning, peaks

with a frequency greater than 50% were selected as spectral features, and the corresponding

intensity matrix used for further statistical analysis.

Quality control of spectra

A Pearson correlation matrix was used for intra-experimental quality control of technical sam-

pling replicates [31]. For every MGUS and HC serum sample, an average correlation coeffi-

cient of the technical replicates (ravg) was computed. A correlation threshold for high quality

spectra was defined as rth = μ-3σ, where μ is the mean average correlation coefficient of all

serum samples and σ is the standard deviation. Serum samples containing low quality spectra

had an average correlation coefficient lower than the correlation threshold (ravg<rth). Techni-

cal sampling replicates that poorly correlate with the rest were removed. Single serum samples

with just one technical replicate passing the quality control were discarded, and biological rep-

licates were mandatory for the analysis.

The inter-experimental quality control was evaluated with a set of blood serum samples

analyzed by MALDI-TOF on different dates. For each MGUS and HC biological replicate, an

average correlation coefficient of its technical replicates was computed. The mean average cor-

relation coefficient of technical replicates of inter-experimental serum samples was used as a

measure of reproducibility of the MALDI-TOF analysis.

MALDI-TOF analysis of blood serum proteome can predict the presence of MGUS
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Predictive model building and assessment

Pre-processed spectra that passed the quality control formed a labeled set of protein profiles. A

matrix (peak intensities versus featured m/z) was created and all data were used to develop a

predictive model for serum sample classification into MGUS or HC predicted classes. The pre-

dictive model building was implemented by using the e1071 and caret R packages [32,33].

A Support Vector Machine (SVM) model was built using a third order polynomial kernel.

Three parameters were tuned, two related to the kernel definition (gamma and coef0) and one

(cost) that sets the error penalty of the model in the optimization procedure. Technical repli-

cates of every MGUS and HC serum sample were used as independent input vectors for the

predictive model. To classify a serum sample, the predictive model first classified each of its

technical replicates and then a majority-voting scheme was applied to assign the predicted

serum sample class (MGUS or HC).

A 20-fold cross-validation scheme (Fig 1) was used for model performance assessment, sta-

tistical validation and model parameters tuning [34–36]. For this purpose, the full data set of

technical replicates of all serum samples was randomly split into 20 completely separate folds.

Technical replicates of each biological sample were restricted to the same fold to prevent over-

Fig 1. 20-fold cross-validation scheme.

https://doi.org/10.1371/journal.pone.0201793.g001
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fitting of the classifier. All folds except one–that was held out to act as validation set–were used

to train and tune the SVM model that was then applied to predict the excluded validation set.

The procedure was repeated 20 times, treating each time a different fold as validation set.

Numerical performance measures were estimated each time. The parameters associated with

the best performance estimates were chosen to train the SVM classifier on the full data set. The

resulting predictive model was defined as the trained polynomial kernel SVM complemented

with the spectral features set and the reference peaks.

The classifier performance measures were based on the confusion matrix method that

cross-tabulates the biological group and predicted class for the serum samples, considering

MGUS and HC as positive and negative class (Tables 2 and 3).

The classification of an independent blinded test set validated the generalization ability of

the predictive model. The generalization performance and the data predictability (statistical

dependence between protein profiles and class labels) were estimated by a double cross-valida-

tion method [34,37]. Fig 2 shows the two nested loops scheme. In the outer cross-validation

loop, the full data set was randomly split into 10 completely separate folds considering the

technical replicates restriction indicated above. One fold was held out to act as an independent

test set for each iteration. The remaining nine folds were used as training set to perform the

20-fold inner cross-validation loop to optimize the model parameters. Once the best parame-

ters for the iteration were selected, the resulting SVM classifier was trained on the current

training set and applied to classify the corresponding test set. As a result, 10 performance esti-

mates were obtained from the outer cross-validation loop. In each outer iteration, test samples

were completely independent of the training set used in the inner cross-validation loop.

Results

Feature selection and quality control

Raw MALDI-TOF spectra from the 95 MGUS and 100 HC serum samples in the training set

were pre-processed as described in Materials and Methods. A total of 765 mass spectra from

technical replicates were analyzed. A set of 13 m/z peaks appearing with a frequency greater

than 90% were selected as reference peaks to align serum samples spectra (Table 4A). After

alignment and binning, a set of 40 m/z peaks appearing with a frequency greater than 50%

Table 3. Classifier performance measures based on the confusion matrix method.

Accuracy TPþTN
TPþTNþFPþFN

Sensitivity (True Positive Rate) TP
TPþFN

Specificity (True Negative Rate) TN
TNþFP

Accuracy was computed as the proportion of correctly classified samples. Sensitivity and specificity were computed

as the rate of correctly predicted samples in the positive and negative labeled class, respectively (TP: true positive; TN:

true negative; FP: false positive; FN: false negative).

https://doi.org/10.1371/journal.pone.0201793.t003

Table 2. Confusion matrix.

Biological group

MGUS HC

Predicted class MGUS True Positive (TP) False Positive (FP)

HC False Negative (FN) True Negative (TN)

Each cell represents a count of predictions falling into the corresponding category (MGUS or HC).

https://doi.org/10.1371/journal.pone.0201793.t002
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were chosen as spectral features (Table 4B). Then, a feature matrix was generated which con-

tained the intensities corresponding to the featured m/z spectral values for every technical rep-

licate. The matrix, with all rows labeled with the serum sample identification and the

biological group flag (MGUS or HC), was used for further statistical analysis and to build the

predictive model.

Fig 2. Double cross-validation scheme. It highlights the two nested loops. The outer cross-validation loop provides 10

performance estimates from predicting the corresponding test set by the optimized model built in the inner 20 fold

cross-validation loop. The data set used to build and tune the model in the inner cross-validation loop is completely

independent of the test set used in the outer iteration.

https://doi.org/10.1371/journal.pone.0201793.g002
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A quality control procedure was applied to detect and discard technical sampling replicates

with low quality spectra in the pre-processed training set. For intra-experimental serum sam-

ples spectra, we obtained a mean average correlation coefficient μ = 0.984 and a standard devi-

ation σ = 0.028. Then a correlation threshold (rth = μ-3σ) of 0.9 was established. Serum samples

with an average correlation coefficient of technical replicates ravg<rth indicated that some tech-

nical replicates correlated poorly with the rest, so they were removed (2.3% and 1.3% of

MGUS and HC technical replicate spectra). No single serum sample was discarded. Addition-

ally, an inter-experimental quality control of biological serum samples was performed on a set

of 12 MGUS and 11 HC sera. A mean average correlation coefficient of 0.934 was obtained.

Table 4. Spectral peaks selected in the analysis of technical replicates mass spectra.

A m/z (Da)

2554.40 2660.76 2755.04 3192.90 3242.07 3263.82 3954.33 4092.44 4211.37 5906.25

6434.47 6632.72 7767.02

B m/z (Da)

2021.69 2082.35 2114.80 2192.65 2209.83 2378.88 2495.96 2554.40 2604.38 2641.45

2660.76 2723.83 2755.04 2769.70 2863.08 2884.92 2933.20 2954.46 3159.17 3192.90

3215.50 3242.07 3263.82 3449.01 3884.10 3954.33 4055.61 4092.44 4211.37 4269.32

4283.17 4644.92 4965.40 5338.46 5906.25 6434.47 6632.72 7767.10 9133.84 9290.47

(A) Set of m/z reference peaks with a frequency greater than 90% used for spectra alignment.

(B) Set of m/z spectral features with a frequency greater than 50% used to build the feature matrix for statistical analysis.

https://doi.org/10.1371/journal.pone.0201793.t004

Table 5. Classifier performance estimates obtained from the 20-fold cross-validation scheme.

Fold # gamma coef0 cost Sensitivity Specificity Accuracy p-value

1 0.00010 0.12 150 1.00 1.00 1.00 0.0077

2 0.00060 0.09 150 1.00 0.86 0.93 0.0009

3 0.00005 0.13 175 1.00 0.50 0.67 0.6503

4 0.00005 0.09 175 1.00 0.75 0.88 0.0021

5 0.00005 0.15 185 1.00 0.80 0.92 0.0166

6 0.00005 0.12 160 1.00 0.67 0.83 0.1094

7 0.00005 0.09 160 1.00 0.40 0.67 0.3743

8 0.00005 0.09 185 1.00 0.44 0.58 0.9456

9 0.00005 0.08 190 0.70 0.80 0.73 0.4041

10 0.00005 0.12 180 1.00 0.86 0.94 0.0016

11 0.00005 0.13 180 1.00 0.50 0.63 0.8862

12 0.00005 0.40 240 1.00 1.00 1.00 0.0016

13 0.00005 0.15 120 0.83 1.00 0.88 0.3671

14 0.00005 0.20 170 1.00 0.60 0.80 0.0547

15 0.00020 0.90 240 1.00 0.86 0.92 0.0039

16 0.00005 0.40 120 1.00 1.00 1.00 0.0050

17 0.00005 0.20 90 1.00 0.80 0.89 0.0413

18 0.00030 1.10 240 1.00 0.83 0.93 0.0046

19 0.00050 0.90 200 1.00 1.00 1.00 0.0199

20 0.00005 0.30 120 1.00 0.83 0.92 0.0039

The tuned parameters (gamma, coef0, cost) and the performance estimates (sensitivity, specificity, accuracy) for each iteration are shown. The parameters

corresponding to the best performance are shaded. A p-value from McNemar’s Chi-square test was computed, and p < 0.05 was considered statistically significant.

https://doi.org/10.1371/journal.pone.0201793.t005
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The strong correlation obtained for the inter-experimental set validated the reproducibility of

MALDI-TOF analysis.

Predictive model

A total of 751 technical replicate spectra passed the quality control, generating a labeled set of

serum protein profiles used to build the predictive model for classification of serum samples

into MGUS and HC classes. Our model was based on support vector machine (SVM) and

tuned applying a 20-fold cross-validation scheme (Fig 1). Table 5 shows the 20 performance

estimates of the classifier each one corresponding to an iteration of the cross-validation

scheme (see also Table 3). The parameters resulting in the best performance (shaded in

Table 5) were selected to train the final SVM predictive model on the full data set.

We used the resulting predictive model to classify a blinded test set consisting of 8 MGUS

and 8 HC randomly selected samples. Technical replicates were previously pre-processed and

the quality control procedure applied. Table 6 shows the biological group and the predicted

class label for the samples in the blinded test set. Predicted class for each serum sample was the

result of majority voting applied to the labels assigned to its technical replicates. The predictive

model used to classify blinded test samples showed 88% accuracy, 75% sensitivity and 100%

specificity.

The limited size of the blinded test set prevented us from obtaining a reliable estimate of the

model generalization performance and of the dependence between MALDI-TOF protein pro-

files and class labels. Consequently, we used a double cross-validation method to overcome

such limitation (Fig 2). Table 7 shows the 10 performance estimates obtained from the outer

Table 6. Biological group and predicted class label for serum samples in the blinded test set.

Serum sample 1T 2T 3T 4T 5T 6T 7T 8T 9T 10T 11T 12T 13T 14T 15T 16T

Biological group HC HC HC MGUS MGUS MGUS MGUS HC HC HC MGUS MGUS MGUS MGUS HC HC

Predicted class HC HC HC MGUS MGUS HC HC HC HC HC MGUS MGUS MGUS MGUS HC HC

Blinded test samples were identified as nT to mask any information about the biological group before their classification. False negative results are shaded.

https://doi.org/10.1371/journal.pone.0201793.t006

Table 7. Performance estimates obtained from the double cross-validation method.

Outer fold # Sensitivity Specificity Accuracy p-value

1 1.00 1.00 1.00 0.0000001

2 0.64 0.93 0.80 0.0111700

3 1.00 0.86 0.94 0.0013510

4 1.00 0.75 0.89 0.0002533

5 0.82 1.00 0.92 0.0001199

6 0.91 0.82 0.86 0.0004277

7 0.62 0.69 0.65 0.0843200

8 1.00 0.90 0.92 0.1618000

9 1.00 0.89 0.95 0.0001114

10 0.94 0.80 0.88 0.0025660

Average 0.89 0.86 0.88

Std. Dev 0.15 0.10 0.10

The performance estimates (sensitivity, specificity, accuracy) for every outer iteration and the corresponding average values are shown. A p-value from McNemar’s Chi-

square test was computed and p < 0.05 was considered statistically significant.

https://doi.org/10.1371/journal.pone.0201793.t007
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cross-validation loop. Those estimates were obtained by predicting a test set completely inde-

pendent of the data set used to build and tune the model in the inner cross-validation loop.

The average model accuracy was 88% and the average sensitivity and specificity were 89% and

86%, respectively.

The process used to classify an unknown serum sample into MGUS or HC class is shown in

Fig 3. The n technical replicates spectra are pre-processed, using the set of m/z reference peaks

(Table 4A) for peak alignment. Then the features for every technical replicate are selected, cor-

responding to the featured m/z spectral values (Table 4B). Next the quality control is applied

to discard technical replicates with low quality spectra. The k technical replicates passing the

quality control are classified by the developed predictive model and finally a majority-voting

scheme assigns the predicted serum sample class.

In summary, our predictive model which was built using an SVM machine learning

method, tuned by a cross-validation scheme and double cross-validated, allowed us to classify

serum samples as belonging to either MGUS or HC individuals. Predicting a blinded test set

validated our model, which capacity for classifying new serum samples was proved by the aver-

age performance results from the double-cross validation scheme.

Discussion

The composition of the serum peptidome can reflect what occurs in cellular and organ systems

[38]. Direct profiling of serum peptides by MALDI-TOF can be used to identify biomarkers of

disease and to classify samples into disease and treated groups [23,39]. We have analyzed the

serum peptidome profile of both MGUS patients and healthy control (HC) volunteers by

MALDI-TOF mass spectrometry. The biological variability of MGUS and HC serum samples

yields highly complex information in the mass spectra, thus making difficult to discriminate

between both groups and to identify proteins suitable as putative biomarkers of MGUS. There-

fore, we present a method based on a machine learning technique to analyze mass spectrome-

try-derived proteomic data and to classify serum samples into MGUS or HC classes. We

aimed to achieve the highest prediction quality without analyzing the biological significance of

the serum spectral features. The predictive model was developed to classify unknown serum

samples into MGUS or HC classes, based on Support Vector Machine (SVM), a supervised

machine learning method widely used to classify samples in clinical proteomics [34,40].

As a first step in the sample analysis protocol, we have applied a quality control to detect

and discard low-quality spectra before any statistical analysis and model building. Because

Fig 3. Classification process of an unknown serum sample. n technical replicates from serum sample raw mass

spectra are pre-processed and features selected. The correlation threshold (rth) sets the k technical replicates passing the

intra-experimental quality control (QC). The SVM predictive model classifies the k technical replicates. The majority

voter assigns the serum sample predicted class. The parameters determined from the processing of the training set and

the building of the predictive model are shaded.

https://doi.org/10.1371/journal.pone.0201793.g003
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protein expression profiles obtained from technical replicates should be similar, we have used

the Pearson correlation matrix of intra-experimental spectra as a quality control tool to dif-

ferentiate good and poor spectra. The results indicated a low ratio of discarded technically

replicated spectra in both MGUS and HC groups (2.3% and 1.3%). Reproducibility of the

MALDI-TOF analyses was validated by the computed inter-experimental mean average corre-

lation coefficient, with a strong correlation (0.934) observed among the biological replicates of

the serum samples.

We used the pre-processed spectra from the training set that passed the quality control to

develop the SVM predictive model. A 20-fold cross-validation re-sampling method was used

to train and test the predictive model to make an optimal use of the spectral data (Fig 1). Our

model first classified technical replicates of the mass spectra and afterwards a majority-voting

scheme assigned the predicted serum sample class, which provided robustness to the classifica-

tion procedure. To validate the generalization ability of the predictive model, a blinded test set,

not used in the model building, was classified (Table 6). We have applied a double cross-vali-

dation scheme (Fig 2) to overcome the shortcomings arising from the limited size of the

blinded test set. This resulted in 10 performance estimates, each one predicting test samples

independent of the model building (Table 7). The double cross-validated average model accu-

racy (88%) and the average sensitivity and specificity (89% and 86%) confirmed the statistical

dependence between MALDI-TOF peptidome profiles of MGUS and HC serum samples and

class labels. We have demonstrated the generalization ability of the predictive model to classify

unknown serum samples. Therefore, our model can be used as a suitable classifier for predict-

ing MGUS dyscrasia in any serum sample. Our results provide further evidence that MALDI--

TOF mass spectrometry can be used to distinguish MGUS in serum samples [12].

We showed elsewhere that MGUS can be detected and characterized using differential

scanning calorimetry (DSC) [13], a technique that can also characterize the progress of MGUS

patients to related pathologies [13,17,18]. In fact, using DSC and mass spectrometry together

is grasped as a potent tool for detecting a variety of pathologies in human blood samples [41].

Our study, based on MALDI-TOF analysis and a machine learning predictive model, provides

further support for using mass spectrometry to classify unidentified serum samples, which can

be applied to the clinical diagnosis of MGUS.
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7. Bladé J, Rosiñol L, Cibeira MT, de Larrea CF (2008) Pathogenesis and progression of monoclonal gam-

mopathy of undetermined significance. Leukemia 22: 1651–1657. https://doi.org/10.1038/leu.2008.203

PMID: 18668131

8. Anderson KC, Carrasco RD (2011) Pathogenesis of myeloma. Annu Rev Pathol 6: 249–274. https://

doi.org/10.1146/annurev-pathol-011110-130249 PMID: 21261519

9. Sandecka V, Hajek R, Pour L, Spicka I, Scudla V, Gregora E, et al. (2017) A first Czech analysis of

1887 cases with monoclonal gammopathy of undetermined significance. Eur J Haematol 99: 80–90.

https://doi.org/10.1111/ejh.12894 PMID: 28384387

10. Sigurdardottir EE, Turesson I, Lund SH, Lindqvist EK, Mailankody S, Korde N, et al. (2015) The role of

diagnosis and clinical follow-up of monoclonal gammopathy of undetermined significance on survival in

multiple myeloma. JAMA Oncol 1: 168–174. https://doi.org/10.1001/jamaoncol.2015.23 PMID:

26181017

11. Attaelmannan M, Levinson SS (2000) Understanding and identifying monoclonal gammopathies. Clin

Chem 46: 1230–1238. PMID: 10926917

12. Willrich MAV, Murray DL, Kyle RA (2018) Laboratory testing for monoclonal gammopathies: Focus on

monoclonal gammopathy of undetermined significance and smoldering multiple myeloma. Clin Bio-

chem 51: 38–47. https://doi.org/10.1016/j.clinbiochem.2017.05.001 PMID: 28479151

MALDI-TOF analysis of blood serum proteome can predict the presence of MGUS

PLOS ONE | https://doi.org/10.1371/journal.pone.0201793 August 2, 2018 12 / 14

https://doi.org/10.1182/blood-2011-01-270140
http://www.ncbi.nlm.nih.gov/pubmed/21441462
https://doi.org/10.1182/blood-2008-12-194241
http://www.ncbi.nlm.nih.gov/pubmed/19179464
https://doi.org/10.1111/ejh.12172
http://www.ncbi.nlm.nih.gov/pubmed/23859528
https://doi.org/10.1016/j.hoc.2014.06.005
https://doi.org/10.1016/j.hoc.2014.06.005
http://www.ncbi.nlm.nih.gov/pubmed/25212882
https://doi.org/10.1056/NEJMoa054494
https://doi.org/10.1056/NEJMoa054494
http://www.ncbi.nlm.nih.gov/pubmed/16571879
https://doi.org/10.1182/blood-2003-01-0016
http://www.ncbi.nlm.nih.gov/pubmed/12947006
https://doi.org/10.1038/leu.2008.203
http://www.ncbi.nlm.nih.gov/pubmed/18668131
https://doi.org/10.1146/annurev-pathol-011110-130249
https://doi.org/10.1146/annurev-pathol-011110-130249
http://www.ncbi.nlm.nih.gov/pubmed/21261519
https://doi.org/10.1111/ejh.12894
http://www.ncbi.nlm.nih.gov/pubmed/28384387
https://doi.org/10.1001/jamaoncol.2015.23
http://www.ncbi.nlm.nih.gov/pubmed/26181017
http://www.ncbi.nlm.nih.gov/pubmed/10926917
https://doi.org/10.1016/j.clinbiochem.2017.05.001
http://www.ncbi.nlm.nih.gov/pubmed/28479151
https://doi.org/10.1371/journal.pone.0201793
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