
RESEARCH ARTICLE

BioCRNpyler: Compiling chemical reaction

networks from biomolecular parts in diverse

contexts

William PooleID
1*, Ayush PandeyID

2, Andrey ShurID
3, Zoltan A. TuzaID

4, Richard

M. MurrayID
2

1 Computation and Neural Systems, California Institute of Technology, Pasadena, California, United States of

America, 2 Control and Dynamical Systems, California Institute of Technology, Pasadena, California, United

States of America, 3 Bioengineering, California Institute of Technology, Pasadena, California, United States

of America, 4 Bioengineering, Imperial College London, London, England

* wpoole@caltech.edu

Abstract

Biochemical interactions in systems and synthetic biology are often modeled with chemical

reaction networks (CRNs). CRNs provide a principled modeling environment capable of

expressing a huge range of biochemical processes. In this paper, we present a software

toolbox, written in Python, that compiles high-level design specifications represented using

a modular library of biochemical parts, mechanisms, and contexts to CRN implementations.

This compilation process offers four advantages. First, the building of the actual CRN repre-

sentation is automatic and outputs Systems Biology Markup Language (SBML) models

compatible with numerous simulators. Second, a library of modular biochemical compo-

nents allows for different architectures and implementations of biochemical circuits to be

represented succinctly with design choices propagated throughout the underlying CRN

automatically. This prevents the often occurring mismatch between high-level designs and

model dynamics. Third, high-level design specification can be embedded into diverse bio-

molecular environments, such as cell-free extracts and in vivo milieus. Finally, our software

toolbox has a parameter database, which allows users to rapidly prototype large models

using very few parameters which can be customized later. By using BioCRNpyler, users

ranging from expert modelers to novice script-writers can easily build, manage, and explore

sophisticated biochemical models using diverse biochemical implementations, environ-

ments, and modeling assumptions.

Author summary

This paper describes a new software package BioCRNpyler (pronounced “Biocompiler”)

designed to support rapid development and exploration of mathematical models of bio-

chemical networks and circuits by computational biologists, systems biologists, and syn-

thetic biologists. BioCRNpyler allows its users to generate large complex models using

very few lines of code in a way that is modular. To do this, BioCRNpyler uses a powerful

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009987 April 20, 2022 1 / 19

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Poole W, Pandey A, Shur A, Tuza ZA,

Murray RM (2022) BioCRNpyler: Compiling

chemical reaction networks from biomolecular

parts in diverse contexts. PLoS Comput Biol 18(4):

e1009987. https://doi.org/10.1371/journal.

pcbi.1009987

Editor: Pedro Mendes, University of Connecticut

School of Medicine, UNITED STATES

Received: July 23, 2021

Accepted: March 3, 2022

Published: April 20, 2022

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pcbi.1009987

Copyright: © 2022 Poole et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: BioCRNpyler source

code and an extensive set of example notebooks,

documentation, and tutorials are available in our

GitHub repository: https://github.com/BuildACell/

https://orcid.org/0000-0002-2958-6776
https://orcid.org/0000-0003-3590-4459
https://orcid.org/0000-0001-9372-6713
https://orcid.org/0000-0003-2896-1527
https://orcid.org/0000-0002-5785-7481
https://doi.org/10.1371/journal.pcbi.1009987
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009987&domain=pdf&date_stamp=2022-05-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009987&domain=pdf&date_stamp=2022-05-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009987&domain=pdf&date_stamp=2022-05-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009987&domain=pdf&date_stamp=2022-05-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009987&domain=pdf&date_stamp=2022-05-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009987&domain=pdf&date_stamp=2022-05-02
https://doi.org/10.1371/journal.pcbi.1009987
https://doi.org/10.1371/journal.pcbi.1009987
https://doi.org/10.1371/journal.pcbi.1009987
http://creativecommons.org/licenses/by/4.0/
https://github.com/BuildACell/BioCRNPyler

new representation of biochemical circuits which defines their parts, underlying biochem-

ical mechanisms, and chemical context independently. BioCRNpyler was developed as a

Python scripting language designed to be accessible to beginning users as well as easily

extendable and customizable for advanced users. Ultimately, we see Biocrnpyler being

used to accelerate computer automated design of biochemical circuits and model driven

hypothesis generation in biology.

This is a PLOS Computational Biology Software paper.

1 Introduction

Chemical reaction networks (CRNs) are the workhorse for modeling in systems and synthetic

biology [1]. The power of CRNs lies in their expressivity; CRN models can range from physi-

cally realistic descriptions of individual molecules to coarse-grained idealizations of complex

multi-step processes [2]. However, this expressivity comes at a cost. Choosing the right level of

detail in a model is more an art than a science. The modeling process requires careful consider-

ation of the desired use of the model, the available data to parameterize the model, and prioriti-

zation of certain aspects of modeling or analysis over others. Additionally, biological CRN

models can be incredibly complex including dozens or even hundreds or thousands of species,

reactions, and parameters [3]. Maintaining complex hand-built models is challenging and

errors can quickly grow out of control for large models. Software tools can answer many of

these challenges by automating and streamlining the model construction process.

Formally, a CRN is a set of species S = {Si} and reactions R : fI � !rðs;yÞ Og where I and O are

multisets of species, ρ is the rate function or propensity, s is a vector of species’ concentrations

(or counts), and θ are rate parameters. Typically, CRNs are simulated using as ordinary differ-

ential equations (ODEs) and numerically integrated [2]. A stochastic semantics also allows

CRNs to be simulated as continuous-time Markov chains [4]. Besides their prevalence in bio-

logical modeling, there is rich theoretical body of work related to CRNs from the mathematical

[5], computer science [6], and physics communities [7]. Despite these theoretical foundations,

many models are phenomenological in nature and lack mechanistic details of various biologi-

cal processes. The challenge of constructing correct models is compounded by the

difficulty in differentiating between correct and incorrect models based upon experimental

data [8–10].

Due to CRNs’ rich history and diverse applications, the available tools for a CRN modeler

are vast and include: extensive software to generate, simulate, and analyze CRNs [11–14] as

well as databases of models [15, 16], and many more. However, even though synthetic biolo-

gists have adopted a module and part-driven approach to their laboratory work [17], models

are still typically built by hand on a case-by-case basis. Recognizing the fragile non-modular

nature of hand built models, several synthetic biology design automation tools have been

developed for specific purposes such as implementing transcription factor or integrase-based

logic [18, 19]. These tools indicate a growing need for design and simulation automation in

synthetic biology, as part and design libraries are expanded.

As the name would suggest, BioCRNpyler (pronounced bio-compiler) is a Python package

that compiles CRNs from simple specifications of biological motifs and contexts. This package

PLOS COMPUTATIONAL BIOLOGY Chemical reaction network compilation with BioCRNpyler

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009987 April 20, 2022 2 / 19

BioCRNPyler. All other data are available within the

manuscript and its Supporting information files.

Funding: The authors WP and AP are partially

supported by US National Science Foundation

(CBET-1903477). AP was also supported by the

Defense Advanced Research Projects Agency

(Agreement HR0011-17-2-0008). AS was

supported by the Institute for Collaborative

Biotechnologies through cooperative agreement

W911NF-19-2-0026 from the U.S. Army Research

Office. The content of the information does not

necessarily reflect the position or the policy of the

Government, and no official endorsement should

be inferred. The funders had no role in study

design, data collection and analysis, decision to

publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1009987
https://github.com/BuildACell/BioCRNPyler

is inspired by the molecular compilers developed by the DNA-strand displacement commu-

nity and molecular programming communities which, broadly speaking, aim to compile mod-

els of DNA circuit implementations from simpler CRN specifications [20–22], rudimentary

programming languages [23, 24], and abstract sequence specifications [25]. This body of work

has demonstrated the utility of molecular circuit compilers and highlights that a single specifi-

cation can be compiled into multiple molecular implementations which in turn can corre-

spond to multiple CRN models at various levels of detail. For example, there are multiple

DNA-strand implementations of catalysis [21, 22, 26, 27] and the interactions of the DNA

strands involved in each of these implementations can be enumerated to generate different

CRN models based upon the assumptions underlying enumeration algorithm [28]. Drawing

from these inspirations, BioCRNpyler is a general-purpose CRN compiler capable of convert-

ing abstract specifications of biomolecular components into CRN models with full program-

matic control over the compilation process. Importantly, BioCRNpyler is not a CRN simulator

—models are saved in the Systems Biology Markup Language (SBML) [29] to be compatible

with the user’s simulator of choice.

There are many existing tools that provide some of the features present in BioCRNpyler.

Antimony (part of the Tellerium software suite) provides an elegant high level language that is

converted into SBML models [12, 30]. Systems Biology Open Language (SBOL) [31] is a for-

mat for sharing DNA-sequences with assigned functions and does not compile a CRN. Hierar-

chical SBML and supporting software [32] provide a file format which encapsulates CRNs as

modular functions. The software package iBioSim [33, 34] can compile SBOL specifications

into SBML models. Similarly, Virtual Parts Repository uses SBOL specifications to combine

existing SBML models together [35]. The rule-based modeling framework BioNetGen [36]

allows for a system to be defined via interaction rules which can then be simulated directly or

compiled into a CRN. Similarly, PySB [37] provides a library of common biological parts and

interactions that compile into more complex rule-based models. Finally, the MATLAB TX-TL

Toolbox [38, 39] can be seen as a prototype for BioCRNpyler but lacks the object-oriented

framework and extendability beyond cell-free extract systems.

BioCRNpyler compliments existing software packages by providing a novel abstraction and

framework which allows for complex CRNs to be easily generated and explored via the compi-

lation process. To do this, BioCRNpyler specifies a biochemical system as a set of modular bio-

logical parts, biochemical processes codified as CRNs, and biochemical and modeling context.

Moreover, BioCRNpyler allows for synthetic biological parts and systems biology motifs to be

reused and recombined in diverse biochemical contexts at customizable levels of model com-

plexity with minimal coding requirements (BioCRNpyler is designed to be a scripting lan-

guage). Additionally, BioCRNpyler is purposefully suited to in silico workflows because it is an

extendable object-oriented framework written entirely in Python that integrates existing soft-

ware development standards and allows complete control over model compilation. Simulta-

neously, BioCRNpyler accelerates model construction with extensive libraries of biochemical

parts, models, and examples relevant to synthetic biologists, bio-engineers, and systems biolo-

gists. The BioCRNpyler package is available on GitHub [40] and can be installed via the

Python package index (PyPi).

2 Design and implementation

BioCRNpyler is an open-source Python package that compiles high-level design specifications

into detailed CRN models, which then are saved as SBML files [41]. BioCRNpyler is written in

Python with a flexible object-oriented design, extensive documentation, and detailed examples

which allow for easy model construction by modelers, customization and extension by

PLOS COMPUTATIONAL BIOLOGY Chemical reaction network compilation with BioCRNpyler

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009987 April 20, 2022 3 / 19

https://doi.org/10.1371/journal.pcbi.1009987

developers, and rapid integration into data pipelines. The utility of BioCRNpyler comes from

the way it abstracts biological systems using modular objects. A BioCRNpyler model consists

of a collection of biological parts called Components which interact via different biological

processes called Mechanisms. Sets of Components and Mechanisms are bundled

together to form a system, called a Mixture, which represents a specific biological and

modeling context. During compilation, each Component in a Mixture generates the spe-

cies and reactions which model its behavior using Mechanisms. This abstraction is powerful;

it allows modelers to examine how a specific system, represented by one or more Compo-
nents, behaves in diverse environments and/or under different modeling assumptions repre-

sented by different Mixtures. Importantly, Mechanisms provide a universal underlying

abstraction used to define both the way Components and Mixtures function. In the fol-

lowing subsections, we describe the BioCRNpyler modeling abstraction in detail.

2.1 Internal CRN representation

Underlying BioCRNpyler is a comprehensive chemical reaction network class. The species

classes in BioCRNpyler consist of object-oriented data structures with increasing complexity

which generate their own unique string representations. Table A in S1 Text describes the dif-

ferent species classes in BioCRNpyler. Similarly, BioCRNpyler comes equipped with many

diverse propensity function types including mass-action, Hill functions, and general user spec-

ified propensities described in Table B in S1 Text. The CRN classes inside BioCRNpyler pro-

vide useful functionality so that users can easily modify CRNs produced via compilation,

produce entire CRNs by hand, or interface hand-produced CRNs with compiled CRNs. Addi-

tionally, user-friendly printing functionality allows for the easy visualization of CRNs in multi-

ple text formats or as interactive reaction graphs formatted and drawn using Bokeh and

ForceAtlas2 [42, 43].

2.2 Mechanisms are reaction schemas

When modeling biological systems, modelers frequently make use of mass-action CRN kinet-

ics which ensure that parameters and states have clear underlying mechanistic meanings.

However, for the design of synthetic biological circuits and analysis using experimental data,

phenomenological or reduced-order models are commonly utilized as well [2]. Empirical

phenomenological models have been successful in predicting and analyzing complex circuit

behavior using simple models with only a few lumped parameters [44–46]. Bridging the con-

nections between the different modeling abstractions is a challenging research problem. This

has been explored in the literature using various approaches such as by direct mathematical

comparison of mechanistic and phenomenological models [47–49] or by studying particular

examples of reduced models [2]. BioCRNpyler provides a computational approach using reac-

tion schemas to easily change the mechanisms used in compilation from detailed mass-action

to coarse-grained at various level of complexity.

Reaction schemas refer to BioCRNpyler’s generalization of switching between different

mechanistic models: a single process can be modeled using multiple underlying motifs to gen-

erate a class of models which may have qualitatively different behavior. Mechanisms are the

BioCRNpyler objects responsible for defining reaction schemas. In other words, various levels

of abstractions and model reductions can all be represented easily by using built-in and custom

Mechanisms in BioCRNpyler. Biologically, reaction schemas can represent different under-

lying biochemical mechanisms or modeling assumptions and simplifications. For example, to

model the process of transcription (as shown in Fig 1), BioCRNpyler allows the use of various

phenomenological and mass-action kinetic models by simply changing the choice of reaction

PLOS COMPUTATIONAL BIOLOGY Chemical reaction network compilation with BioCRNpyler

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009987 April 20, 2022 4 / 19

https://doi.org/10.1371/journal.pcbi.1009987

schema. The simplest of these schemas “Simple Transcription” includes no details about how a

gene produces a transcription. “Michaelis Menten Transcription” elaborates on this simplifica-

tion by including the RNA polymerase enzyme in the model. “Michaelis Menten Transcription

with a Hill Function” simplifies the previous mass action model assuming a quasi-equilibrium

approximation of RNA polymerase binding. Finally, the “Multi-Occupancy Michaelis Menten

Transcription Model” aims to be more realistic by examining the possibility of multiple RNA

polymerase enzymes bound to a single transcript. Of course, these are not the only possible

transcription Mechanisms: more detailed models may include transcript elongation or

organism-specific co-factors, such as σ-factors in E. coli, which could also easily be included in

a BioCRNpyler Mechanism.

Formally, reaction schemas are functions that produce CRN species and reactions from a

set of input species and parameters: f : (S0, θ)!(S, R). Here the inputs S0 are chemical species

and θ are rate constants. The outputs S� S0 is an increased set of species and R is a set of reac-

tions. The functions f used to define the transcription reaction schemas in Fig 1 are examples

of relatively simple Mechanisms which do not have any internal logic. However, BioCRNpy-

ler allows for reaction schemas to be defined directly in Python. This allows for incredible flex-

ibility in defining Mechanisms capable of complex logic, combinatoric enumeration, or

other advanced functionality. The object oriented design of Mechanisms also allows model-

ers to generate CRNs at different levels of complexity and reuse CRN motifs for some Compo-
nents while customizing Mechanisms for others. Internally, each Mechanism class has a

type (e.g. transcription) which defines the input and output species it requires. BioCRNpyler

contains an extensive library of Mechanisms (Table C in S1 Text) which are easy to repur-

pose without extensive coding. Custom Mechanisms are also easy to define by subclassing

Mechanism as described in Section I in S1 Text. Ultimately, Mechanisms provides a

Fig 1. Mechanisms (reaction schemas) representing transcription.

https://doi.org/10.1371/journal.pcbi.1009987.g001

PLOS COMPUTATIONAL BIOLOGY Chemical reaction network compilation with BioCRNpyler

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009987 April 20, 2022 5 / 19

https://doi.org/10.1371/journal.pcbi.1009987.g001
https://doi.org/10.1371/journal.pcbi.1009987

unique capability to quickly compare system models across various levels of abstraction

enabling a more nuanced approach to circuit design and exploring system parameter regimes.

2.3 Components represent functionality

In BioCRNpyler, Components are biochemical parts or motifs, such as promoters, enzymes

and chemical complexes. Components represent biomolecular functionality; a promoter

enables transcription, enzymes perform catalysis, and chemical complexes must bind together.

Components express their functionality by calling particular Mechanism types during

compilation. Importantly, Components are not the same as CRN species; one species might

be represented by multiple Components and a Component might produce multiple species.

For example, a promoter Component will call transcription Mechanisms like those shown

in Fig 1. If the “Simple Transcription” Mechanism is used, the promoter will be represented

by a single species G. On the other hand, if the “Michaelis Menten Transcription” schema is

used, the promoter will actually have two forms: G and G:RNAP representing the free promoter

and the promoter bound to RNA polymerase. Components are flexible and can behave dif-

ferently in different contexts or behave context-independently. To define dynamic-context

behavior, Components will automatically use Mechanisms and parameters provided by

the Mixture. To define context-independent behavior, Components can have their own

internal Mechanisms and parameters. The BioCRNpyler library includes many kinds of

Component some of which are listed in S1 Text Table D. Custom Components can also be

easily created by subclassing another Component as described in Section II in S1 Text.

2.4 Mixtures represent context

Mixtures are collections of Components, Mechanisms, and parameters. Mixtures
can represent chemical context (e.g. cell extract vs. in vivo), as well as modeling resolution (e.g.

what level of detail to model transcription or translation at) by containing different internal

Components, Mechanisms, and parameters. BioCRNpyler comes with a variety of Mix-
tures (see Table E in S1 Text) to represent cell-extracts and cell-like systems with multiple

levels of modeling complexity. Custom Mixtures can also be easily created either by subclas-

sing an existing mixture or via a few simple scripting operations as described in Section III in

S1 Text.

2.5 Flexible parameter databases

Developing models is a process that involves defining then parameterizing interactions. Often,

at the early stage of model construction, exact parameter values will be unavailable. BioCRN-

pyler has a sophisticated parameter framework which allows for the software to search user-

populated parameter databases for the parameter that closest matches a specific Mechanism,

Component, and parameter name as illustrated in Fig 2. This allows for models to be rapidly

constructed and simulated with “ball-park” parameters and then later refined with specific

parameters derived from literature or experiments later. This framework also makes it easy to

incorporate diverse parameter files together and share parameters between many chemical

reactions. BioCRNpyler also allows each Component to have its own parameter database

allowing for multiple parameter sources to be combined easily. Components without their

own parameters default to the parameters stored in the Mixture.

PLOS COMPUTATIONAL BIOLOGY Chemical reaction network compilation with BioCRNpyler

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009987 April 20, 2022 6 / 19

https://doi.org/10.1371/journal.pcbi.1009987

2.6 Component enumeration allows for arbitrary complexity

Component enumeration is a powerful and specialized compilation step which allows new

Components to be generated dynamically. Internally, this is achieved in BioCRNpyler by

subclassing the ComponentEnumerator class to implement an arbitrary function in

Python g: C! C0 where C� C0 are sets of Components. In local component enumeration

the set C consist of just a single component c which contains its own ComponentEnumera-
tor. In global component enumeration, C consists of all components in the Mixture. As

more Components are generated, C0 will be fed back into g recursively until no new Compo-
nents are created or a user defined recursion depth is reached. Like Mechanisms, we

emphasize that component enumeration is highly flexible because the enumerators can be

written as Python code, allowing for diverse logic, combinatoric enumeration, and more. Sec-

tion 3.3 describes BioCRNpyler models that makes use of both local and global component

enumeration.

2.7 Specification example

Before describing the compilation algorithm in detail, we illustrate the central idea of a

BioCRNpyler specification via an example involving a DNAassembly Component which

represents a simple piece of DNA, called X, with a promoter, ribosome binding site, and cod-

ing sequence for a protein. The DNAassembly uses transcription and translation Mecha-
nisms which will be placed into a Mixture.
Create Mechanisms
tx = SimpleTranscription() #Transcription

Fig 2. BioCRNpyler parameter defaulting hierarchy. If a specific ParameterKey (orange boxes) cannot be found, the ParameterDatabase
automatically defaults to other ParameterKeys. This allows for parameter sharing and rapid construction of complex models from relatively few

non-specific (e.g. lower in the hierarchy) parameters.

https://doi.org/10.1371/journal.pcbi.1009987.g002

PLOS COMPUTATIONAL BIOLOGY Chemical reaction network compilation with BioCRNpyler

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009987 April 20, 2022 7 / 19

https://doi.org/10.1371/journal.pcbi.1009987.g002
https://doi.org/10.1371/journal.pcbi.1009987

tl = SimpleTranslation() #Translation
Create a Component
G = DNAassembly(“X”, promoter = “prom”, rbs = “rbs”, protein = “X”)
Define Parameters
params = {“kb”:100, “ku”:10, “ktx”:0.1, “ktl”:0.5,}
Place the Component and Mechanisms in a Mixture
M = Mixture(“mixture”, components = [G], mechanisms = [tx, tl],

parameters = params)
Compile the CRN
CRN = M.compile_crn()

This simple code compiles the CRN:

XDNA � !
0:1 XDNA þ XRNA XRNA � !

0:5 XRNA þ XProtein: ð1Þ

The modularity of BioCRNpyler can be illustrated by considering what would happen if we

instead used “Michaelis Menten” transcription and translation Mechanisms which model

RNA-polymerase (P) and ribosomes (R):
tx = Transcription_MM(rnap = Species(“P”)) #Transcription Mechanism
tl = Translation_MM(ribosome = Species(“R”)) #Translation Mechanism

This compiles a considerably more complex CRN:

XDNA þ PÐ
100

10
XDNA : P � !0:1 XDNA þ P þ XRNA

XRNA þ RÐ
100

10
XRNA : R � !0:5 XRNA þ Rþ XProtein:

Here, “:” indicates that two species are bound together to form a new species.

2.8 Chemical reaction network compilation

Having provided an overview of the core classes in BioCRNpyler, we will now describe the com-

pilation algorithm in detail. First, we assume a user has specified a Mixture and populated it

with Components, Mechanisms, and parameters. We note that some Components may

have their own internal Mechanisms and Parameters while others will be reliant on the

Mixture. Compilation proceeds in 7 steps, shown in Fig 3 and elaborated on below.

1. Global Component Enumeration: this step is optional and will only occur if a Mixture
contains a one or more global ComponentEnumerators. All Components in the

Mixture will be fed into the ComponentEnumerator recursively until either no new

Components are created or a user-specified recursion depth is reached.

2. Local Component Enumeration: this step is optional and will be applied to every Compo-
nent in the Mixture that contains a one or more local ComponentEnumerators.

Each of these Components will generate new Components from itself. If these new

Components contain local ComponentEnumerators they will also generate new

Components. Like global component enumeration, local component enumeration is

stopped when no new Components are created or a user-specified maximum recursion

depth is reached.

3. The Mixture iterates through all its internal Components (including those generated

via enumeration) and calls the Component’s update_species() and update_r-
eactions() methods.

4. In each Component’s update_species() and update_reactions() method,

the Component first searches for Mechanisms of the types it requires. Mechanisms

PLOS COMPUTATIONAL BIOLOGY Chemical reaction network compilation with BioCRNpyler

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009987 April 20, 2022 8 / 19

https://doi.org/10.1371/journal.pcbi.1009987

stored inside the Component will be used preferentially. If the Component does not

have a particular internal Mechanism, that Mechanism is instead retrieved from the

Mixture. The Component then calls the update_species(. . .) and update_r-
eactions(. . .) methods of each Mechanism supplying the proper parameters for that

Mechanism.

5. Mechanisms generate species and reactions based upon the arguments supplied by the

Component that called them. Mechanisms search for rate parameters in the parameter

database of the Component that called them. If no parameters are found, the Mechanism
will then search for parameters in the Mixture’s parameter database. Note that the same

Mechanism may be called multiple times with different parameters, effectively reusing the

reaction schema to compile a large CRN. The species and reactions generated this way are

returned to the Mixture.

6. Global Mechanisms are a special kind of Mechanism which are stored in the Mixture
and produce new species and reactions from a single species parameter. All species gener-

ated in previous steps are passed into the Mixture’s global Mechanisms to generate

additional species and reactions. Note that global Mechanisms are not called recursively.

7. The resulting species and reactions generated in the previous steps form a chemical reaction

network which can be modified programatically or exported as SBML.

2.9 Integrated testing

BioCRNpyler uses GitHub Actions and Codecov [50] to automate testing on GitHub. When-

ever the software is updated, a suite of tests is run including extensive unit tests and functional

testing of tutorial and documentation notebooks. Automated testing ensures that changes to

the core BioCRNpyler code preserve functionality of the package. The integration of Jupyter

notebooks into testing allows users to easily define new functionality for the software and doc-

ument that functionality with detailed explanations which are simultaneously tests cases.

Fig 3. A. the organization of classes in BioCRNpyler. Gray arrows indicate the hierarchical organization of objects (e.g. Components are contained in a

Mixture). Dark gray arrows take precedence over light gray arrows (e.g. a Component will search for Mechanisms in itself before looking at its

Mixture). Colored arrows denote the generate of objects: Components are orange, parameters are blue, and CRN species and reactions are yellow.

B. The compilation sequence in BioCRNpyler. The numbers on the arrows in (A) indicate which part of compilation these connections are involved in.

https://doi.org/10.1371/journal.pcbi.1009987.g003

PLOS COMPUTATIONAL BIOLOGY Chemical reaction network compilation with BioCRNpyler

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009987 April 20, 2022 9 / 19

https://doi.org/10.1371/journal.pcbi.1009987.g003
https://doi.org/10.1371/journal.pcbi.1009987

2.10 Documentation and tutorials

The BioCRNpyler GitHub page contains over a dozen tutorial Jupyter notebooks [40] and

video presentations explaining everything from the fundamental features of the code to spe-

cialized functionality for advanced models to how to add to the BioCRNpyler code-base [51].

This documentation has been used successfully in multiple academic courses and is guaran-

teed to be up-to-date and functional due to automatic testing.

3 Results

This section highlights the functionality of BioCRNpyler through a collection of models com-

piled using the software. All model simulations were conducted with Bioscrape [52], circuit

diagrams were created with DNAplotlib [53], and reaction network graphs were created with

BioCRNpyler’s plotting interface. Detailed descriptions alongside commented code for all the

following examples are available in S1 Text Section A and as Jupyter notebooks on the

BioCRNpyler GitHub page.

3.1 Synthetic biological circuit examples

Fig 4A, 4B and 4C show three models of synthetic biological circuits which demonstrate the

modularity and expressivity of BioCRNpyler. Underlying all these models is a single Compo-
nent class called a DNAassembly which was described in Section 2.7. These first three

examples use idealized models of their underlying biological processes via a very simple Mix-
ture. In Fig 4A two DNAassemblies are wired together with a repressor (red) repressing a

report (yellow). The repressor is expressed at a constant rate using the “Simple Transcription”

Mechanism shown in Fig 1 which is supplied by the Mixture. The reporter, on the other

hand, uses a different transcription Mechanism, “Negative Hill Repression” stored in its

DNAassembly. This illustrates the ability for the same process, transcription, to be modeled

in different ways within a single model. In Fig 4B, two DNAassembly Components are

wired to repress each other, both using Hill functions, to produce a model of the famous bis-

table toggle switch [54]. Similarly, Fig 4C wires three repressors together so A represses B, B

represses C, and C represses A, giving rise to a transcriptional oscillator called the repressilator

[55].

Fig 4D, 4E and 4F examine similar circuits to Fig 4A, 4B and 4C but with more complex

implementations modeled in a more detailed context. In these three following examples, a less

idealized Mixture is used which models transcription, translation, and RNA degradation

with biological machinery including RNA polymerase, ribosomes, and RNAses. Fig 4D exam-

ines a detailed implementation of a repression circuit consisting DNAassembly Compo-
nents which express a guide-RNA (gRNA) and deactived Cas9 (dCas9) protein [56]. The

dCas9-gRNA complex is capable of binding to the promoter of the reporter assembly, repress-

ing transcription. This more complex circuit in a complex context reveals some unexpected

behavior; if the amount of dCas9 and gRNA are not carefully balanced, resource loading can

give rise to unexpected increases and decreases of the reporter, a phenomena known as retro-

activity [57]. Fig 4E shows a hypothetical variation of a bistable toggle switch implemented via

translational regulation using targeted RNAses (RNAse A degrades the transcript for RNAse B

and visa-versa). Such a system could potentially be engineered via RNA-targeting Cas9 [58] or

more complex fusion proteins [59]. Finally, Fig 4F compiles a model of the repressilator which

allows for multiple ribosomes to bind to each transcript. The added complexity creates much

more complicated dynamics, but oscillatory behavior still clearly occurs. This example illus-

trates how BioCRNpyler can be used to test different modeling assumptions (e.g. does multiple

occupancy of ribosomes matter?).

PLOS COMPUTATIONAL BIOLOGY Chemical reaction network compilation with BioCRNpyler

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009987 April 20, 2022 10 / 19

https://doi.org/10.1371/journal.pcbi.1009987

Fig 4. Motivating examples. The idealized models (A, B, and C) do not model the cellular environment; genes and transcripts transcribe and translate

catalytically. A. Schematic and simulation of a constituitively active repressor gene repressing a reporter. B. Schematic and simulations of of a toggle

switch created by having two genes, A and B, mutually repress each other. C. Schematic and dynamics of a 3-repressor oscillator. The detailed models

(D, E, & F) model the cellular environment by including ribosomes, RNAases and background resource competition for cellular resources. D. A

dCas9-guideRNA complex binds to the promoter of a reporter and inhibiting transcription. Heatmap shows retroactivity caused by varying the amount

of dCas9 and guide-RNA expressed. The sharing of transcription and translational resources gives rise to increases and decreases of reporter even when

there is very little repressor. E. A proposed model for a non-transcriptional toggle switch formed by homodimer-RNAase; the homodimer-RNAase

made from subunit A selectively degrades the mRNA producing subunit B and visa-versa. F. A model of the Repressillator exploring the effects of

multiple ribosomes binding to the same mRNA. G. Histogram comparing the sizes of models A-F and the amount of BioCRNpyler code needed to

generate them.

https://doi.org/10.1371/journal.pcbi.1009987.g004

PLOS COMPUTATIONAL BIOLOGY Chemical reaction network compilation with BioCRNpyler

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009987 April 20, 2022 11 / 19

https://doi.org/10.1371/journal.pcbi.1009987.g004
https://doi.org/10.1371/journal.pcbi.1009987

Finally, we comment that all the examples from Fig 4 make use of the same underlying set

of 10–20 default parameters (estimated from Cell Biology by the Numbers [60]) demonstrating

how BioCRNpyler’s parameter database and defaulting behavior make model construction

and simulation possible even before detailed experiments or literature review. The efficiency

of using BioCRNpyler to explore diverse modeling assumptions and circuit architectures is

quantified in Fig 4G which compares the number of species, reactions, and ordinary differen-

tial equation terms in the compiled models to the lines of BioCRNpyler code needed to create

these models. In short, BioCRNpyler allows for the rapid generation of large and diverse mod-

els. Code for these six examples can be in Sections I-IV in S1 Text.

3.2 Systems biology circuit example

Fig 5 illustrates how a set of BioCRNpyler Components and Mechanisms can be joined

together to produce a systems level model of the lac operon—a highly studied gene regulatory

network in E. coli which regulates whether glucose or lactose is metabolized [61]. This specifi-

cation is shown in Fig 5A and consists of around a dozen Components and Mechanisms

Fig 5. A model of the lac operon compiled using BioCRNpyler specifications with 141 species and 271 reactions using *50 lines of code. A. A

Mixture contains a set of Components and Mechanisms. The Component classes used for each element of the model are shown in brackets.

The colored circles show how Components correspond to compiled CRN species in panel C. B. A schematic of the lac operon and the three looped

and one open conformation it can take. Each conformation contains a combinatoric number of states based upon the accessible binding sites: R are

lac repressor binding sites; C is the activator c-CRP binding site; P is the promoter; and Z, Y, A are the three lac genes. The conformations are placed

over clusters of identically colored species corresponding to that conformation in the compiled CRN. C. A graph representation of the compiled

CRN. Each circle is a unique chemical species. Square boxes show how chemical species interact via reactions generated by specific Mechanisms. D.

Simulated output of the model.

https://doi.org/10.1371/journal.pcbi.1009987.g005

PLOS COMPUTATIONAL BIOLOGY Chemical reaction network compilation with BioCRNpyler

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009987 April 20, 2022 12 / 19

https://doi.org/10.1371/journal.pcbi.1009987.g005
https://doi.org/10.1371/journal.pcbi.1009987

which jointly enumerate hundreds of species and reactions representing the combinatorial set

of conformations of the lac operon (depicted by the cartoons in panel B) and its associated

transcription factors, transcription, translation, transport, mRNA degradation and dilution.

Besides showing how BioCRNpyler can be applied to model the kinds of combinatoric interac-

tions common in systems biology, this example also graphically illustrates the BioCRNpyler

abstraction where Components interact via Mechanisms in order to generate a large, com-

plex CRN (panel C). Furthermore, this example highlights that the Component species map-

ping is not one-to-one. For example, the Lac Operon is modeled as two Components one

representing the promoter architecture and another coupling that promoter to translation.

Jointly, these two Components produce a combinatoric number of formal CRN species

(shown in panel C by the many different blue dots). Similarly, β-galactosidase is modeled as

two Components: as an enzyme (which metabolizes lactose) and a chemical complex

(because it is a homeotetramer). Finally, we note that the simulated output of our model

(Fig 5D) produces a*1-2 hour delay between the depletion of glucose and steady state lactose

metabolism, consistent with previous models and experiments [61]. Interestingly, this is

observed even though we made no efforts to fine-tune our parameters, suggesting that the

combinatorial nature of this system may give rise to this behavior in a manner that is robust to

detailed kinetic rates. The code used to generate this model can be found in Section VII in S1

Text.

3.3 Component enumeration example

Fig 6 shows three example circuits which make use of component enumeration in order to

produce sophisticated CRNs. Local component enumeration is illustrated in Fig 6A. Here, a

single DNA Component (top) uses local component enumeration to read through the parts

included in its plasmid and determine all possible correctly oriented terminator-promoter

pairs. This information is then used to produce multiple RNA Components which model

transcription and translation for complex genetic circuit architectures. The CRN and simula-

tion output for this circuit are shown in Fig 6B and 6C, respectively. Fig 6D provides an exam-

ple of global component enumeration involving the enzymatic recombination of DNA.

Specifically, serine integrases (such as Bxb1) are enzymes capable of recombining strands of

DNA at specific integration sites [62]. Integration events can happen within a single piece of

DNA (top two reactions in panel D) or between multiple DNA species (bottom 4 reactions of

panel D). In these reactions, the integrase binds to attP and attB sites and reorganizes them

into attL and attR sites which can result in DNA insertions, excisions, or re-orientations.

Importantly, each new DNA strand produced by an integrase reaction could potentially

recombine with itself or the other strands already produced. Such systems can give rise to theo-

retically infinite CRNs [63]. BioCRNpyler can approximate integrase systems by recursively

using a global component enumerator. In this example, only a single round of recursion is

shown for clarity. The clusters of dots in Fig 6E are due to the combinatoric number bound

and unbound states due to the potential for integrases to bind and unbind to attP, attB, attL,

and attR sites. Finally, the BioCRNpyler framework is designed so that local and global compo-

nent enumeration are mutually compatible. In Fig 6F, a model of a self-flipping promoter is

shown. Initially, the promoter faces right and expresses the integrase Bxb1 which in turn flips

the promoter causing Bxb1 expression to cease in favor of RFP expression. In BioCRNpyler,

this model is compiled by first using global component enumeration to produce all the possi-

ble DNA Components generated by integrase recombinations. Each of these DNA Compo-
nents then uses local component enumeration to produce RNA Components. All these

Components can then be used to compile a CRN by calling their respective Mechanisms.

PLOS COMPUTATIONAL BIOLOGY Chemical reaction network compilation with BioCRNpyler

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009987 April 20, 2022 13 / 19

https://doi.org/10.1371/journal.pcbi.1009987

More details about local and global component enumeration, including code for the example

models, can be found in Sections VIII-X in S1 Text.

4 Availability and future directions

BioCRNpyler aims to be a piece of open-source community driven software that is easily

accessible to biologists and bioengineers with varying levels of programming experience as

well as easily customizable by computational biologists and more advanced developers.

Towards these ends, the software package is available via GitHub and PyPi, requires very mini-

mal software dependencies, contains extensive examples and documentation in the form of

interactive Jupyter notebooks [40], YouTube tutorials [51], and automated testing to ensure

stability. Furthermore this software has been extensively tested via inclusion in bio-modeling

courses and bootcamps for users ranging from college freshmen and sophomores with mini-

mal coding experience to advanced computational biologists demonstrating the accessibility

and flexibility of the package. BioCRNpyler has already been deployed to build diverse models

in synthetic biology including modeling bacterial gene regulatory networks [64], modeling

bacterial circuits in the gut microbiome [65], and modeling cell extract metabolism [66].

Developing new software functionality is also a simple process documented on the GitHub

contributions page.

Fig 6. Examples involving component enumeration. A. Schematic of local component enumeration for a gene expression circuit where a single DNA

Component generates multiple RNA Components. B. The CRN for (A) represented graphically. Colored dots are species corresponding to the

components adjacent to the dots in (A). C. Simulated output from the CRN in (B). D. Schematic of global component enumeration in an integrase

circuit where one or more DNA Components recombine to produce new DNA Components. Note that the larger DNA outputs could also

recombined analogously but this is not shown. E. The CRN for (D) represented graphically. Colored dots are species which correspond to the

components adjacent to the dots in (D). F. A genetic circuit which combines global and local component enumeration to flip a promoter which drives

gene expression. G. The CRN for the circuit in (F). Colored dots are species representing the components adjacent to the dots in (F). H. Simulated

output of the CRN.

https://doi.org/10.1371/journal.pcbi.1009987.g006

PLOS COMPUTATIONAL BIOLOGY Chemical reaction network compilation with BioCRNpyler

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009987 April 20, 2022 14 / 19

https://doi.org/10.1371/journal.pcbi.1009987.g006
https://doi.org/10.1371/journal.pcbi.1009987

Given the plethora of model building and simulation software already in existence, it is

important to highlight how BioCRNpyler fits into the larger context of existing tools. Table 1

gives a high level overview of how BioCRNpyler compares to other tools. Firstly, BioCRNpyler

stands out due to the novel Mixture-Component-Mechanism abstraction. This frame-

work allows users to easily put together complex models using BioCRNpyler’s extensive library

or to develop their own extensions by writing Python code. Rule based frameworks, such as

BioNetGen [36] and PySB [37] offer similar abstractions to Mechanisms. However, these

must be codified in a formal language specific to the framework (BioNetGen uses .bng files

and PySB uses a specialized text format) which offers less flexibility than the arbitrary python

code allowed by BioCRNpyler. The Virtual Parts Repository [35] and iBioSim [34] take a dif-

ferent approach to abstract specifications by generating CRNs from SBOL files. This method-

ology is similar in spirit to BioCRNpyler but is restricted due to the reliance on the SBOL

standard, the need of software-specific SBOL annotations, and challenges in generalizing

beyond gene regulatory network architectures. BioCRNpyler also differs from many other

pieces of software because it includes a detailed library of biological parts and models. PySB,

Virtual Parts Repository, and iBioSim similarly include a variety of built-in rules, models, and

parts, respectively. However, BioCRNpyler is unique in its modularity: the ability to use the

same Component with different Mechanisms placed in different Mixtures allows for a

combinatoric variety of models to be easily specified and explored. Finally, we reiterate that

BioCRNpyler is not a CRN simulator like COPASI [11], MATLAB Simbiology [13], or Tellu-

rium (via libroadrunner) [12, 14]. This brings us to a final point about BioCRNpyler: it is a

pure Python package with very minimal dependencies meant to be used as a scripting lan-

guage, interfaced with existing simulators, used in Jupyter notebooks [67], and integrated into

existing pipelines.

BioCRNpyler is an ongoing effort which will grow and change with the needs of its commu-

nity. Extending this community via outreach, documentation, and an ever expanding suite of

functionalities is central to the goals of this project. We are particularly interested in facilitating

the integration of BioCRNpyler into existing laboratory pipelines in order to make modeling a

central part of the design-build-test cycle in synthetic biology. One avenue towards this goal is

to add compatibility to existing standards such as SBOL [31] and automation platforms such

as DNA-BOT [68] so BioCRNpyler can automatically compile models of circuits as they are

being designed and built. This approach will be a generalization and extension of Roehner

Table 1. Comparison of different simulation software. Abstraction: how models can be represented in the software. Library: whether there is a substantial library of

pre-existing parts/components/sub-models that can be reused. Simulator: whether the software simulates models numerically. Source: the language(s) the software is writ-

ten in. UI: the primary way a user interacts with the software. API: the primary programming language the software is designed to be accessed with.

Software Abstraction Library Simulator Source UI API

BioCRNpyler [40] Mixtures, Components,

Mechanisms, & CRNs

Yes No Python Python Python

BioNetGen [36] Rules No Yes Perl C+

+ Python

.bng files .bng files

PySB [37] Rules Yes No Python Text Rules Python

Tellurium [12] (using Antimony [30] and

libRoadrunner [14])

CRNs No Yes Python Text

Reactions

Python

Virtual Parts Repository [35] SBOL Yes No Java Web Java

iBioSim [34] SBOL & CRNs Yes Yes Java GUI Command line

COPASI [11] CRNs No Yes Java C++ GUI C++ & other derived

APIs

MATLAB Simbiology [13] CRNs No Yes MATLAB MATLAB MATLAB

https://doi.org/10.1371/journal.pcbi.1009987.t001

PLOS COMPUTATIONAL BIOLOGY Chemical reaction network compilation with BioCRNpyler

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009987 April 20, 2022 15 / 19

https://doi.org/10.1371/journal.pcbi.1009987.t001
https://doi.org/10.1371/journal.pcbi.1009987

et al. [69]. In particular due to the modular BioCRNpyler compilation process, it will be possi-

ble to have programmatic control over the SBML model produced from BioCRNpyler.

We also plan on extending the library to include more realistic and diverse Mixtures,

Mechanisms, and Components (particularly experimentally validated models of circuits

in E. coli and in cell extracts). We hope that these models will serve as examples and inspiration

for other scientists to add their own model systems in other organisms to the software library.

Finally, we believe that the Mixture-Component-Mechanism abstraction of model

compilation used in BioCRNpyler is quite fundamental and could be extended to other non-

CRN based modeling approaches. Advanced simulation techniques beyond chemical reaction

networks will be required to accurately model the diversity and complexity of biological sys-

tems. New software frameworks such as Vivarium [64] have the potential to generate models

which couple many simulation modalities. The abstractions used in BioCRNpyler could be

extended to compile models beyond chemical reaction networks such as mechanical models,

flux balance models, and statistical models derived from data. The integration of these models

together will naturally depend on both detailed mechanistic descriptions as well as overarching

system context. We emphasize that building extendable and reusable frameworks to enable

quantitative modeling in biology will become increasingly necessary to understand and design

ever more complex biochemical systems.

Supporting information

S1 Text. Table A: (CRN Species Classes the BioCRNpyler Library). Table B: (Reaction Pro-

pensities in the BioCRNpyler Library). Table C: (Some Mechanisms in the BioCRNpyler

Library). Table D: (Some Components in the BioCRNpyler Library). Table E: (Some Mixtures

in the BioCRNpyler. Library).

(PDF)

Acknowledgments

We would like to thank the https://murray.cds.caltech.edu/BE_240,_Spring_2020 and the

Murray Biocircuits lab for extensive testing of this software and discussions of relevant models,

library of parts, and parameters. In particular, we would like to thank Zoila Jurado, Matthieu

Kratz, Liana Merk, and Ankita Roychoudhury for contributing to the software library.

Author Contributions

Conceptualization: William Poole, Ayush Pandey, Richard M. Murray.

Funding acquisition: Richard M. Murray.

Investigation: William Poole.

Methodology: William Poole, Ayush Pandey, Andrey Shur, Zoltan A. Tuza, Richard M.

Murray.

Project administration: William Poole, Richard M. Murray.

Software: William Poole, Ayush Pandey, Andrey Shur, Zoltan A. Tuza.

Visualization: William Poole, Andrey Shur.

Writing – original draft: William Poole.

Writing – review & editing: William Poole, Ayush Pandey, Andrey Shur, Zoltan A. Tuza,

Richard M. Murray.

PLOS COMPUTATIONAL BIOLOGY Chemical reaction network compilation with BioCRNpyler

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009987 April 20, 2022 16 / 19

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1009987.s001
https://murray.cds.caltech.edu/BE_240,_Spring_2020
https://doi.org/10.1371/journal.pcbi.1009987

References
1. Alon U. An introduction to systems biology: design principles of biological circuits. CRC press; 2019.

2. Vecchio DD, Murray RM. Biomolecular Feedback Systems. Princton University Press; 2014.

3. Weng G, Bhalla US, Iyengar R. Complexity in Biological Signaling Systems. Science. 1999; 284

(5411):92–96. https://doi.org/10.1126/science.284.5411.92 PMID: 10102825

4. Gillespie DT. Stochastic simulation of chemical kinetics. Annu Rev Phys Chem. 2007; 58:35–55.

https://doi.org/10.1146/annurev.physchem.58.032806.104637 PMID: 17037977

5. Gunawardena J. Chemical reaction network theory for in-silico biologists. Notes available for download

at http://vcpmedharvardedu/papers/crntpdf. 2003;.

6. Soloveichik D, Cook M, Winfree E, Bruck J. Computation with finite stochastic chemical reaction net-

works. natural computing. 2008; 7(4):615–633. https://doi.org/10.1007/s11047-008-9067-y

7. Schmiedl T, Seifert U. Stochastic thermodynamics of chemical reaction networks. The Journal of chem-

ical physics. 2007; 126(4):044101. https://doi.org/10.1063/1.2428297 PMID: 17286456

8. Morrison MJ, Razo-Mejia M, Phillips R. Reconciling Kinetic and Equilibrium Models of Bacterial Tran-

scription. arXiv preprint arXiv:200607772. 2020;.

9. Cinquemani E. Identifiability and reconstruction of biochemical reaction networks from population snap-

shot data. Processes. 2018; 6(9):136. https://doi.org/10.3390/pr6090136

10. Hsiao V, Swaminathan A, Murray RM. Control theory for synthetic biology: recent advances in system

characterization, control design, and controller implementation for synthetic biology. IEEE Control Sys-

tems Magazine. 2018; 38(3):32–62. https://doi.org/10.1109/MCS.2018.2810459

11. Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, et al. COPASI—a complex pathway simulator.

Bioinformatics. 2006; 22(24):3067–3074. https://doi.org/10.1093/bioinformatics/btl485 PMID:

17032683

12. Choi K, Medley JK, König M, Stocking K, Smith L, Gu S, et al. Tellurium: an extensible python-based

modeling environment for systems and synthetic biology. Biosystems. 2018; 171:74–79. https://doi.org/

10.1016/j.biosystems.2018.07.006 PMID: 30053414

13. The MathWorks, Inc. MATLAB Simbiology Toolbox; 2022. Available from: https://www.mathworks.com/

help/simbio/.

14. Somogyi ET, Bouteiller JM, Glazier JA, König M, Medley JK, Swat MH, et al. libRoadRunner: a high per-

formance SBML simulation and analysis library. Bioinformatics. 2015; 31(20):3315–3321. https://doi.

org/10.1093/bioinformatics/btv363 PMID: 26085503

15. Le Novere N, Bornstein B, Broicher A, Courtot M, Donizelli M, Dharuri H, et al. BioModels Database: a

free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular

systems. Nucleic acids research. 2006; 34(suppl_1):D689–D691. https://doi.org/10.1093/nar/gkj092

PMID: 16381960

16. Cooling MT, Rouilly V, Misirli G, Lawson J, Yu T, Hallinan J, et al. Standard virtual biological parts: a

repository of modular modeling components for synthetic biology. Bioinformatics. 2010; 26(7):925–931.

https://doi.org/10.1093/bioinformatics/btq063 PMID: 20160009

17. Benner SA, Sismour AM. Synthetic biology. Nature Reviews Genetics. 2005; 6(7):533–543. https://doi.

org/10.1038/nrg1637 PMID: 15995697

18. Nielsen AAK, Der BS, Shin J, Vaidyanathan P, Paralanov V, Strychalski EA, et al. Genetic circuit design

automation. Science. 2016; 352(6281):aac7341–aac7341. https://doi.org/10.1126/science.aac7341

PMID: 27034378

19. Guiziou S, Pérution-Kihli G, Ulliana F, Leclère M, Bonnet J. Exploring the design space of recombinase

logic circuits. bioRxiv. 2019;.

20. Soloveichik D, Seelig G, Winfree E. DNA as a universal substrate for chemical kinetics. Proceedings of

the National Academy of Sciences. 2010; 107(12):5393–5398. https://doi.org/10.1073/pnas.

0909380107 PMID: 20203007

21. Qian L, Winfree E. Scaling up digital circuit computation with DNA strand displacement cascades. Sci-

ence. 2011; 332(6034):1196–1201. https://doi.org/10.1126/science.1200520 PMID: 21636773

22. Srinivas N, Parkin J, Seelig G, Winfree E, Soloveichik D. Enzyme-free Nucleic Acid Dynamical Sys-

tems. Science. 2017; 358 (6369). https://doi.org/10.1126/science.aal2052 PMID: 29242317

23. VasićM, Soloveichik D, Khurshid S. CRN++: Molecular programming language. Natural Computing.

2020; p. 1–17.

24. Spaccasassi C, Lakin MR, Phillips A. A logic programming language for computational nucleic acid

devices. ACS synthetic biology. 2018; 8(7):1530–1547. https://doi.org/10.1021/acssynbio.8b00229

PMID: 30372611

PLOS COMPUTATIONAL BIOLOGY Chemical reaction network compilation with BioCRNpyler

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009987 April 20, 2022 17 / 19

https://doi.org/10.1126/science.284.5411.92
http://www.ncbi.nlm.nih.gov/pubmed/10102825
https://doi.org/10.1146/annurev.physchem.58.032806.104637
http://www.ncbi.nlm.nih.gov/pubmed/17037977
http://vcpmedharvardedu/papers/crntpdf
https://doi.org/10.1007/s11047-008-9067-y
https://doi.org/10.1063/1.2428297
http://www.ncbi.nlm.nih.gov/pubmed/17286456
https://doi.org/10.3390/pr6090136
https://doi.org/10.1109/MCS.2018.2810459
https://doi.org/10.1093/bioinformatics/btl485
http://www.ncbi.nlm.nih.gov/pubmed/17032683
https://doi.org/10.1016/j.biosystems.2018.07.006
https://doi.org/10.1016/j.biosystems.2018.07.006
http://www.ncbi.nlm.nih.gov/pubmed/30053414
https://www.mathworks.com/help/simbio/
https://www.mathworks.com/help/simbio/
https://doi.org/10.1093/bioinformatics/btv363
https://doi.org/10.1093/bioinformatics/btv363
http://www.ncbi.nlm.nih.gov/pubmed/26085503
https://doi.org/10.1093/nar/gkj092
http://www.ncbi.nlm.nih.gov/pubmed/16381960
https://doi.org/10.1093/bioinformatics/btq063
http://www.ncbi.nlm.nih.gov/pubmed/20160009
https://doi.org/10.1038/nrg1637
https://doi.org/10.1038/nrg1637
http://www.ncbi.nlm.nih.gov/pubmed/15995697
https://doi.org/10.1126/science.aac7341
http://www.ncbi.nlm.nih.gov/pubmed/27034378
https://doi.org/10.1073/pnas.0909380107
https://doi.org/10.1073/pnas.0909380107
http://www.ncbi.nlm.nih.gov/pubmed/20203007
https://doi.org/10.1126/science.1200520
http://www.ncbi.nlm.nih.gov/pubmed/21636773
https://doi.org/10.1126/science.aal2052
http://www.ncbi.nlm.nih.gov/pubmed/29242317
https://doi.org/10.1021/acssynbio.8b00229
http://www.ncbi.nlm.nih.gov/pubmed/30372611
https://doi.org/10.1371/journal.pcbi.1009987

25. Badelt S, Grun C, Sarma KV, Wolfe B, Shin SW, Winfree E. A domain-level DNA strand displacement

reaction enumerator allowing arbitrary non-pseudoknotted secondary structures. Journal of the Royal

Society Interface. 2020; 17(167):20190866. https://doi.org/10.1098/rsif.2019.0866 PMID: 32486951

26. Seelig G, Yurke B, Winfree E. Catalyzed Relaxation of a Metastable DNA Fuel. Journal of the American

Chemical Society. 2006; 128(37):12211–12220. https://doi.org/10.1021/ja0635635 PMID: 16967972

27. Zhang DY, Turberfield AJ, Yurke B, Winfree E. Engineering Entropy-driven Reactions and Networks

Catalyzed by DNA. Science. 2007; 318(5853):1121–1125. https://doi.org/10.1126/science.1148532

PMID: 18006742

28. Badelt S, Shin SW, Johnson RF, Dong Q, Thachuk C, Winfree E. A general-purpose CRN-to-DSD com-

piler with formal verification, optimization, and simulation capabilities. In: International Conference on

DNA-Based Computers. Springer; 2017. p. 232–248.

29. Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, et al. The systems biology markup lan-

guage (SBML): a medium for representation and exchange of biochemical network models. Bioinfor-

matics. 2003; 19(4):524–531. https://doi.org/10.1093/bioinformatics/btg015 PMID: 12611808

30. Smith LP, Bergmann FT, Chandran D, Sauro HM. Antimony: A Modular Model Definition Language.

Bioinformatics. 2009; 25(18):2452–2454. https://doi.org/10.1093/bioinformatics/btp401 PMID:

19578039

31. Galdzicki M, Clancy KP, Oberortner E, Pocock M, Quinn JY, Rodriguez CA, et al. The Synthetic Biology

Open Language (SBOL) provides a community standard for communicating designs in synthetic biol-

ogy. Nature biotechnology. 2014; 32(6):545–550. https://doi.org/10.1038/nbt.2891 PMID: 24911500

32. Smith LP, Hucka M, Hoops S, Finney A, Ginkel M, Myers CJ, et al. SBML level 3 package: hierarchical

model composition, version 1 release 3. Journal of integrative bioinformatics. 2015; 12(2):603–659.

https://doi.org/10.2390/biecoll-jib-2015-268 PMID: 26528566

33. Myers CJ, et al. iBioSim: a tool for the analysis and design of genetic circuits. Bioinformatics. 2009; 25

(21):2848–2849. https://doi.org/10.1093/bioinformatics/btp457 PMID: 19628507

34. Watanabe L, Nguyen T, Zhang M, Zundel Z, Zhang Z, Madsen C, et al. iBioSim 3: a tool for model-

based genetic circuit design. ACS synthetic biology. 2018; 8(7):1560–1563. https://doi.org/10.1021/

acssynbio.8b00078 PMID: 29944839

35. Mısırlı G, Yang B, James K, Wipat A. Virtual Parts Repository 2: Model-Driven Design of Genetic Regu-

latory Circuits. ACS Synthetic Biology. 0;0(0):null. PMID: 34762797

36. Harris LA, et al. BioNetGen 2.2: advances in rule-based modeling. Bioinformatics. 2016; 32(21):3366–

3368. https://doi.org/10.1093/bioinformatics/btw469 PMID: 27402907

37. Lopez CF, Muhlich JL, Bachman JA, Sorger PK. Programming biological models in Python using PySB.

Molecular systems biology. 2013; 9(1):646. https://doi.org/10.1038/msb.2013.1 PMID: 23423320

38. Tuza ZA, et al. An in silico modeling toolbox for rapid prototyping of circuits in a biomolecular “bread-

board” system. In: 52nd IEEE Conference on Decision and Control; 2013. p. 1404–1410.

39. Singhal V, Tuza ZA, Sun ZZ, Murray RM. A MATLAB toolbox for modeling genetic circuits in cell-free

systems. Synthetic Biology. 2021; 6(1):ysab007. https://doi.org/10.1093/synbio/ysab007 PMID:

33981862

40. Poole W, Pandey A, Shur A, Tuza Z, Murray RM. BioCRNpyler Github Repository; 2022. Accessed 01-

09-2022. https://github.com/BuildACell/BioCRNpyler.

41. Hucka M, et al. The systems biology markup language (SBML): a medium for representation and

exchange of biochemical network models. Bioinformatics. 2003; 19(4):524–531. https://doi.org/10.

1093/bioinformatics/btg015 PMID: 12611808

42. Bokeh Development Team. Bokeh: Python library for interactive visualization; 2020. Available from:

https://bokeh.org/.

43. Jacomy M, Venturini T, Heymann S, Bastian M. ForceAtlas2, a Continuous Graph Layout Algorithm for

Handy Network Visualization Designed for the Gephi Software. PLoS ONE. 2014; 9(6):e98679. https://

doi.org/10.1371/journal.pone.0098679 PMID: 24914678

44. Moore SJ, MacDonald JT, Wienecke S, Ishwarbhai A, Tsipa A, Aw R, et al. Rapid acquisition and

model-based analysis of cell-free transcription–translation reactions from nonmodel bacteria. Proceed-

ings of the National Academy of Sciences. 2018; 115(19):E4340–E4349. https://doi.org/10.1073/pnas.

1715806115 PMID: 29666238

45. Meyer AJ, Segall-Shapiro TH, Voigt CA. Marionette: E. coli containing 12 highly-optimized small mole-

cule sensors. bioRxiv. 2018; p. 285866.

46. Hu CY, Varner JD, Lucks JB. Generating effective models and parameters for RNA genetic circuits.

ACS synthetic biology. 2015; 4(8):914–926. https://doi.org/10.1021/acssynbio.5b00077 PMID:

26046393

PLOS COMPUTATIONAL BIOLOGY Chemical reaction network compilation with BioCRNpyler

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009987 April 20, 2022 18 / 19

https://doi.org/10.1098/rsif.2019.0866
http://www.ncbi.nlm.nih.gov/pubmed/32486951
https://doi.org/10.1021/ja0635635
http://www.ncbi.nlm.nih.gov/pubmed/16967972
https://doi.org/10.1126/science.1148532
http://www.ncbi.nlm.nih.gov/pubmed/18006742
https://doi.org/10.1093/bioinformatics/btg015
http://www.ncbi.nlm.nih.gov/pubmed/12611808
https://doi.org/10.1093/bioinformatics/btp401
http://www.ncbi.nlm.nih.gov/pubmed/19578039
https://doi.org/10.1038/nbt.2891
http://www.ncbi.nlm.nih.gov/pubmed/24911500
https://doi.org/10.2390/biecoll-jib-2015-268
http://www.ncbi.nlm.nih.gov/pubmed/26528566
https://doi.org/10.1093/bioinformatics/btp457
http://www.ncbi.nlm.nih.gov/pubmed/19628507
https://doi.org/10.1021/acssynbio.8b00078
https://doi.org/10.1021/acssynbio.8b00078
http://www.ncbi.nlm.nih.gov/pubmed/29944839
http://www.ncbi.nlm.nih.gov/pubmed/34762797
https://doi.org/10.1093/bioinformatics/btw469
http://www.ncbi.nlm.nih.gov/pubmed/27402907
https://doi.org/10.1038/msb.2013.1
http://www.ncbi.nlm.nih.gov/pubmed/23423320
https://doi.org/10.1093/synbio/ysab007
http://www.ncbi.nlm.nih.gov/pubmed/33981862
https://github.com/BuildACell/BioCRNpyler
https://doi.org/10.1093/bioinformatics/btg015
https://doi.org/10.1093/bioinformatics/btg015
http://www.ncbi.nlm.nih.gov/pubmed/12611808
https://bokeh.org/
https://doi.org/10.1371/journal.pone.0098679
https://doi.org/10.1371/journal.pone.0098679
http://www.ncbi.nlm.nih.gov/pubmed/24914678
https://doi.org/10.1073/pnas.1715806115
https://doi.org/10.1073/pnas.1715806115
http://www.ncbi.nlm.nih.gov/pubmed/29666238
https://doi.org/10.1021/acssynbio.5b00077
http://www.ncbi.nlm.nih.gov/pubmed/26046393
https://doi.org/10.1371/journal.pcbi.1009987

47. Pasotti L, Bellato M, De Marchi D, Magni P. Mechanistic models of inducible synthetic circuits for joint

description of DNA copy number, regulatory protein level, and cell load. Processes. 2019; 7(3):119.

https://doi.org/10.3390/pr7030119

48. Transtrum MK, Qiu P. Bridging mechanistic and phenomenological models of complex biological sys-

tems. PLoS computational biology. 2016; 12(5):e1004915. https://doi.org/10.1371/journal.pcbi.

1004915 PMID: 27187545

49. Pandey A, Murray RM. Model Reduction Tools For Phenomenological Modeling of Input-Controlled Bio-

logical Circuits. bioRxiv. 2020;.

50. Team CD. Codecov Software Package; 2022. https://codecov.io/.

51. Poole W, Pandey A. BuildaCell Youtube Channel; 2020. https://www.youtube.com/watch?v=mu-

9MSntd2w&list=PLb2LmjoxZO-g2vbTr3HBcnvVZur8JFiqf.

52. Swaminathan A, et al. Fast and flexible simulation and parameter estimation for synthetic biology using

bioscrape. bioRxiv. 2019; p. 121152.

53. Der BS, Glassey E, Bartley BA, Enghuus C, Goodman DB, Gordon DB, et al. DNAplotlib: programma-

ble visualization of genetic designs and associated data. ACS synthetic biology. 2017; 6(7):1115–1119.

https://doi.org/10.1021/acssynbio.6b00252 PMID: 27744689

54. Gardner TS, Cantor CR, Collins JJ. Construction of a genetic toggle switch in Escherichia coli. Nature.

2000; 403(6767):339–342. https://doi.org/10.1038/35002131 PMID: 10659857

55. Elowitz MB, et al. A synthetic oscillatory network of transcriptional regulators. Nature. 2000; 403

(6767):335–338. https://doi.org/10.1038/35002125 PMID: 10659856

56. Cress BF, Toparlak OD, Guleria S, Lebovich M, Stieglitz JT, Englaender JA, et al. CRISPathBrick: mod-

ular combinatorial assembly of type II-A CRISPR arrays for dCas9-mediated multiplex transcriptional

repression in E. coli. ACS synthetic biology. 2015; 4(9):987–1000. https://doi.org/10.1021/acssynbio.

5b00012 PMID: 25822415

57. Jayanthi S, Nilgiriwala KS, Del Vecchio D. Retroactivity controls the temporal dynamics of gene tran-

scription. ACS synthetic biology. 2013; 2(8):431–441. https://doi.org/10.1021/sb300098w PMID:

23654274

58. Strutt SC, Torrez RM, Kaya E, Negrete OA, Doudna JA. RNA-dependent RNA targeting by CRISPR-

Cas9. elife. 2018; 7:e32724. https://doi.org/10.7554/eLife.32724 PMID: 29303478

59. Dang DT, Phan AT. Development of a ribonuclease containing a G4-specific binding motif for program-

mable RNA cleavage. Scientific reports. 2019; 9(1):1–7. https://doi.org/10.1038/s41598-019-42143-8

PMID: 31092834

60. Milo R, et al. Cell biology by the numbers. Garland Science; 2015.

61. Santillán M, Mackey MC. Quantitative approaches to the study of bistability in the lac operon of Escheri-

chia coli. Journal of The Royal Society Interface. 2008; 5(suppl_1):S29–S39.

62. Rutherford K, Yuan P, Perry K, Sharp R, Van Duyne GD. Attachment site recognition and regulation of

directionality by the serine integrases. Nucleic acids research. 2013; 41(17):8341–8356. https://doi.org/

10.1093/nar/gkt580 PMID: 23821671

63. Paun G. On the Power of the Splicing Operation. International Journal of Computer Mathematics. 1995;

59(1-2):27–35. https://doi.org/10.1080/00207169508804451

64. Agmon E, Spangler RK, Skalnik CJ, Poole W, Peirce SM, Morrison JH, et al. Vivarium: an interface and

engine for integrative multiscale modeling in computational biology. bioRxiv. 2021;.

65. Merk LN, Shur AS, Pandey A, Murray RM, Green LN. Engineering Logical Inflammation Sensing Circuit

for Gut Modulation. bioRxiv. 2020;.

66. Roychoudhury A. Understanding the Lifetime and Rate of Protein Production in Cell-Free Reactions

While Maximizing Energy Use [B.S. Thesis]. California Institute of Technology; 2021.

67. Perkel JM. Why Jupyter is Data Scientists’ Computational Notebook of Choice. Nature. 2018; 563

(7732):145–147. https://doi.org/10.1038/d41586-018-07196-1 PMID: 30375502

68. Storch M, Haines MC, Baldwin GS. DNA-BOT: a low-cost, automated DNA assembly platform for syn-

thetic biology. Synthetic Biology. 2020; 5(1):ysaa010. https://doi.org/10.1093/synbio/ysaa010 PMID:

32995552

69. Roehner N, Zhang Z, Nguyen T, Myers CJ. Generating systems biology markup language models from

the synthetic biology open language. ACS synthetic biology. 2015; 4(8):873–879. https://doi.org/10.

1021/sb5003289 PMID: 25822671

PLOS COMPUTATIONAL BIOLOGY Chemical reaction network compilation with BioCRNpyler

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009987 April 20, 2022 19 / 19

https://doi.org/10.3390/pr7030119
https://doi.org/10.1371/journal.pcbi.1004915
https://doi.org/10.1371/journal.pcbi.1004915
http://www.ncbi.nlm.nih.gov/pubmed/27187545
https://codecov.io/
https://www.youtube.com/watch?v=mu-9MSntd2w&list=PLb2LmjoxZO-g2vbTr3HBcnvVZur8JFiqf
https://www.youtube.com/watch?v=mu-9MSntd2w&list=PLb2LmjoxZO-g2vbTr3HBcnvVZur8JFiqf
https://doi.org/10.1021/acssynbio.6b00252
http://www.ncbi.nlm.nih.gov/pubmed/27744689
https://doi.org/10.1038/35002131
http://www.ncbi.nlm.nih.gov/pubmed/10659857
https://doi.org/10.1038/35002125
http://www.ncbi.nlm.nih.gov/pubmed/10659856
https://doi.org/10.1021/acssynbio.5b00012
https://doi.org/10.1021/acssynbio.5b00012
http://www.ncbi.nlm.nih.gov/pubmed/25822415
https://doi.org/10.1021/sb300098w
http://www.ncbi.nlm.nih.gov/pubmed/23654274
https://doi.org/10.7554/eLife.32724
http://www.ncbi.nlm.nih.gov/pubmed/29303478
https://doi.org/10.1038/s41598-019-42143-8
http://www.ncbi.nlm.nih.gov/pubmed/31092834
https://doi.org/10.1093/nar/gkt580
https://doi.org/10.1093/nar/gkt580
http://www.ncbi.nlm.nih.gov/pubmed/23821671
https://doi.org/10.1080/00207169508804451
https://doi.org/10.1038/d41586-018-07196-1
http://www.ncbi.nlm.nih.gov/pubmed/30375502
https://doi.org/10.1093/synbio/ysaa010
http://www.ncbi.nlm.nih.gov/pubmed/32995552
https://doi.org/10.1021/sb5003289
https://doi.org/10.1021/sb5003289
http://www.ncbi.nlm.nih.gov/pubmed/25822671
https://doi.org/10.1371/journal.pcbi.1009987

