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A B S T R A C T
A R T I C L E I N F O
Background: In digital pathology, many image analysis tasks are challenged by the need for large and time-consuming

manual data annotations to cope with various sources of variability in the image domain. Unsupervised domain adap-
tation based on image-to-image translation is gaining importance in this field by addressing variabilities without the
manual overhead. Here, we tackle the variation of different histological stains by unsupervised stain-to-stain transla-
tion to enable a stain-independent applicability of a deep learning segmentation model.
Methods:We use CycleGANs for stain-to-stain translation in kidney histopathology, and propose two novel approaches
to improve translational effectivity. First, we integrate a prior segmentation network into the CycleGAN for a self-
supervised, application-oriented optimization of translation through semantic guidance, and second, we incorporate
extra channels to the translation output to implicitly separate artificial meta-information otherwise encoded for tack-
ling underdetermined reconstructions.
Results:The latter showed partially superior performances to the unmodified CycleGAN, but the former performed best
in all stains providing instance-level Dice scores ranging between 78%and 92% formost kidney structures, such as glo-
meruli, tubules, and veins. However, CycleGANs showed only limited performance in the translation of other struc-
tures, e.g. arteries. Our study also found somewhat lower performance for all structures in all stains when compared
to segmentation in the original stain.
Conclusions: Our study suggests that with current unsupervised technologies, it seems unlikely to produce “generally”
applicable simulated stains.
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Introduction

Histological analysis represents the current gold-standard for tissue ex-
amination in research and diagnostics.1 The field of digital pathology is
steadily growing, particularly since it enables automated and reproducible
high-throughput analysis of highly resolved tissue data. Due to the wide-
spread dissemination of digital whole-slide scanners, large amounts of his-
tological data can be obtained in clinical routine and preclinical research.
This process also includes several degrees of variability, e.g. in staining pro-
tocols, dye compositions, cutting thicknesses, pathological alterations, and
scanner characteristics. This poses a substantial challenge for image analy-
sis, since tackling all sources of variation with manual, time-consuming ef-
forts is not feasible. Thus, the field of unsupervised domain adaptation
based on image-to-image translation has gained tremendous popularity in
recent years.2 This field comprises methods that convert between different
auwelsstr. 16, 52074 Aachen, German
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image domains, e.g. horse and zebra images, by transferring the image
style, e.g. translating a horse to a zebra or vice versa. Since this is performed
unsupervisedly, i.e. without the need for any data annotations, it enables
a significant reduction of manual overhead for image analysis. Such
approaches are frequently applied in digital pathology in four main areas:
(1) stain normalization,3–8 i.e. the task of reducing color variations within
a particular stain, (2) stain translation,9–12 i.e. the field of compensating
variation across different staining protocols, including (3) the conversion
between histology and fluorescence,13,14 or (4) between simulated masks
and the image domain.12,15–17 Here, the cycle-consistent generative adver-
sarial network (CycleGAN) is most frequently employed, i.e. an approach
for training convolutional neural networks (CNNs) for image-to-image
translation between two domains, as it represents the state-of-the-art tech-
nique for unsupervised domain adaptation and demonstrated the feasibility
of producing realistic image translations.18
y

ology Informatics. This is an open access article under the CC BY-NC-ND license (http://

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpi.2022.100107&domain=pdf
http://dx.doi.org/10.1016/j.jpi.2022.100107
mailto:nbouteldja@ukaachen.de
http://dx.doi.org/10.1016/j.jpi.2022.100107
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.sciencedirect.com/science/journal/
www.elsevier.com/locate/jpi


N. Bouteldja et al. Journal of Pathology Informatics 13 (2022) 100107
In this work, we focus on stain translation approaches using CycleGANs
to enable image analysis on differently stained histological data in an unin-
formed fashion,19 i.e. no ground-truth labels are required for the target
stain. In experimental and clinical histopathology, numerous dyes are
used to stain specimens resulting in differently colored and textured tis-
sue (Fig. 1). Artificial Intelligence (AI) applications in digital pathology
have predominantly been trained on single stains and cannot intrinsi-
cally cope with inter-stain variation. Strengthened by the projected de-
crease in pathologist workforce,20 exhaustively performing sufficient
data annotations for each particular stain is not feasible and also pre-
vents analysis on newly developed stains. Thus, there is a great need
for yielding stain independence in CNNs.21,22 This bears the potential
to include diagnostically relevant molecular information into the analy-
sis, e.g. as is required for the diagnosis of kidney allograft rejection,21

and could thus leverage new possibilities for the broad implementation
in digital pathology.

Medical background

In histopathology, specimens are always stained first using general-
purpose stains such as hematoxylin-eosin (HE) or periodic acid-Schiff
(PAS) for an initial high-contrast visualization of various tissue structures.
Often, immunohistochemical stains (IHC) are additionally employed for
the detection of specific target proteins facilitating in-depth analysis. In
this work,we focus our study on kidney pathology, inwhich PAS represents
the most suitable and most widely used staining. Histological analysis of
major kidney structures, particularly glomeruli, tubules, and interstitium
(Fig. 1) is an essential part of histopathological diagnostics, with various
diseases affecting various compartments in different ways. Whereas the
tubules occupy most of the kidney tissue (of up to 75%23), glomeruli
cover only a few percent of tissue, similarly to arteries. Morphometric
analysis of these structures can provide valuable information on the
pathomechanisms of renal disease. To perform and facilitate such analyses,
the renal structures need to be segmented.
Fig. 1. Overview of analyzed stains and renal structures. Our study focuses on histopat
associated lipocalin (NGAL), cluster-of-differentiation 31 (CD31), alpha-smooth muscl
color and texture. We are specifically interested in the instance segmentation of va
glomerular tufts (blue), full glomeruli (green + blue), veins (cyan), arterial lumina (ye
model23 performed this task with high accuracies solely on the PAS stain (predicti
applicable to the other stains.
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Related work

In total, three groups have recently reported the feasibility of
segmenting major renal structures using CNNs,23–25 more precisely
U-nets26 with modified architectures. Jayapandian et al.24 trained their
U-nets on single structures, however failed to separate touching instances
from one another. In contrast, Hermsen et al.25 and Bouteldja et al.23

added an artificial border class around structures to enable instance seg-
mentation. All three groups trained their networks on single stains resulting
in insufficient generalization capabilities across other stains.

Gupta et al.27 have tackled this issue by aligning arbitrarily stained
slides to the analyzable stain using a cubic B-spline-based registration ap-
proach. However, whole-slide images often contain individual artifacts
that likely limit registration performance. In addition, the approach expects
consecutive slides, which is an expensive requirement often not met. To
prevent this, Gadermayr et al.9 introduced stain-to-stain translation using
CycleGANs and could also report slightly better segmentation performance
of glomerular tufts.

Several further domain adaptation approaches have been applied in dig-
ital pathology.2 For stain normalization, Shaban et al.4 and de Bel et al.5

used CycleGANs to transfer single-stained data between different scanners
(Aperio and Hamamatsu) as well as centers, respectively. Salehi et al.3

and Cho et al.8 converted HE stained images into grayscale and employed
a conditional GAN-like framework28 to revert the conversion. Whereas
the generator in Salehi et al.3 learned the mapping to a normalized HE rep-
resentation by tackling this underdetermined problem, the generator in
Cho et al.8 was trained to map various stain styles to a specific one to
learn its color distribution. The authors further penalized differences in fea-
tures between the input image and itsmapping extracted from a tumor clas-
sification network to preserve relevant features for classification on
normalized images.8 Nonetheless, stain normalization approaches aim to
address color variations only within a particular stain.

Regardingfluorescence translation, Burlingame et al.14 used the pix2pix
framework29 to translate between immunofluorescent stains and HE, and
hological kidney tissue stained in periodic acid-Schiff (PAS), neutrophil gelatinase-
e action (aSMA), or collagen III (Col3), altogether providing distinct differences in
rious renal structures including tubules (colored red in the upper right image),
llow), and arteries (magenta + yellow) in all stains. The preliminary segmentation
on depicted in the upper right image), which is why this work aims to make it



Fig. 2. Prior segmentation model for semantic guidance. The outline of the
proposed integration of a prior segmentation model S into the CycleGAN on the
example translation between PAS and CD31 is shown. During training, S is
integrated in a one-sided fashion: Only for PAS inputs, segmentation predictions
are performed using S and treated as ground-truth for the predictions on their
reconstructions as well as identity mappings. Their discrepancies are penalized
using the ‘1-losses Lseg,cyc, Lseg,idt, respectively.
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Rivenson et al.13 employed adversarial training to map autofluorescence
images to HE. In both works, the authors reported promising translation re-
sults and pointed out the potential of fluorescence translation to omit the
need for clinical multiplexing and histological staining procedures. But in
contrast to IHC staining, fluorescent imaging allows for the generation of
corresponding image pairs by additional registration of both domains,
thus enabling the use of such supervised techniques.

Furthermore, Gadermayr et al.15 and Bug et al.16 simulated mask im-
ages showing rather simple elliptical structures and transferred them to
the image domain using CycleGANs to enable an unsupervised segmenta-
tion. Both groups improved translation by incorporating low-level features
such as nuclei simulations into the mask domain. However, such ap-
proaches are limited to the analysis of simple structures that can be
modeled mathematically.

Regarding the application of stain translation, de Haan et al.30 used gen-
erative adversarial networks including CycleGANs to translate HE-stained
kidney biopsies into three simulated stains, i.e. Masson’s trichrome, PAS,
and Silver, that were altogether considered for improving the preliminary
diagnosis of non-neoplastic diseases. Further, Gadermayr et al.12 and Lo
et al.10 trained a model for the segmentation of glomeruli on a single
stain (PAS andHE, respectively) and then enabled its application on various
other stains by translating them into the single analyzable stain using
CycleGANs. The former12 additionally showed that this direction of transla-
tion worked far better than translating the single annotated stain to the
others for training stain-specific segmentation models on simulated data.
They also illustrated the importance of translating into an easy-to-
segment stain such as PAS for segmentation. In our study, we will follow
up on these findings. However, both works10,12 only demonstrated the fea-
sibility of stain translation for the analysis of a single structure, and further
paved theway for investigations of integrating the segmentationmodel into
the translator for its improvement.

Our contributions to stain translation

Our objective is to make the supervised PAS segmentation network
from Bouteldja et al.23 applicable to various other stains without any fur-
ther manual annotaton effort by employing CycleGANs for unsupervised
stain-to-stain translation following Gadermayr et al.12 However, we exam-
ine its feasibility for the segmentation of various renal structures including
tubules, glomeruli, glomerular tufts, arteries, arterial lumina, and veins
(Fig. 1). We further propose two novel approaches to improve translational
efficiency. First, we integrate the pre-trained segmentationmodel23 into the
translation network in a self-supervised manner. The aim is to support a
proper translation of those structures through semantic guidance and to
motivate mappings closer to the learned distribution of the segmentation
model for improved applicability. Second, we propose to tackle the limita-
tion in cycle-consistency-based training of assuming bijective mappings, by
providing extra channels to both domains that can be used to separate arti-
ficial and interfering meta-information from the translation. Next to
reporting qualitative and quantitative improvements, we also compare
our baseline with the U-GAT-IT model31 that appeared to have strongly
outperformed the CycleGAN.

Methods

In our application scenario, we assume a pre-trained (segmentation)
model S : P → L that allows for the analysis of a specific stain P. We aim
atmaking it applicable to an arbitrary stainA by using a CycleGAN to trans-
late between both stains.

CycleGANs

The CycleGAN18 is a type of generative adversarial network that is
widely applied for unsupervised style transfer. It performs image-to-image
translation between two image domains (here: stains P and A) using un-
paired data and consists of two generators GP→A, GA→P and two
3

discriminators DP, DA. The networks are trained by optimizing the
following three losses: (1) The adversarial loss

Ladv ¼ Ex�pP xð Þ log DP xð Þð Þ þ log 1 � DA GP!A xð Þð Þð Þ½ �
þ Ey�pA yð Þ log DA yð Þð Þ þ log 1 � DP GA!P yð Þð Þð Þ½ �

makes the generators produce realistic (simulated) images GP→A(x),
GA→P(y) with respect to the target domain, while the discriminators aim
to differentiate between those translations and real images x ∈ P, y ∈ A.
(2) The cycle consistency loss

Lcyc ¼ Ex�pP xð Þ ‖GA!P GP!A xð Þð Þ � x‖1½ �
þ Ey�pA yð Þ ‖GP!A GA!P yð Þð Þ � y‖1½ �

represents the core idea of CycleGANs as it forces the generators to re-
construct their input when being subsequently forwarded through both of
them. In this way, each generator learns the inverse of the other’s mapping.
Spatial consistency between input and translation is implicitly encouraged
due to its simplicity in learning. (3) Finally, the identity loss

Lidt ¼ Ex�pP xð Þ ‖GA!P xð Þ � x‖1½ � þ Ey�pA yð Þ ‖GP!A yð Þ � y‖1½ �

incentivizes both generators to forward images from the target domain
unchanged and is shown to improve color preservation as well as training
stability.32

Self-supervision

We integrate the assumed segmentation network S, which outputs label
probability maps for samples from the analyzable stain P, into the
CycleGAN as depicted in Fig. 2 (exemplarily with P and A representing
the PAS and CD31 stain). During training iterations, only images from P
as well as their reconstructions and identity mappings are further
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propagated through the segmentor S. Since we can assume the segmenta-
tion results of real samples to represent the ground-truth pretty well, we
use them as targets for self-supervision by penalizing their discrepancies
to the respective predictions using the following segmentation loss Lseg:

Lseg ¼ Lseg,cyc þ Lseg,idt
¼ Ex�pP xð Þ ‖S GA!P GP!A xð Þð Þð Þ � S xð Þ‖1 þ ‖S GA!P xð Þð Þ � S xð Þ‖1½ �

The motivation for enforcing equal segmentation predictions on recon-
structions and identities of P is twofold. First, when considering that the
segmentor S has only been trained on real samples from P, its applicability
to simulated images (using GA→P) potentially originating from a different
probability distribution might be impeded. Despite visual similarities
between simulated and real samples, the translator could still encode un-
natural information and (noise) patterns into the simulated images due to
the imperfection of adversarial training. Since this type of information is
unfamiliar to S, it might harm performance. To prevent this, our proposed
segmentation loss Lseg encourages the generator GA→P to project its transla-
tions into the learned source distribution of S, hence translated images are
better analyzable by S. Second, optimizing Lseg also helps leverage semantic
features to better learn the concepts and translational correspondences of
the classes. The predicted segmentation targets semantically guide the gen-
erators to properly translate the different class structures by bringing atten-
tion to their mappings. This application-oriented guidance could
particularly tackle confusion in the translation of underrepresented classes.

Using loss-specific weights, the overall loss function L can now be
formulated as:

L ¼ λadv Ladv þ λcyc Lcyc þ λidt Lidt þ λseg Lseg :

Meta-learning

As stated in Section CycleGANs, CycleGANs consist of two generators
that each aim to learn the other’s inverse as triggered by the cycle consis-
tency loss. Hence, the underlying assumption and limitation of this frame-
work is that both mappings between the domains GP→A, GA→P represent
bijections. However, this does not apply for the underdetermined transla-
tion between general-purpose and IHC stains. The latter can provide molec-
ular information especially in pathological structures or stain-specific
arbitrary artifacts that cannot be inferred from the general-purpose stain.
The generators tackle this challenge of mapping from an information-rich
to an information-poor domain by encoding source domain-specific infor-
mation, typically in a visually imperceptible manner, into the translations
to enable a subsequent, well-defined reconstruction.33 On the example of
the underdetermined zebra-to-horse translation studied by the CycleGAN
Fig. 3. Extra channels for meta-learning. The proposed incorporation of extra channels in
is zero-padded by three channels and the output now includes the translation as well as
Both are then translated back for input reconstruction (ignoring in turn its extra channe

4

authors,18 the first generator maps a zebra to a horse image and addition-
ally encodes the information about the stripes into the translated horse,
so that the second generator can then use it to enable a precise reconstruc-
tion of the same zebra. Regarding our application scenario, such unnatural
encodings of structure into translated images are unfamiliar to the subse-
quently applied segmentation model and would most likely decrease its
performance. Even in case of visually imperceptible information, the
harm could be extensive as shown by adversarial worst-case examples.34

To tackle this, we propose adding three extra feature channels (analo-
gous to image size) to both the input (M1) and output (M2) of each genera-
tor, with the input zero-padded by three extra channels (Fig. 3). The output
now consists of the usual three-channel translation that is propagated
through the respective discriminator, but also of the three additional chan-
nelsM2 that can be used to store useful meta-information from the input for
reconstruction. The subsequent generator then back-propagates them both
for a well-defined reconstruction of the input. Overall, this provides the
opportunity for the generators to implicitly decouple artificial meta-
information from the translations tomake themmore realistic and thus bet-
ter usable by a subsequentmodel. It is noteworthy that the generators could
now simply copy the input into the extra channelsM2 and then copy it back
for perfect reconstruction. However, the fact that the generators also must
manage image translation without any additional information (i.e. on
zero-padded inputs), prevents this undesirable side effect.

Evaluation

Our objective is to enable and improve the applicability of an already
existing segmentation model S to arbitrary unknown stains. For S, we em-
ploy the U-Net-like model from Bouteldja et al.23 that has been trained on
kidney tissue stained in PAS and reported high performance for the instance
segmentation of various renal structures. Likewise, we also use instance-
level Dice scores to measure the segmentation accuracy of S on translated
PAS images from various stains. For a set of test images t Є T and their re-
spective binary instance predictions pt,i and ground-truths gt,j indexed by
i= 0,…, npt and j= 0,…, ngt, the instance-level Dice score (IDSC) is com-
puted for each class as follows:

IDSC ¼ 1
∑tЄTnpt þ ngt

X
tЄT

Xnpt
i

DSC pt;i; gt;�
� �

þ
Xngt
j

DSCðgt; j; pt;�Þ
 !

Here, npt and ngt represent the numbers of prediction and ground-truth
instances for image t, and gt,∗ stands for the ground-truth instancewithmax-
imal overlap to prediction instance pt,i (0 if false positive), vice versa for pt,∗.
Analogous to Dice scores (DSC), the IDSC ranges between 0 (no single over-
lap in all test images) and 1 (perfect overlaps). By averaging the equally
to the CycleGAN is exemplified for one of the two translational directions. The input
three additional channelsM2 that can be used to implicitly learn meta-information.
lsM1). Here, ⊗ represents the concatenation operation.
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weighted Dice scores for prediction and ground-truth instances across the
whole test set, the IDSC measures the mean area overlap per instance.

The segmentation accuracies on translated (simulated) PAS images di-
rectly infer the translational performance in terms of feature preservation
of the predicted structures. Thus, we expect the reported segmentation per-
formance of S on real PAS images23 to represent the upper accuracy limit
for our translation approach providing simulated data. We also use t-tests
for the comparison between the unmodified CycleGAN and our proposed
models by pairwise comparison of the underlying Dice score distributions
of each class.

Data

Paraffin-embedded kidney tissues frommicewere cut into 1–2 μm thick
sections that were digitized by the NanoZoomer C9600-12 whole-slide
scanner (Hamamatsu Corporation, Bridgewater, New Jersey) with a 20x
objective lens after staining. The employed stains included PAS as com-
monly used for overview staining in kidneys, cluster of differentiation
(CD31) highlighting endothelial cells, alpha-smooth muscle actin (aSMA)
as a marker for smooth muscle cells, collagen III (Col3) highlighting fibro-
sis, and finally neutrophil gelatinase-associated lipocalin (NGAL) as a
marker of tubular cell injury. In total, our in-house data set comprised 85
whole-slide images (WSIs) divided into 53 PAS, 8 CD31, 7 aSMA, 10
Col3, and 7 NGAL WSIs. Regarding our application scenario, we trained
models for stain translation between PAS and IHC (CD31, aSMA, Col3,
NGAL), respectively, to translate the latter into the PAS domain for subse-
quent segmentation by S. We used all PAS slides and randomly chosen 5
CD31, 5 aSMA, 7 Col3, and 5 NGAL WSIs for training and the remaining
slides (3 CD31, 2 aSMA, 3 Col3, 2 NGAL) for evaluation of the stain trans-
lators. Our data preprocessing pipeline started with the grayscale conver-
sion and Otsu’s thresholding for automated tissue detection in WSIs. We
then performed image tessellation to extract patches of size 216 μm x 216
μm and resampled them into images of 640 x 640 pixel resolution, overall
complying with the input requirements of S. In total, 35233 PAS, 3104
CD31, 2969 aSMA, 5533 Col3, and 3857 NGAL patches were extracted
for training. For testing, we manually annotated 20 patches in each IHC
Table 1
Segmentation performance quantifications on translated simulated PAS images from all

CD31 Classes

Full glomerulus Glomerular tuft Tubule

CycleGAN 87.3 ± 23.1 86.9 ± 21.1 88.6 ± 20.3
w/ SegNet 92.4 ± 15.2 88.9 ± 16.9 89.2 ± 19.9
w/ EC 87.3 ± 25.6 89.7 ± 16.3 88.5 ± 21.2
w/ SegNet & EC 92.2 ± 17.9 92.3 ± 11.0* 87.9 ± 21.2
U-GAT-IT 79.0 ± 34.6 82.8 ± 26.2 82.8 ± 25.8*

aSMA
CycleGAN 73.5 ± 35.9 74.9 ± 31.7 80.6 ± 29.5
w/ SegNet 77.5 ± 35.2 81.5 ± 29.4 80.9 ± 29.4
w/ EC 72.2 ± 38.6 75.0 ± 36.2 79.2 ± 30.7
w/ SegNet & EC 75.2 ± 37.9 81.5 ± 28.7 78.2 ± 31.4*
U-GAT-IT 65.5 ± 42.0 70.9 ± 37.1 70.6 ± 34.1*

Col3
CycleGAN 71.0 ± 41.3 68.8 ± 40.2 84.7 ± 25.9
w/ SegNet 82.6 ± 29.5* 79.2 ± 28.4* 85.6 ± 24.8
w/ EC 72.5 ± 39.4 72.7 ± 35.6 84.8 ± 25.3
w/ SegNet & EC 75.1 ± 37.9 74.6 ± 34.1 84.9 ± 25.5
U-GAT-IT 64.3 ± 41.2 64.5 ± 38.5 82.2 ± 27.4*

NGAL
CycleGAN 84.3 ± 28.4 85.1 ± 26.5 85.0 ± 26.5
w/ SegNet 84.3 ± 29.2 82.7 ± 29.2 85.6 ± 23.8
w/ EC 83.8 ± 29.5 85.6 ± 24.2 84.3 ± 24.8
w/ SegNet & EC 83.4 ± 31.1 82.1 ± 29.1 85.3 ± 23.9
U-GAT-IT 78.0 ± 36.6 80.7 ± 29.6 78.5 ± 28.0

Segmentation performance was measured by instance-level Dice scores and standard de
compared in all conducted experiments against the unmodified CycleGAN in all classes u
posed CycleGAN variant incorporating the segmentation network and extra channels is

5

evaluation slide in QuPath,35 a widely used open-source software in digital
pathology. The annotation procedure was performed as described and de-
fined in Bouteldja et al.23 The resulting 200 annotated patches (60 CD31,
40 aSMA, 60 Col3, and 40 NGAL) were considered the ground-truth and
compared with the segmentation predictions on their corresponding simu-
lated PAS translations to finally quantify the performance of S on the IHC
stains.

Experimental setting

In our experiments, we trained CycleGANs for stain translation with
and without our proposed modifications of incorporating the prior seg-
mentation model as well as multi-channels into training, respectively.
Since training was conducted on 640 x 640-pixel images, we slightly
adapted the employed CycleGAN architecture from Gadermayr et al.12

We incremented the depth of both U-Net-based generators to seven
and the depth of the PatchGAN discriminators to four to enlarge their
receptive fields accordingly. The networks were trained for 300,000
iterations using a batch size of three and RAdam36 as optimizer. After
150,000 iterations, the initial learning rate of 10−4 started to linearly
decrease to zero until the last iteration. In accordance with Gadermayr
et al.,12 we also used equally weighted loss terms (λadv = λcyc =
λidt = λseg = 1) and employed standard data augmentation (flipping,
90° rotation, gamma correction).

In addition, we trained an Unsupervised Generative Attentional Net-
work with Adaptive Layer-Instance Normalization for Image-to-Image
Translation (U-GAT-IT)model31 as a baseline for the unmodifiedCycleGAN
due to its reported promising superiority. The U-GAT-IT extends the
CycleGAN by integrating auxiliary domain classifiers and class activation
maps37 into generators and discriminators to focus on discriminative and
thus relevant image regions for translation. However, for the vanilla
U-GAT-IT, we experienced severe training instability issues for the genera-
tors showing few regular loss spikes and providing unrealistic translations.
Thus, we searched for its optimal configuration based on training behavior.
We replaced the ResNet-based generators with the same U-Net architec-
tures as utilized in our CycleGAN models and used a network depth of
IHC stains.

∅

Artery Arterial lumen Vein

52.1 ± 37.9 56.0 ± 41.9 76.4 ± 38.6 74.5 ± 30.5
53.8 ± 37.2 63.4 ± 40.4 90.4 ± 22.5* 79.7 ± 25.3
50.3 ± 38.2 59.4 ± 42.3 85.5 ± 30.5 76.8 ± 29.0
56.5 ± 36.0 53.7 ± 42.9 82.7 ± 32.7 77.6 ± 27.0
33.7 ± 37.0* 43.0 ± 43.0* 83.2 ± 32.0 67.4 ± 33.1

57.5 ± 40.7 55.1 ± 39.7 72.7 ± 38.1 69.1 ± 35.9
69.2 ± 33.5 67.5 ± 34.0 85.9 ± 28.8 77.1 ± 31.7
66.7 ± 34.0 55.2 ± 38.5 92.3 ± 7.9* 73.4 ± 30.9
62.0 ± 39.2 60.8 ± 36.6 89.1 ± 21.4 74.5 ± 32.5
47.7 ± 42.2 48.3 ± 42.1 79.3 ± 33.1 63.7 ± 38.4

23.3 ± 34.1 26.1 ± 36.7 88.2 ± 26.8 60.3 ± 34.2
28.6 ± 35.1 36.2 ± 39.5 86.7 ± 29.2 66.5 ± 31.1
25.4 ± 36.1 24.5 ± 36.2 83.4 ± 31.7 60.6 ± 34.0
33.1 ± 37.0* 34.2 ± 37.5 84.5 ± 30.4 64.4 ± 33.7
32.2 ± 37.3 31.8 ± 36.9 85.8 ± 29.5 60.1 ± 35.1

43.7 ± 41.8 50.6 ± 42.0 85.0 ± 24.5 72.3 ± 31.6
50.6 ± 40.7 55.2 ± 40.5 84.9 ± 30.2 73.9 ± 32.2
40.8 ± 39.2 46.0 ± 40.5 89.9 ± 22.8 71.7 ± 30.2
49.8 ± 41.7 55.2 ± 41.9 71.7 ± 41.5 71.3 ± 34.9
33.5 ± 39.5 41.1 ± 42.4 67.6 ± 31.8 63.2 ± 34.7

viations of their underlying Dice score distributions. Those distributions were also
sing t-tests (*p<0.05 was considered statistically significant), respectively. The pro-
denoted by “w/ SegNet & EC”.
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three and four for the two employed scales of PatchGAN discriminators, re-
spectively. The replacement of ResNet- with U-Net-based generators fixed
the instability issues.

The training settings were kept the same in all experiments. All techni-
cal details about the utilized segmentation network are further described in
Bouteldja et al.23 In summary, a U-Net-likemodel was trained on a large set
of heavily augmented PAS-stained kidney tissue (primarily from mice) for
instance segmentation of multiple renal structures including tubules,
glomeruli, arteries, arterial lumina, and veins (Fig. 1).

All experiments were implemented in PyTorch and were conducted on
an NVIDIA A100 GPU (requiring about 7, 11, and 20 GB of VRAM for
the CycleGAN, its incorporation of the segmentation network, and the
U-GAT-IT, respectively). We made our code publicly available at (https://
github.com/NBouteldja/KidneyStainTranslation).
Fig. 4. Qualitative results in all stains. Qualitative translation and prediction results of o
three) are performed by propagating simulated PAS translations (column two) from IH
colored in accordance with Fig. 1, but in contrast tubules are colored randomly he
triangular input image croppings on the PAS translations to assess spatial consistencies

6

Results

Quantitative segmentation performance showed relatively high
instance-level accuracies in all classes and stains, except for arteries and ar-
terial lumina that were predictedwith considerably worse performance, es-
pecially in Col3 (Table 1). In comparison, worse predictions were obtained
for the segmentation of tubules in aSMA and glomerular structures in Col3
and aSMA. Among all evaluated models, the CycleGAN variant that solely
incorporates the segmentation network showed the highest mean perfor-
mance across all classes in each stain and provided high instance-level
Dice scores ranging between 78% and 92% for non-arterial structures.
The incorporation of extra channels demonstrated improvements in CD31
and aSMAover the unmodifiedCycleGAN, but in contrast decreased perfor-
mance of the best performing model (CycleGAN w/ SegNet) in all stains.
ur best performing model (CycleGAN w/ SegNet) are depicted. Predictions (column
C input images (column one) through the utilized segmentation model. They are
re to analyze maintaining capabilities of instance separation. We also overlaid
and pointed out severe translation artefacts by red arrows.

https://github.com/NBouteldja/KidneyStainTranslation
https://github.com/NBouteldja/KidneyStainTranslation
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Interestingly, the unmodified CycleGAN baseline proved to be superior to
the U-GAT-IT model in all stains. The performance quantifications showed
high standard deviations and only a few statistically significant differences.
Besides, the employed segmentation network performed substantially
better for all structures when being applied on real PAS images.23

Qualitative translation and segmentation results using the best perform-
ingmodel (CycleGANw/ SegNet) are depicted in Fig. 4 for all stains, which
show different characteristics in color and texture. Regarding row one to
four, the simulated PAS translations of all IHC stains appear highly realistic
and detailed, and thus resulted in predictions close to the ground-truth. In
all stains, especially in those providing homogenous color transitions be-
tween touching tubular instances (e.g. NGAL), the translators managed to
generate contrastive borders around the tubules (representing the tubular
basement membrane). This enabled the segmentation network to separate
those instances from one another. By overlaying IHC inputs onto their
translations (column two), we observed a high degree of spatial consistency
that is the prerequisite for the transferability of segmentation results to the
original IHC image. The last two rows show the reasons for the stain-
related, bad-performing trends mentioned above. In Col3, most arteries
were translated in such a manner that they had unnatural, tubular-like sub-
structures (e.g. tubular cytoplasm) in their muscle layer (row five, left
arrow). These were responsible, on the one hand, for incorrect tubule
Fig. 5.Qualitative results of all translationmodels. Qualitative translation and prediction
Extra channels are visualized as RGB image and distinct translation artifacts are marked

7

predictions (row five, right arrow), and on the other hand, for the missed
identification of the arterial wall resulting in the confusion of arterial lu-
mina with veins. Here, the translator seemed to fail at learning the transla-
tional class concepts of arteries and tubules and confused them with each
other. In addition, we observed tubular translations showing unnatural pat-
terns of cytoplasm (i.e. its gray filling) in aSMA (row six, left arrows) that
also confused the segmentation model and made it miss those.

Further qualitative segmentation and translation results of all evaluated
models are comparatively shown in Fig. 5. Although the unmodified
CycleGAN provided a realistic translation of that individual glomerulus
on a visual basis, the segmentationmodel could notmake use of it at all. De-
spite the visual similarities, the translations of all other proposed
CycleGAN variants were actually predictable by the segmentation net-
work. The U-GAT-IT model provided a translation that was hardly dis-
tinguishable from that ineffective one, however still showed partial
signs of glomerular predictability. Regarding the variants incorporating
extra channels for their intended purpose of learning meta-information
(rows three and four), we identified a few artifacts in their PAS transla-
tions (red arrows) likely leading to false predictions (last row, right
arrow). Contrary to our expectations, their extra channels appeared to
encode various structural information and provided slight global arti-
facts in a grid-like pattern.
results of all translationmodels on an example Col3 image (upper left) are depicted.
by red arrows.
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Discussion

In this work, we enabled and improved the applicability of a previously
existing segmentation network trained on PAS to different IHC stains by
using novel CycleGAN approaches for unsupervised stain translation. Our
aim was to improve state-of-the-art methods for stain independence to
open new possibilities for low-cost computational analyses in digital pa-
thology, such as an automated large-scale morphometric analysis of
immunostainings.

Although both modifications yielded performance improvements on
their own, solely incorporating the segmentation network S represented
the best performingmodel in all stains. Nevertheless, all models showed se-
vere limitations in a proper translation of arteries in Col3 as they have been
confused with tubular patterns ultimately preventing their identification.
Even the implicit guidance by S for a predictable arterial translation was
not sufficient to solve these shortcomings, indicating that a higher degree
of supervision is required here. In addition, compared to the reported seg-
mentation performance of S on real PAS samples,23 our resultswere inferior
in all classes. This demonstrates the presence of feature differences in real
and simulated samples that are relevant for segmentation, and opens future
research perspectives for further improvements in stain translation. This
finding as well as the outcome of confused arterial translations with tubular
structures in Col3 also provide the answer to a question raised in
Tschuchnig et al.,2 that a translation from an IHC stain (e.g. Col3) to a
general-purpose stain (e.g. PAS) is only partially capable of showing similar
features as the real target stain. Considering the incorporation of extra
channels, we observed improved segmentation performances only
in CD31 and aSMA, which most probably indicates that the benefit of sep-
arating meta-information from translations depends on the degree of
underdetermination in the reconstruction of the specific stain. Hence, we
forecast that in translational applications showing more underdetermined
relations (e.g. horse-to-zebra mappings18), this approach could leverage
its potentials and providemore promising results. Besides, qualitative trans-
lation results showed a few interfering artifacts and the encoded informa-
tion in the extra channels has not met our expectation of encoding only
structures with ambiguous reconstructions (e.g. certain Col3-positive
areas). A possible explanation for the wide range of structural information
that has been encoded, instead, is that the translator might have addition-
ally tackled the variability of color intensities by storing those inside the
extra channels and outputting normalized PAS translations to some extent.

Our best performing model (CycleGAN w/ SegNet) achieved a perfor-
mance of 89% instance-level Dice scores for glomerular tuft segmentation
in CD31, which appeared to be superior to the B-spline registration-based
approach27 that yielded Dice scores of 83% for the same task. It also does
not require PAS-stained consecutive slides.

Quantitative performances confirmed that the translators effectively
made use of the immunohistochemical highlighting of structures of interest.
E.g., aSMA highlighted the muscle cells in arteries that have been predicted
considerably better than in all other stains, and CD31 marked endothelial
cells that are components of glomerular tufts and closely connected to arte-
rial lumina, and thus led to an improved prediction of those structures. This
shows that attention is implicitly brought to the highlighted structures
that facilitates learning of their translational correspondences. However,
although aSMA sensitively identifies arteries, their predictions have still
not achieved the comparative performances of S on real PAS images.23

One plausible reason for this may be the non-specificity of the stain resulting
in other structures also being positively highlighted to some extent, which
makes learning of translational correspondences more difficult.

The qualitative translation results demonstrated realistic simulated PAS
translations from various IHC stains. This raises the question of how similar
those translations are to real samples with a view of visual and especially
sub-visual features, and whether the similarity is sufficient for the applica-
tions of arbitrary PAS networks without loss of performance. In this regard,
effectively measuring the quality of GAN-based synthesized images is still
an open field of research. Although visual evaluations by physicians
8

previously showed the indistinguishability of real and simulated samples
in similar stain translation tasks,10 our qualitative results demonstrated
that subtle, potentially imperceptible changes can, however, affect the pre-
dictability of structures. The high standard deviations of Dice score distri-
butions in all classes confirm this finding of translating structures either
in a predictable or non-predictable way. Gadermayr et al.12 translated
Col3 to PAS using a vanilla CycleGAN and showed the predictability of glo-
meruli on realistically looking translated images by a prior segmentation
model. This led to their conclusion that CycleGAN-based image-to-image
translation can be performed highly effectively to convert between differ-
ent stains. According to our results, a simulated PAS translation from Col3
was not feasible for the segmentation of arteries as they were partly con-
fusedwith tubular structures. Taken together, predictingwhich tissue struc-
tures are ideally translated by which model, and what kind of information
might be lost, seems not to be feasible. Therefore, to study the similarities
between real and simulated samples, metric learning techniques between
image distributions may be a promising approach.

Conclusions

In this work, we investigated CycleGANs for unsupervised stain-to-
stain translation in digital pathology to facilitate a stain-independent
segmentation of various renal structures, and further proposed two
novel approaches to improve translational effectivity. The model solely
incorporating the segmentation network performed best in all stains
yielding instance-level Dice scores ranging between 78% and 92% for
glomerular structures, tubules, and veins. This suggests that translation
can be boosted in an application-oriented manner that will require
adapted models for each specific task. However, the translation of arter-
ies revealed the limitations of CycleGAN-based stain translation as they
were partly confused with tubular structures and thus poorly predicted.
Further core findings were that subtle changes to realistically translated
structures suffice to toggle their predictability, and that translation is the
limiting factor here compared to segmentation. Our study suggests that
with current unsupervised technologies, it seems very challenging to
produce “generally” applicable simulated stains. In future work, we in-
tend to facilitate a proper translation of arteries by improving the degree
of guidance using semi-supervised learning.
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