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Cerebral adrenoleukodystrophy (cALD) is a rare neurodegenerative disease

characterized by inflammatory demyelination in the central nervous system.

Another neurodegenerative disease with a high prevalence, Alzheimer’s

disease (AD), shares many common features with cALD such as cognitive

impairment and the alleviation of symptoms by erucic acid. We investigated

cALD and AD in parallel to study the shared pathological pathways between

a rare disease and a more common disease. The approach may expand

the biological understandings and reveal novel therapeutic targets. Gene

set enrichment analysis (GSEA) and weighted gene correlation network

analysis (WGCNA) were conducted to identify both the resemblance in gene

expression patterns and genes that are pathologically relevant in the two

diseases. Within differentially expressed genes (DEGs), GSEA identified 266

common genes with similar up- or down-regulation patterns in cALD and AD.

Among the interconnected genes in AD data, two gene sets containing 1,486

genes preserved in cALD data were selected by WGCNA that may significantly

affect the development and progression of cALD. WGCNA results filtered

by functional correlation via protein–protein interaction analysis overlapping

with GSEA revealed four genes (annexin A5, beta-2-microglobulin, CD44

molecule, and fibroblast growth factor 2) that showed robust associations

with the pathogeneses of cALD and AD, where they were highly involved in

inflammation, apoptosis, and the mitogen-activated protein kinase pathway.
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This study provided an integrated strategy to provide new insights into a

rare disease with scant publicly available data (cALD) using a more prevalent

disorder with some pathological association (AD), which suggests novel

druggable targets and drug candidates.

KEYWORDS

adrenoleukodystrophy, Alzheimer’s disease, shared pathway, meta-analysis,
neurodegenerative disease

Introduction

Neurodegenerative diseases (NDs) are a class of disorders
that mainly affect the central nervous system (CNS) and
are characterized by progressive loss of the structure and/or
function of neurons (Nussbaum and Ellis, 2003). Recently, the
number of patients suffering from NDs such as Alzheimer’s
disease (AD), Huntington’s disease, Parkinson’s disease, and
amyotrophic lateral sclerosis has been rapidly increasing
worldwide (Hou et al., 2019). Significant efforts have been
dedicated to developing medications that can cure NDs;
however, no current therapeutics can completely cure these
diseases. Even reversing damage is improbable, only a few
treatments can slow the progression or alleviate these diseases’
symptoms (Crous-Bou et al., 2017). If the exact pathological
pathways can be identified, it may help develop therapeutic
agents that can cure NDs. The most frequent form of NDs is
dementia, the most prevalent type of which is AD (Nussbaum
and Ellis, 2003). In the United States about 5.8 million
Americans of all ages reportedly have AD-type dementia,
200,000 of whom have AD under the age of 65 years (Alzheimer’s
Association, 2019). The percentage of AD patients within the
population is expected to increase by 6.7–30.8% depending on
the state by 2025 compared to 2020 (Alzheimer’s Association,
2021).

X-linked adrenoleukodystrophy (ALD) is a rare ND
characterized by fatal progressive cerebral demyelination and/or
spinal cord neurodegeneration (Fourcade et al., 2008). The ALD
phenotypes range from rapidly progressing childhood cerebral
form to adrenomyeloneuropathy (AMN) with/without cerebral
involvement in adults (Berger et al., 2014). ALD is caused by
an abnormality in the adenosine triphosphate binding cassette
subfamily D member1 (ABCD1) gene (Xq28) that encodes
an integral peroxisomal membrane protein (Fourcade et al.,
2008). Childhood cerebral ALD (cALD), which develops in
boys aged 5–12 years, accounts for 35% of all ALD patients
(Berger et al., 2014). Symptoms of childhood cALD include
autoimmune response, strong inflammatory demyelination, and
rapid progression of neurological dysfunction, leading to death
within a few years (Moser et al., 1992).

One feature of all ALD is the accumulation of very
long-chain fatty acids (VLCFA; ≥ C22) caused by impaired
peroxisome β oxidation (Moser et al., 1992; Berger et al., 2014).
The accumulation of saturated VLCFA was also found in the
cortex of AD patients (Kou et al., 2011). VLCFA aggregate
throughout the body with the most severe accumulation in
the white matter of the brain and adrenal glands, causing
neurological problems and adrenal insufficiency (Fourcade
et al., 2008; Berger et al., 2014). VLCFA was reportedly a
potential risk factor contributing to neurodegeneration by
inducing nerve cell damage through mitochondrial dysfunction
(Schönfeld and Reiser, 2016; Nury et al., 2020). VLCFA levels
can be lowered by oral administration of oleic acid (C18: 1)
and erucic acid (C22: 1) at a 4:1 ratio, which is known as
Lorenzo’s oil. Erucic acid is an important ligand of peroxisome
proliferator-activated receptor δ, the activation of which directly
inhibits neuronal cell death and alleviates neuro-inflammation
in AD (Moser et al., 2007; Sassa et al., 2014; Altinoz et al.,
2018; Altinoz and Ozpinar, 2019). Despite the link, very few
studies have focused on the commonalities between ALD and
AD.

Studies on rare diseases such as ALD generally have
hardships of having a small sample size due to the low
prevalence among the population, leading to difficulties in
drug development (Engelen et al., 2014). Meta-studies merge
datasets from individual studies to increase their sample size,
thereby increasing statistical power, allowing the identification
of novel pathways that cannot otherwise be found in separate
studies. Comparing a rare disease with a more highly prevalent
disease that shares a common pathway enables the designing
of a novel drug that may act on both diseases (Goh et al.,
2007).

As the development of novel in silico tools for analyzing
genetic diseases arrives, studies are also actively being conducted
to understand the biological meaning of a disease based on gene
expression (Subramanian et al., 2005; Langfelder and Horvath,
2008). GSEA allows single-gene expression data to be compared
with a distinct type of gene set conveying the biological roles
and characteristics of other diseases. In addition to GSEA, a
weighted gene co-expression network analysis (WGCNA) is
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a bioinformatic application for finding co-expression patterns
between genes by constructing a network and is used to
compare clustered genes with another set of genes. These are
powerful analytical tools that can be used to investigate various
diseases, even rare diseases, with which several studies have
successfully elicited genetic markers (Jung et al., 2019; Bottero
et al., 2021; Kim et al., 2021). After identifying these markers,
drug-repositioning can be performed to develop novel drug
candidates.

In this study, we designed a workflow to study cALD
using AD data to discover meaningful pathogenetic pathways
and novel genetic markers via combining two different
bioinformatic approaches (Figure 1). GSEA was conducted
to detect common differentially expressed genes (DEGs) to
determine the similarities between the two diseases, followed
by WGCNA to identify interconnected gene sets that have
correlations with the pathogeneses of cALD and AD. The core
genes were finally selected by overlapping genes from GSEA and
WGCNA results, of which biological roles were revealed along
with the pathogenic understanding of cALD. By integrating
two analyses in a complementary manner, common marker
genes and pathways in both diseases could be identified that
can be suggested as putative targets for pathway-based drug
repositioning.

Materials and methods

Data collection of cerebral
adrenoleukodystrophy and Alzheimer’s
disease

We searched for and downloaded microarray datasets of
Homo sapiens from ArrayExpress.1 We used three datasets
for cALD (E-MEXP-3288, E-GEOD-34309, E-GEOD-85804)
and five datasets for AD (E-GEOD-36980, E-GEOD-5281,
E-GEOD-29378, E-GEOD-48350, E-GEOD-34879) in this study
that contained samples of postmortem brains and induced
pluripotent stem cells (iPSCs) obtained from patients’ skin
fibroblasts (cALD or AD) and from healthy control subjects
(Liang et al., 2007; Israel et al., 2012; Schlüter et al., 2012;
Wang et al., 2012; Berchtold et al., 2013; Miller et al., 2013;
Hokama et al., 2014; Jang et al., 2016). The iPSC cells obtained
from AD and control samples were induced into neurons,
where only the induced neurons derived from AD patients
showed a significant increase in three major biochemical
markers of AD, amyloid-β, active glycogen synthase kinase-
3β, and phosphorylated tau/total tau (Israel et al., 2012). The
microarray datasets of iPSC samples were established from
the fibroblasts cultured from skin biopsies of the patients and

1 https://www.ebi.ac.uk/arrayexpress/

healthy controls. For the validation, an RNA sequencing (RNA-
seq) data set (PRJNA422218) in which iPSC samples derived
from somatic cells from childhood cALD patients were induced
into brain microvascular endothelial cells was used (Lee et al.,
2018).

Data preprocessing

The downloaded raw datasets in Affymetrix platform (∗.CEL
files) and Illumina platform were normalized using the Robust
Multi-array Average (RMA) algorithm and the neqc function in
R package oligo and limma, respectively. The duplicate genes
in the datasets were processed using the probe’s Entrez ID in
the annotation package following Jung et al. (2017). The mean
values were used for the data with identical Entrez IDs (Jung
et al., 2018).

Adjusting batch effects and computing
Z-scores in merged data

The datasets were merged and adjusted the batch effect
and by the R surrogate variable analysis (sva) package to
maintain meaningful biological effects while eliminating non-
biological effects that result from combining independent
studies conducted in different environments (Johnson et al.,
2006; Leek et al., 2012). A meta-analysis was conducted using
the random effects model in the GeneMeta R package to obtain
false discovery rates (FDRs) and Z-scores that represent the
gene expression profiles in each disease (Choi et al., 2003).
The Z-score was calculated to indicate how the expression of a
single gene in a patient group is different from that of a control
group in this study. That is, genes with positive values of the
Z-score are expressed higher in the patient group compared
with the control group, whereas genes with negative values are
less expressed in the patient group compared with the control
group.

Gene set enrichment analysis

A fast GSEA R package was implemented for GSEA
(Subramanian et al., 2005; Sergushichev, 2016). The Z-scores
of the AD datasets were used to make a list of ranked
genes. The DEGs of cALD were used as a set of genes to
be analyzed and enrichment scores were calculated based on
the ranked list. GSEA is designed to test multiple hypotheses
for the similarity between ranked gene lists and a set of
genes and has an algorithm to calculate enrichment scores by
weighting the extreme (top or bottom) of the entire ranked
list (Subramanian et al., 2005). The core members of the gene
set with a high enrichment score were selected as leading-edge
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FIGURE 1

Workflow of the meta-analysis in this study. Green, orange, and black arrows indicate how cALD, AD, and the meta-analysis datasets were
processed, respectively. The meta-analysis using GeneMeta was performed separately for two diseases, but the diseases were later analyzed
together in the GSEA, WGCNA, and STRING processes. The blue painted boxes represent genes that were obtained from the corresponding
analysis process, and those genes were used in the next analysis process. cALD, cerebral adrenoleukodystrophy; AD, Alzheimer’s disease; GSEA,
gene set enrichment analysis; WGCNA, weighted gene co-expression network analysis; STRING, search tool for the retrieval of interacting
genes/proteins; PPI, protein–protein interaction.

genes (Subramanian et al., 2005). For the functional annotation
of modules, the hallmark genes from molecular signatures
database (MsigDB2) were used as annotated gene sets (Liberzon
et al., 2015).

Weighted gene co-expression network
analysis

Originally, a signed WGCNA is designed to cluster
gene sets that solely consist of positively correlated genes
based on Pearson correlation coefficients (Langfelder and
Horvath, 2008). First, we performed a signed WGCNA
using the merged datasets of AD (Jung et al., 2019; Kim
et al., 2021). To describe this in detail, outliers of samples
were eliminated by the hierarchical cluster method and the
soft thresholding power (β) was calculated via scale-free
topology analysis to a value of 10. Next, the adjacency
matrix was converted into a topology overlap matrix to
reflect the topology information on network formation. The
modules were identified by the hierarchical cluster method
and module eigengenes were calculated as summarized gene
expression patterns of their respective modules. The modules
were clustered with a minimum size of 30 genes. All
modules were compared pair-wise, and pairs of modules
showing high module eigengene correlations (r > 0.80) were
merged. In order to find modules that showed correlations
with cALD, module preservation analysis was conducted
among the modules constructed from the AD dataset as

2 http://software.broadinstitute.org/gsea/msigdb

the reference set and the merged cALD dataset as the test
set (Langfelder et al., 2011). The evidence that a module
is preserved is summarized by the Z-summary score, which
was created by averaging the various preservation statistics
of module robustness and reproducibility (Langfelder et al.,
2011). All the above analyses were conducted in R (version
4.1.2).

Protein–protein interaction network
analysis

The search tool for the retrieval of interacting genes/proteins
(STRING3.) was applied to investigate the connections between
genes at the protein level (Szklarczyk et al., 2019). The STRING
provides predictions of protein–protein interactions (PPIs)
by taking a list of proteins as input, calculating confidence
scores based on various evidence of interactions among
proteins, and assigning uniform confidence scores to the
same data set (Szklarczyk et al., 2019). The confidence level
of the edge was adjusted to 0.7 and the nodes that were
connected to fewer than two other nodes were deleted
(Apostolakou et al., 2021). A PPI network constructed by
STRING was visualized by cytoscape (version 3.9; Shannon
et al., 2003). In the network, highly interconnected gene
clusters were found by molecular complex detection
(MCODE) with the cytoscape plugin (Bader and Hogue,
2003).

3 https://string-db.org/, version 11.5
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Results

Data collection of cerebral
adrenoleukodystrophy and Alzheimer’s
disease and identifying differentially
expressed genes in cerebral
adrenoleukodystrophy by
meta-analysis

To conduct a meta-analysis that utilizes multiple datasets
together, gene expression datasets were collected from EBI-
arrayexpress that contained samples from healthy controls
and patients (cALD or AD) who had not received any drug
intervention. Only one RNA-seq dataset from cALD patients
and three microarray datasets from cALD patients and control
subjects were publicly available. One microarray dataset was
obtained from the postmortem brains of control subjects
and cALD patients. This dataset also included cerebral AMN
(cAMN) patients since cAMN is a subtype that shows mild
cerebral-specific symptoms of cALD. Two additional datasets
were obtained from the samples of early passage cultures of
iPSCs derived from the skin fibroblasts of control subjects and
cALD patients. In total, 43 datasets were used for cALD (19
cALD and 24 control; Table 1). The AD microarray datasets
were searched for in the same way as the cALD microarray
datasets and five AD microarray datasets were selected. Four

datasets were generated with postmortem brains and the other
dataset produced by iPSCs-induced neurons. These neurons
exhibited significantly higher levels of Aβ and phosphorylated
tau, and thus mimicked a live AD patient’s brain (Israel et al.,
2012). In total, 534 data were obtained from control subjects
and AD patients who did not receive treatment (231 AD and
313 control; Table 2).

Preprocessing was performed for each dataset and the
datasets were merged based on the disease type. Batch effects,
which are non-biological variants caused by two merged
datasets, were removed using Combat function in the sva R
package. The Z-scores of genes in the two merged datasets were
calculated using GeneMeta R package (Johnson et al., 2006). In
total, 636 cALD DEGs were screened by the cALD Z-scores and
FDRs of the genes for GSEA (|Z-score| > 0 and FDR < 0.05;
Figure 2A). Among cALD DEGs, 317 and 319 genes were up-
and down-regulated, respectively.

Comparison of cerebral
adrenoleukodystrophy and Alzheimer’s
disease patients’ gene expression
patterns

To determine whether cALD and AD have similar gene
expression patterns in the brain, GSEA were conducted to
examine two gene expression data sets from cALD and

TABLE 1 cALD dataset.

ArrayExpress ID Source Platform Number of samples

*cALD Control Total

E-MEXP-3288 Postmortem brain Affymetrix GeneChip Human Genome HG-U133A 11 13 24

E-GEOD-85804 *iPSCs Illumina HumanHT-12 V4.0 expression beadchip 3 3 6

E-GEOD-34309 *iPSCs Affymetrix Human Genome U133A 2.0 Array 5 8 13

19 24 43

*iPSC, induced pluripotent stem cells; cALD, cerebral adrenoleukodystrophy.

TABLE 2 AD dataset.

ArrayExpress ID Source Platform Number of samples

*AD Control Total

E-GEOD-36980 Postmortem brain Affymetrix Human Gene 1.0 ST Array 32 47 79

E-GEOD-5281 Postmortem brain Affymetrix Human Genome U133 Plus 2.0 Array 87 74 161

E-GEOD-29378 Postmortem brain Illumina HumanHT-12 V3.0 expression beadchip 17 16 33

E-GEOD-48350 Postmortem brain Affymetrix Human Genome U133 Plus 2.0 Array 80 173 253

E-GEOD-34879 *iPSC-induced neurons Illumina HumanHT-12 V4.0 expression beadchip 15 2 17

231 312 543

*iPSC, induced pluripotent stem cells; AD, Alzheimer’s disease.
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FIGURE 2

Clustered results of DEGs and GSEA plots of cALD and AD. (A) Heatmap showing expression patterns of DEGs in cALD (FDR < 0.05). The disease
states of individuals are shown as red and gray bars, and the batch represents the three datasets of cALD as green, blue, and pink bars above the
heatmap. The color inside the heatmap shows the Z-score of cALD. GSEA plot comparing the expression of the AD dataset to DEGs that were
significantly up-regulated (B) and down-regulated (C) in cALD. The normalized enrichment score (NES) indicates the degree to which DEGs of
cALD were overexpressed at the top or bottom of ranked expression in the AD dataset.
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AD. GSEA is a gene rank-based analysis method extensively
used in meta-analysis when evaluating two gene expression
datasets. Therefore, GSEA was utilized to observe whether
the expression of the cALD dataset was similar to that of
the AD dataset (Subramanian et al., 2005). The Z-scores
of the entire AD dataset (16,265 genes) were ranked from
highest to lowest and then up- and down-regulated DEGs
in cALD were examined to place them in the ordered gene
list of AD. Using GSEA, the normalized enrichment scores
(NES) of DEGs in cALD were calculated from the Z-scores
of the same DEGs obtained from the AD gene list. The
NES value increases when the DEG in cALD is ranked
high in AD data and vice versa. The GSEA results showed
that both up- and down-regulated DEGs were positively
and negatively enriched with p-values < 0.05 (up-regulated
DEGs: NES = 3.01 and p-value = 6.4 × 10−4 and down-
regulated DEGs: NES = −1.67 and p-value = 1.1 × 10−4;
Figures 2B,C (Subramanian et al., 2005). The leading-edge
genes are key genes that contribute to the NES, which are
considered shared DEGs in two diseases (Subramanian et al.,
2005). We identified 144 and 122 up- and down-leading-edge
genes in cALD and AD via GSEA (Supplementary Table 1).
The GSEA results indicate that cALD and AD have similar
gene expression patterns with significant NES and leading-edge
genes.

Identification of co-expressed gene
modules in cerebral
adrenoleukodystrophy and Alzheimer’s
disease by weighted gene correlation
network analysis

WGCNA was conducted to comprehend the gene
expression profile that is applicable in cALD from
interconnected genes in AD. WGCNA provides network
topology information and modules that indicate correlated
gene sets by performing correlation network analysis on
a high-dimensional dataset. We constructed a correlation
weighted network of the AD dataset with preserved sign
information of gene expression. Eight modules (black,
blue, green, magenta, orange, pink, purple, and red) were
detected by constructing a network of AD (Figure 3A). To
identify applicable modules in cALD, we performed module
preservation analysis using AD modules and the cALD
dataset. Preservation median rank and Z-summary scores
were obtained from preservation analysis and the scores
were considered to have strong, weak-to-moderate, or little-
or-no preservation when the score was > 10, 2–10, or < 2,
respectively (Langfelder et al., 2011). The green and orange
modules were highly preserved in the cALD dataset (green:
12 and orange: 14) and the other modules were moderately
preserved in the cALD dataset (blue: 10; black: 7.2; magenta:

5.6; purple: 5.4; gold: 5.1; pink: 3.3; red: 2.0; Figures 3B,C).
The Pearson correlation coefficients of both disease states
and batches in the cALD dataset were calculated with the
module eigengenes, which contains the expression profile
of each module (Figure 3D). The p-value of the correlation
coefficient indicates whether the correlation coefficient is
significantly different from 0. The green and orange modules
were considered significantly different in gene expression
between the control and patient groups (green: r = 0.59 and
P = 3 × 10−5; orange: r = −0.39 and P = 0.01) and the number
of genes in the two modules were 652 and 834, respectively.
The results of WGCNA indicated that the green and orange
modules were important for the causal genetic relationship
between cALD and AD.

Preservation module related to
immune process and cell death

In order to gain insights into the biological processes of
the cALD-related preserved modules, functional annotation was
performed using GSEA with gene ontology biological process
gene sets. We performed gene annotation with biological
process of gene ontology using green and orange modules and
screened biological processes at P < 0.01. There were 24 and
53 biological processes that met the criteria of P < 0.01 in
gene annotation of the green and orange modules, respectively.
Biological processes were ordered by NES of overlapped
genes between annotated modules and the genes constituting
individual biological processes. In the orange module, the top 12
enriched biological processes were myeloid leukocyte activation
(NES = 2.03 and P < 0.001), vascular process in circulatory
system (NES = 1.92 and P = 2.0 × 10−3), positive regulation of
anion transport (NES = 1.89 and P < 0.001), myeloid leukocyte-
mediated immunity (NES = 1.86 and P < 0.001), cell activation
(NES = 1.86 and P < 0.001), nuclear transport (NES = 1.84
and P < 0.001), receptor-mediated endocytosis (NES = 1.84 and
P = 4.3 × 10−3), protein localization to nucleus (NES = 1.82
and P = 6.8 × 10−3), negative regulation of immune system
process (NES = 1.78 and P = 6.8 × 10−3), immune effector
process (NES = 1.78 and P = 2.3 × 10−3), cell activation
involved in immune response (NES = 1.77 and P < 0.001),
and leukocyte-mediated immunity (NES = 1.76 and P < 0.001;
Figure 4A). In the green module, the top 12 enriched biological
processes were blood vessel morphogenesis (NES = 2.28
and P < 0.001), anatomical structure formation involved in
morphogenesis (NES = 2.22 and P < 0.001), vasculature
development (NES = 2.21 and P < 0.001), circulatory system
development (NES = 2.14 and P < 0.001), tube morphogenesis
(NES = 2.13 and P < 0.001), regulation of vasculature
development (NES = 2.00 and P < 0.001), tube development
(NES = 1.98 and P < 0.001), regulation of multicellular
organismal development (NES = 1.97 and P < 0.001), regulation
of cellular component movement (NES = 1.97 and P < 0.001),
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FIGURE 3

Results of WGCNA and module preservation analysis. (A) Dendrogram showing the modules obtained from the signed network based on the
dissimilarity of the topology overlap matrix of the AD modules. A total of eight modules were clustered and are represented by color. The
modules were sorted by their respective module size and aligned by preservation median rank (B) and preservation Z-summary score (C)
against cALD data. The dashed line at 10 indicates a strong preservation threshold, whereas the dashed line at 2 indicates no preservation
threshold. (D) Matrix showing the correlation of characteristics of the samples in the merged cALD dataset and the genes in the modules. The
numbers in parentheses are their respective p-values.

muscle system process (NES = 1.97 and P < 0.001), positive
regulation of multicellular organismal process (NES = 1.96 and
P < 0.001), and apoptotic signaling pathway (NES = 1.97 and
P < 0.001; Figure 4B).

As a result of functional annotation of the orange module,
immune effector process, inflammatory response (NES = 1.74
and P = 2.0 × 10−3), and the regulation of immune system
process (NES = 1.65 and P = 2.0 × 10−3) were immune-
related pathways related to the pathogenesis of both diseases
(Figures 4C–E). The green module was enriched with cell death-
related processes including the apoptotic signaling pathway
and the regulation of cell death (NES = 1.92 and P < 0.001).
In addition, mitogen-activated protein kinase (MAPK) activity
(NES = 1.91 and P = 2.0 × 10−3), which was involved in
inflammation and cell death, was also enriched in the green

module (Figures 4F–H). Although the role of the MAPK
pathway in cALD has not been thoroughly revealed, it is known
to regulate several cellular processes including development,
apoptosis, and inflammation in AD (Cui et al., 2013; Thei et al.,
2018).

Identification hub-genes of cerebral
adrenoleukodystrophy and Alzheimer’s
disease by protein–protein
interactionnetwork analysis

To identify hub-genes that affect the pathogenesis of
cALD and AD, we conducted PPI network analysis by
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FIGURE 4

Biological processes of preserved modules. Bar plots represent p-values of biological process of gene ontology from (A) orange and (B) green
modules. The top 12 biological processes with the most overlapped genes between the annotated gene list and module genes are displayed.
The orange module was positively enriched with (C) the immune effector process, (D) inflammatory response, and (E) regulation of the immune
system process. The green module was positively enriched with (F) the regulation of MAPK activity, (G) the regulation of cell death, and (H) the
apoptotic signaling pathway.

STRING to discover the connection of genes at the protein
level. STRING provides interaction information between gene-
encoded proteins using a network that contains proteins’
structural and functional information. The numbers of genes
in the green and orange modules were reduced to 167 based
on | Z-score| > 2 in cALD and AD (Bai et al., 2020). In
addition, we obtained 38 genes that correspond to relevance

score > 2 in cALD from the GeneCards4 to identify how
the selected genes interact with the known cALD genes, of
which 19 genes overlapped (Supplementary Table 2; Rappaport
et al., 2017). As described above, PPI network analysis was

4 www.genecards.org/
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conducted using 186 genes composed of module genes and
known cALD genes (Figure 4A). The entire PPI network
was formed by 106 genes excluding unlinked genes, and the
p-value was calculated as 2.22 × 10−16. The p-value suggested
that the analyzed genes have statistically higher interactions
and shared more biologically significant links than a random
geneset of the same size and linkage distribution (Figure 5A).
apolipoprotein E (APOE; cALD Z-score = 2.97 and AD
Z-score = 2.07) and ATP binding cassette subfamily A member
1 (ABCA1) genes served as bridges between cALD-related
genes and the module genes. ABCA1 (cALD Z-score = 3.86
and AD Z-score = 5.05) was a leading-edge gene in this
study.

We then utilized MCODE to detect highly interconnected
genes—called hub-genes—as clusters based on the topology
of the constructed PPI network (Supplementary Table 3).
APOE was identified as a seed node around which the
remaining eight genes, namely annexin A5 (ANXA5), beta-2-
microglobulin (B2M), C-C motif chemokine ligand 2 (CCL2),
CD44 molecule (CD44), fibroblast growth factor 2 (FGF2),
syndecan 1 (SDC1), syndecan 4 (SDC4), and signal transducer
and activator of transcription 3 (STAT3) were clustered.
APOE is a well-known major genetic risk factor for late-
onset AD. Even though the correlation between APOE and
cALD pathogenesis has not been completely revealed, a recent
proteomic study on the cerebrospinal fluid of active cALD
patients showed that APOE is an inflammatory marker for
the disease (Orchard et al., 2019). The hub-genes were highly
interconnected among themselves and were also connected
with other gene networks of the green and orange modules
(Figures 5B,C). The distinction between control subjects and
cALD patients in RNA-seq data were validated from the
expression of hub-genes via principal component analysis
(PCA; Supplementary Figure 1). This confirms that the hub-
genes of cALD and AD were reliably discovered in this
study.

To identify genes that have robust associations with the
pathogenesis of diseases, four core genes—B2M, CD44, FGF2,
and ANXA5—were selected from the hub-genes that overlapped
with the GSEA results. Among the biological processes we
discovered (Figures 4C–H), core genes were closely related
to inflammation and apoptosis. B2M (cALD Z-score = 3.81
and AD Z-score = 5.35) serves as an inflammatory marker
in the CNS (Liu et al., 2014; Topçiu-Shufta et al., 2016),
and CD44 (cALD Z-score = 4.67 and AD Z-score = 4.96)
is positively correlated with apoptosis and inflammation by
regulating cytokine expression (McKallip et al., 2002). FGF2
(cALD Z-score = 3.58 and AD Z-score = 6.10) increased
susceptibility to oxidative stress that induces neuronal cell death
in astrocytes. The level of ANXA5 (cALD Z-score = 2.98 and
AD Z-score = 4.79), which is associated with familial late-
onset AD from whole exome sequencing, in the cerebrospinal
fluid of AD patients increased proportionally with the severity

of the disease state as Aβ accumulates, playing a protective
role against Aβ toxicity (Zhang et al., 2019; Bartolome et al.,
2020).

Discussion

In-silico approaches can be applied as tools to expand our
understanding of diseases and suggest new therapeutic targets,
which may reduce the time spent on laborious and time-
consuming pre-screening processes. Meta-analyses combine
multiple studies to increase both the sample size and statistical
power and can particularly be effective when studying rare
diseases as they usually consist of studies with small samples
(Bradburn et al., 2007). cALD is a rare disease characterized
by complex metabolic disorders in the cerebral and adrenal
cortexes, the exact pathogenesis and molecular mechanisms of
which remain unclear due to the near absence of data. Currently
available treatment options include, but are not limited to,
medication for relieving stiffness and seizures, Lorenzo’s oil
(Moser et al., 1992), and stem cell transplantation (Cartier
et al., 2009). In order to develop novel therapeutic options, a
deeper understanding of the disease is required by overcoming
the problem of data insufficiency (Berger et al., 2014). In
comparison, numerous studies have been conducted because of
the worldwide prevalence of AD, resulting in the discovery of
various novel pathogenic mechanisms and treatments. Based
on the fact that both diseases are NDs and share a common
remedy (erucic acid), the purpose of this study was to utilize
the large amount of data on AD to discover new pathological
targets for cALD. Therefore, we analyzed the expression profiles
and co-expression network of cALD and AD in parallel based on
meta-analyses and revealed that the two diseases share distinct
gene expressions, leading to the discovery of novel genes that
may affect the pathogenesis of cALD (Figure 1).

To conduct our meta-analysis, we first constructed
individual datasets for cALD and AD. As far as we know,
other than one RNA-seq data obtained from iPSC-induced
endothelial cells from cALD patients that we used for validation,
only one microarray data composed of postmortem brain
samples from cALD was available in the public database
(Table 1). To increase the quantity of data and to estimate the
disease state of the brain closer to its living state (Manchia
et al., 2017), we used gene expression profiles of iPSCs
from cALD patients. Wang et al. reported the suggestible
transcriptome-level coherence between iPSCs of cALD
patients and the known pathogenetic characteristics of cALD,
including neuro-inflammation and peroxisome abundance
(2012). One pathogenetic hypothesis of cALD includes that
mutation in ABCD1 gene impacts the endothelia of the brain
microvasculature, leading to inflammatory demyelination
in the brain (Lauer et al., 2017). Gene mutations promote
the accumulation of VLCFA, oxidative stress, and cell death
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FIGURE 5

Clusters within the PPI network and characteristics of hub-genes. (A) PPI network presented by cALD-related genes and genes of |Z-score| > 2
in cALD and AD among green and orange modules. The leading-edge genes are indicated by rhombi, and previously studied cALD marker
genes are indicated by ellipses. The range of Z-score values in the cALD dataset of the nodes is represented by a color bar at the right. The
undetected genes in the microarray are shown as pale-yellow nodes and were not used in meta-analysis. (B) The degree of hub-genes was
obtained using green and orange modules. The degree of each node represents the total number of connections to other nodes in a network,
and the colors of dots represent Z-scores of AD. (C) Protein interaction among hub-genes clustered around APOE. The thickness of the
connected lines represents the strength of correlation between two hub-genes.

(Wiesinger et al., 2013). Since this study was mainly focused
on the neuronal pathophysiology of cALD, the RNA-seq
dataset of iPSC-induced endothelial cells was excluded from
the meta-analysis and only used as a validation dataset. In
addition, the cALD-related genes provided by the GeneCards
were used to validate the results of WGCNA conducted in
this study by utilizing the results of previous studies. Among
cALD-related genes, genes without Z-scores for cALD and AD
were not detected or designed to be undetected in at least one

cALD microarray dataset (Supplementary Table 2). Even after
adding these data, the insufficiencies remained in the cALD
data.

There are abundant RNA-seq and microarray data on AD
brains; however, there are almost no publicly available data
obtained from live brains as far as we know. Most data were
generated using postmortem brains due to the special nature
of the brain itself. The iPSC-induced neuron dataset from AD
patients showed conforming biological characteristics with the
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original neurons of AD patients (Table 2; Almeida et al., 2013;
Chen et al., 2013). Therefore, the aforementioned dataset was
included when constructing a combined gene expression matrix
for AD in this study. There was much less RNA-seq AD data
than that of the microarray dataset, consisting of 71 patients
and 87 controls, which is less than one-third of the microarray
dataset in this study (Supplementary Table 4). The merged data
including an AD RNA-seq dataset had even fewer genes than
the AD microarray dataset. In order to minimize the loss of
genes that may provide potential signatures, merged data were
constructed with only microarray platforms.

After data preparation, two statistically powerful approaches
(GSEA and WGCNA) based on meta-analysis were performed
to investigate the sharing transcriptomic aspects of cALD and
AD. Gene set-level correlation analysis between cALD and AD
was performed using GSEA, which suggested 144 up- and 122
down-regulated leading-edge genes that can be regarded as
key driver genes in the shared genetic mechanisms (Figure 2).
To simultaneously consider the co-expression structure of
cALD and AD, WGCNA was conducted by constructing
a gene network (Figure 3A). Among the eight modules
identified in AD data, the network connectivity and correlation
structures of the green and orange modules were conserved
and significantly correlated with the disease state of cALD (Z-
summary score > 10 and P < 0.05), which suggests a shared co-
expression structure between cALD and AD (Figure 3). Among
the significantly enriched biological pathways from both cALD
and AD, immune response and cell death are known to occur via
oxidative stress associated with the MAPK signaling pathway in
AD (Figure 4; Kamat et al., 2014). Most biological processes of
functional annotation were related to the pathogenesis of cALD
and AD; the results suggested that most functional annotation
results were in line with previous studies. The accumulation
of VLCFA is reported to be the key contributor to oxidative
stress in cALD, where excessive oxidative stress causes neuro-
inflammation and eventually leads to the apoptosis of neuronal
cells in cALD and AD (Behl, 1999; Berger et al., 2014). Even
though the role of MAPK signaling pathway was not clearly
revealed in cALD, the MAPK pathway may be suggested as
an intermediating mechanism between oxidative stress and
immune response and/or cell death considering the pathway-
level similarity of cALD and AD.

Through systemic analysis of the PPI network, nine hub-
genes were identified, led by APOE as the seed node of the cluster
(Figure 5). APOE is a lipid transport protein that regulates
the lipid metabolism, oxidative stress, neurite outgrowth, and
the mitochondrial metabolism (Orchard et al., 2019). As the
association between APOE and AD has been well-established
for decades, the APOE’s role as a potential biomarker for cALD
has been recently proposed (Orchard et al., 2019). Considering
the statistical significance from GSEA and WGCNA along with
network topology from the PPI network analysis, B2M, CD44,
FGF2, and ANXA5 were identified as core genes. In accordance

with the result from the functional enrichment analysis of
WGCNA modules, the core genes were related to inflammation,
apoptosis, and MAPK in AD. In detail, B2M plays a critical role
in inflammation and apoptosis and has been demonstrated to
induce cognitive impairment in AD (Topçiu-Shufta et al., 2016;
Zhong et al., 2020). CD44 encodes cell-surface glycoproteins
involved in cell–cell and cell–extracellular matrix interaction,
where its expression on immune cells is known to regulate
inflammation and apoptosis in CNS (McKallip et al., 2002).
By contributing to a variety of biological activities, FGF2 plays
significant role in apoptosis and differentiation in CNS and
can activate the MAPK pathway (Liu et al., 2014). While four
core genes were reported as the causal genetic risk factors
for AD, the expression level of ANXA5 is known to have a
negative correlation with AD risk. ANXA5 encodes protein
that has inhibitory effects on inflammation and early apoptosis,
contributing to tissue homeostasis (Bartolome et al., 2020).
Despite the insufficient evidence explaining the pathological
roles of these four core genes in cALD, the results of this
study showed the potential of the core genes as the biomarker
candidates for cALD. We finally suggested the four genes as
novel targets for cALD as they are closely related to the common
pathological phenotypes of cALD and AD.

In conclusion, the knowledge on pathological mechanisms
and genes of cALD was successfully expanded through
combination of the results of GSEA and WGCNA using AD
datasets based on meta-analysis. The study showed the shared
pathway between cALD and AD, finally determining the novel
target genes of cALD. These findings can help fill in gaps in
previously unknown pathways in cALD, which were found
through two main approaches: increasing sample sizes for
cALD and comparing the gene expression patterns of cALD
with a disease with a higher prevalence and some common
features, AD. The putative gene markers can potentially be
applied not only to therapeutic targets or genetic diagnosis,
but also to the potential drug repositioning for cALD, which
is further augmented by rapid study on AD (Ashburn and
Thor, 2004). To the best of our knowledge, this is the first
meta-analysis to discover genetic similarities and common
pathological factors derived from the correlation between cALD
and AD. Because this study was conducted using in silico
analyses, rigorous validation through functional studies might
be necessary. Despite this limitation, this research demonstrated
an approach for studying pathologically relevant diseases by
deriving novel biological meaning of a very rare disease, which
suggests a potential extension for various approaches.
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