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In Brief
The human oral cavity houses a
complex ecosystem of microbes,
some of which have pathogenic
influence on the host. Multi-
omics analysis of oral plaques
revealed key players in microbial
communities derived from
diabetic and periodontal disease
patients. With cross-omic
correlation analysis, we found
host-specific proteins and
associated lipids that were
elevated in plaques from
periodontal disease patients.
Furthermore, this multi-omic
approach leads to the finding
that oral community member
Lautropia mirabilis synthesizes
monomethyl
phosphatidylethanolamine, an
uncommon lipid in oral
microbiota.
Highlights
• Patients with periodontal disease or diabetes have unique microbial dysbiosis.• Proteomics and 16S data provide complementary information about microbial diversity.• Cross-omic correlation reveals host signatures associated with periodontal disease.• Multi-omic data lead to finding about microbially synthesized lipids.
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RESEARCH
Proteomics, Lipidomics, Metabolomics, and 16S
DNA Sequencing of Dental Plaque From
Patients With Diabetes and Periodontal Disease
Katherine A. Overmyer1,2,3 , Timothy W. Rhoads2 , Anna E. Merrill4 , Zhan Ye5,
Michael S. Westphall2,3, Amit Acharya6, Sanjay K. Shukla5,6,*, and Joshua J. Coon1,2,3,4,*
Oral microbiome influences human health, specifically
prediabetes and type 2 diabetes (Pre-DM/DM) and peri-
odontal diseases (PDs), through complex microbial in-
teractions. To explore these relations, we performed 16S
rDNA sequencing, metabolomics, lipidomics, and prote-
omics analyses on supragingival dental plaque collected
from individuals with Pre-DM/DM (n = 39), Pre-DM/DM and
PD (n = 37), PD alone (n = 11), or neither (n = 10). We
identified on average 2790 operational taxonomic units
and 2025 microbial and host proteins per sample and
quantified 110 metabolites and 415 lipids. Plaque samples
from Pre-DM/DM patients contained higher abundance of
Fusobacterium and Tannerella than plaques from meta-
bolically healthy patients. Phosphatidylcholines, plas-
menyl phosphatidylcholines, ceramides containing
non-OH fatty acids, and host proteins related to actin
filament rearrangement were elevated in plaques from PD
versus non-PD samples. Cross-omic correlation analysis
enabled the detection of a strong association between
Lautropia and monomethyl phosphatidylethanolamine
(PE-NMe), which is striking because synthesis of PE-NMe
is uncommon in oral bacteria. Lipidomics analysis of
in vitro cultures of Lautropia mirabilis confirmed the syn-
thesis of PE-NMe by the bacteria. This comprehensive
analysis revealed a novel microbial metabolic pathway
and significant associations of host-derived proteins with
PD.

The human oral cavity harbors a wide variety of microbes,
over 700 species (1), and has some of the highest microbial
diversity observed in humans (2). These oral-associated bac-
teria reside in saliva, on the tongue and cheeks, and in biofilms
on tooth surface and under the gum lining (2). The develop-
ment of plaque biofilms is particularly important to the etiology
of oral diseases, such as tooth decay and periodontal disease
(PD) (3, 4). And importantly, the pathogenic oral microbiota
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that contribute to the progression of PD are also correlated
with systemic diseases, including diabetes, arthritis, and heart
disease (5–7), suggesting that oral microbial ecologies have a
broad impact on human health, and a better understanding of
pathogenesis and host–microbe interactions will be essential
for mitigating negative effects of pathogenic microbiota.
One such negative impact of these microbiota is the

increased burden of PD in diabetics (8). PD begins with gum
inflammation that progresses to permanent tooth and bone
loss if untreated (9). Bacterial populations accumulate, and the
progressive shifts in the plaque biofilm diversity are strongly
associated with PD incidence and severity (4, 10). In particular,
species that form what is called the ‘red complex’, Tannerella
forsythia, Porphyromonas gingivalis, and Treponema denti-
cola, are associated with gum bleeding on probing and probe
depth, two common markers of PD severity (10). These red
complex microbial populations are observed in conjunction
with species such as Fusobacterium nucleatum, Prevotella
intermedia, Prevotella nigrescens, and Peptostreptococcus
micros species, which are more mildly associated with PD (10)
and often are observed in biofilms before the red complex.
Diabetics, especially those with poor glycemic control, are at a
higher risk for developing PD (11), and higher glycated he-
moglobin (HbA1c) values are associated with increased
prevalence of red complex microbiota (12). Importantly, the
relationship between PD and diabetes is bidirectional (8), and
treating PD has been shown to improve HbA1c values of di-
abetics (13). Thus, better understanding on microbial pop-
ulations and their microenvironment in diabetics with and
without PD is an important goal toward mitigating the negative
consequences of these two diseases.
During the development of dental plaque, increases in mi-

crobial diversity are mediated by changes in the microenvi-
ronment and manifestation of microbial niches (14, 15), as the
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Multi-omics of dental plaque
local environment becomes optimal to support population
growth. This growth can be aided by microbe–microbe in-
teractions, host–microbe interactions, and metabolite avail-
ability (4). As dental plaque biofilms become established,
measurable changes in microbial abundances as well as
metabolites and host factors occur. Thus, a holistic approach
to studying dental plaque could provide insight into how mi-
crobial populations interact and how they associate with host
health.
Frequently, 16S/18S rDNA sequencing is used to estimate

the size and diversity of microbial populations (1, 2); how-
ever, this method offers little information about microbial
function or local environmental factors, although re-
searchers have come up with ways to use 16S sequencing
to deduce some functional information (i.e., PICRUSt) (16).
More recently, metagenomics and metatranscriptomics ap-
proaches have afforded greater evidence for microbial
functional potential, that is, what genes are present and/or
expressed in the population (17). These methods can pro-
vide clues to how microbes might interact within the biofilm,
but importantly, these conclusions are greatly strengthened
by biomolecule measurements, for example, when meta-
genomics is paired with metabolomics (18, 19). MS-based
‘omic analyses—such as metabolomics, lipidomics, and
proteomics—uniquely offer high-throughput means of
assessing the molecular details of the local environmental
niches these microbes occupy as well as information about
community composition and functional-level information.
Indeed, several studies have used MS-based ‘omics to
assess the oral microbiome, focusing on either meta-
proteomics (20, 21) or metabolomics (22–25). As of yet,
discovery lipidomics is not being applied to study the oral
microbiome, and generally, the use of multi-omics for
studying the oral microbiome is still uncommon (25), despite
the fact that it has potential to offer a wealth of information
about the local microbe–host environment (26).
We leveraged 16S rRNA gene sequencing and high-

resolution MS to profile microbes, proteins, lipids, and me-
tabolites in human dental plaques from nearly 100 in-
dividuals with PD and/or prediabetes/diabetes (Pre-DM/
DM). Altogether, we performed >650 GC or LC-MS/MS ex-
periments, collected >4.5 million tandem mass spectra and
on average identified several thousand biomolecules in each
sample. Using ecology diversity metrics, we identified in-
creases in microbial diversity and changes in the microbial
populations with PD and Pre-DM/DM, suggestive of micro-
bial dysbiosis occurring with these diseases. Furthermore,
we identify hundreds of proteins, metabolites, and lipids
associated with PD and/or Pre-DM/DM. Based on these
findings, we describe a rare lipid synthesis pathway in one of
the common oral bacteria (Lautropia mirabilis) and demon-
strate that these compounds along with other microbial-
molecule associations can link microbial populations to
function.
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EXPERIMENTAL PROCEDURES

Materials

Unless otherwise stated, materials were obtained from Sigma-
Aldrich. Organic solvents and water used for extraction and MS
analysis were of MS-grade quality.

Experimental Design and Statistical Rationale

The study design consisted of 39 individuals with Pre-DM/DM, 37
individuals with Pre-DM/DM and PD, 11 individuals with PD, and ten
individuals with neither Pre-DM/DM nor PD. The study design was
such that the age and sex were similar among the four groups. Each
patient contributed three randomly sampled dental plaques to the
study, two samples from each patient were reserved for MS analysis
and one sample was reserved for 16S rDNA sequencing. The 16S
rDNA data were acquired with a single analysis for each sample (no
technical or biological replicates). For the two biological replicates
designated for MS analysis (i.e., same individual, different tooth lo-
cations)—metabolites, lipids, and proteins were extracted from each
sample, leading to two biological replicates for the acquired MS data.
The samples analyzed by MS were analyzed in batches of n = 25 with
a cultured mixed-microbial quality control sample in each batch. Each
batch consisted of equal proportions of the individuals from the study
design groups (~40% Pre-DM/DM, ~40% Pre-DM/DM with PD, ~10%
PD, and ~10% neither Pre-DM/DM nor PD). In addition, biological
replicates of individuals were processed on separate days and
analyzed in separate batches. The mixed microbe quality control
samples served as a technical replicate for extractions (equivalent
pellets extracted with each batch) and also served as a technical
replicate for lipidomics and GC-MS-based metabolomics analysis
(repeated injection of batch’s quality control extract at regular intervals
during the analysis). The quality control samples were used for guiding
normalization and filtering features. For statistical analysis, we sought
to evaluate effect of PD and Pre-DM/DM on measured biomolecules.
Given the unbalanced study design, these effects were evaluated
separately and as interaction terms using generalized additive mixed-
effect models. The models also including confounding factors of age,
gender, and tobacco-use status, and participant identifier were
included as a random effect to account for replicate sampling from
individuals (in MS-acquired data). Benjamini–Hochberg false discov-
ery rate (FDR) correction was applied to all p-values used to assess
statistical significance of the effects. Secondary to the investigation of
Pre-DM/DM and PD effects on the measured biomolecules, the data
were used to evaluate microbial–metabolite–lipid associations. For
this approach, correlation analysis was applied with appropriate FDR
correction.

Recruiting Patients and Sample Collection

This study was approved by the IRB of Marshfield Clinic Research
Institute under the IRB Protocol # SHU10115. PD and pre-DM/DM
patients and healthy controls were recruited from the Marshfield
Dental Clinic, Marshfield, WI, based on their prior medical and dental
records; in total, 99 participants consented to the study; two patients
were later excluded because of having a type I diabetes diagnosis.
Participants were classified as Pre-DM/DM if they had been previously
diagnosed with diabetes in their medical record or if they met the
following criteria: fasting blood glucose 100 mg/dl or greater, HbA1c
5.7% or greater, and glucose tolerance test 140 mg/dl or greater.
Patients were classified as having PD if they had undergone a peri-
odontal examination and were classified as having moderate or severe
periodontitis. Moderate periodontitis was classified as having either
interproximal attachment loss ≥4 mm (two or more teeth) or inter-
proximal probe depth ≥5 mm. Severe periodontitis was classified as
having both interproximal attachment loss ≥6 mm (two or more teeth)



Multi-omics of dental plaque
and interproximal probe depth ≥5 mm. Patients were not required to
abstain from food before sample collection. For every participant,
supragingival plaque samples were collected from three locations,
lower and upper molars and lower anterior lingual surfaces were tar-
geted for collection, sample location was recorded by tooth numbers
and surface (palatal versus lingual), and samples were frozen in a dry
ice–isopropanol bath within 5 min of collection. Samples were main-
tained at less than −20 ◦C before analysis.

16S rDNA Sequencing

The V4 region of the 16S rRNA gene sequencing was performed by
following the protocol published in (27). The Illumina pair-end reads of
partial 16S rRNA sequences were used as input for the QIIME ana-
lyses (27); the analysis was performed in the following steps. (1) All the
pair-end reads were assembled in one fastq file with samples inde-
pendently tagged with their samples names, basic quality control
steps were applied to make sure the quality of the fastq file and the
parameters used are default of QIIME pipeline from http://qiime.org/
tutorials/index.html. (2) operational taxonomic unit (OTU) picking
step was performed using the pick_open_reference_otus.py protocol
by searching reads against the Greengenes database with similarity
set to 99% (28, 29). (3) Taxonomy assignment was performed using
the ‘uclust’ method (30) and a 0.7 confidence cut-off with Greengenes
taxonomy assignment (31). (4) Chimeric sequences were detected
using the identify_chimeric_seqs.py function with the ‘usearch61’
method (30, 32); these chimeric sequences were removed from the
OTU table. The OTU results were exported as a ‘biom’ file and im-
ported into R for further analysis.

Bacterial Culture Preparation for Lipidomics

Two ATCC strains of L. mirabilis (ATCC strain #s 51599 and 51601)
and a clinical isolate of Actinomyces odontolyticus were grown 5-ml
tubes of Mueller–Hinton broth at 37 ◦C in static culture for 48 h. Af-
ter 48 h, bacterial cells were centrifuged, the supernatant was dis-
carded, and fresh 5 ml of the Mueller–Hinton broth was added in to
tubes, vortexed, and incubated for additional 48 h before collecting
the cells pellet. All three cultures were grown in triplicates, and cell
pellets were stored at −80 ◦C before lipid extractions.

Sample Extraction for MS Analysis

Samples were kept on dry ice before extraction. To each sample,
we added 500 μl of ice-cold extraction buffer (2:2:1 methanol–aceto-
nitrile–water). Samples were probe-sonicated for 10 s over ice and
then centrifuged for 5 min at 14,000g at 4 ◦C to pellet protein and
other debris. The supernatant was centrifuged again at 14,000g for
5 min at 4 ◦C to ensure no precipitate was formed. The extract was
divided for LC-MS–based lipidomics and GC-MS–based metab-
olomics analyses and dried by vacuum centrifugation. The precipi-
tated protein was used for proteome analysis.

GC Metabolomics

Dried extracts were resuspended in methoxyamine HCl (20 mg/ml
in pyridine) and incubated at room temperature (RT) for 90 min.
Samples were further derivatized at with MSTFA (Restek) for 30 min at
37 ◦C. Samples were analyzed on a Q Exactive GC-Orbitrap mass
spectrometer using a TraceGOLD TG-5SilMS GC column (33, 34).
Samples were injected using a 1:10 split at 275 ◦C and ionized using
electron impact. The GC gradient ranged from 50 to 320 ◦C, linear
over a 25 min gradient, and then a 4.4 min hold at 320 ◦C. Orbitrap MS
acquisitions were collected in full-scan mode 50 to 650 m/z at a
resolution of 30,000 ( at 200 m/z). Raw files were analyzed using an in-
house tool for deconvolution of spectra, quantitation, and identifica-
tion against in-house and NIST 2014 libraries (35, 36) (see
also, https://github.com/coongroup/Y3K-GC-Quantitation-Software).
Quantification is based on a feature’s quant ion apex intensity (peak
height).

LC Lipidomics

Dried extracts were resuspended in 65:30:5 isopropanol–acetoni-
trile–water. For each sample, 10 μl was injected onto a Water’s Acquity
UPLC CSH C18 Column (2.1 mm × 100 mm) with a 5-mm VanGuard
precolumn using a Vanquish Split Sampler HT autosampler (Thermo
Scientific). Mobile phase A: 70:30 acetonitrile–water, 10 mM NH4Ac,
and 0.025% acetic acid. Mobile phase B: 90:10 IPA–acetonitrile,
10 mM NH4Ac, and 0.025% acetic acid. The samples were run on a
30 min gradient with 400 μl/min flow rate: mobile phase B was
maintained at 2% for 2 min, then increased to 30% over 3 min, then
increased to 50% over 1 min, then increased to 85% over 14 min, and
finally brought up to 99% over 1 min. Mobile phase B was held at 99%
for 7 min, and then the column was equilibrated with mobile phase
B at 2% for 1.75 min before the next injection. Mass spectra were
acquired using a Thermo Focus Q-Exactive with polarity switching and
top-2 data-dependent ms2 scans. Both full and ms/ms scans were
acquired with a resolving power of 17,500. From 0 to 2 min, negative-
mode scans were acquired with a mass range of 70 to 750 Da, and
then, from 2 to 30 min, negative-mode full scans were acquired with a
mass range of 200 to 1600 Da. Positive-mode full scans were ac-
quired with a mass range of 200 to 1600 Da from 0 to 30 min. Full-
scan MS were acquired with automatic gain control (AGC) targets
set to 1e6 and a max injection time of 100 ms. MS/MS spectra were
collected with AGC targets of 1e5, maximum injection time of 50 ms,
1.0 m/z isolation width, scan range of 200 to 2000, and normalized
stepped collision energies of 20, 30, and 40. A 10-s dynamic exclusion
was used. The source conditions were |4.0| kV for both positive and
negative modes, 320 ◦C capillary temperature, 25 units sheath gas, 10
units aux gas, and 0 units sweep gas.

Lipidomics raw files were analyzed with the Thermo Compound
Discoverer 2.0 application. Spectra from 2 to 21 min, 200 to 1600 Da
mass, 1e5 signal threshold, and signal-to-noise (S/N) threshold of 1.5
were selected for alignment. Alignment of retention times was allowed
a maximum shift of 0.2 min and a 10 ppm mass tolerance. Com-
pounds were detected with a mass tolerance of 10 ppm, an intensity
tolerance threshold of 10, an S/N threshold of 10, a maximum peak
width of 0.5 min, a minimum peak intensity threshold of 1e5, a mini-
mum of seven scans per peak, and minimum of three isotopes.
Detected compounds were grouped with a 10-ppm tolerance and
0.2-min retention time tolerance. Gap filling was used with 10-ppm
tolerance and 1.5 S/N. Compounds less than 10-fold greater than
the solvent blank were marked at background features and removed.
Retention time aligned compound tables containing integrated peak
area for each feature and unaligned tables from Compound Discov-
erer, and mgf converted raw files were input into LipiDex software for
lipid identification (37). MS/MS spectra were searched against an in
silico–generated lipid spectral library (LipiDex library: Coon_Lab_HC-
D_Acetate). Spectral matches were filtered based on dot product
score greater than 500 and a reverse dot product score greater than
700. Coeluting isobaric species with greater than 75% spectral
interference were collapsed into a lipid with sum acyl-chain compo-
sition identification. Identifications outside a 3.5 median absolute
retention time deviation of other lipids of the same class were
excluded, and identifications found in less than two raw files were also
excluded.

LC Proteomics

Precipitated protein was solubilized in 8 M urea prepared in 50 mM
Tris, pH 8.0. Proteins were then reduced and alkylated with TCEP
(10 mM final) and 2-chloroacetamide (40 mM final) for 15 min at RT,
Mol Cell Proteomics (2021) 20 100126 3
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Multi-omics of dental plaque
with shaking. Samples were diluted with 50 mM Tris, pH 8, to a final 4
M urea concentration, then proteins were digested overnight with
endoproteinase Lys-C (1:100 enzyme–protein, Wako Pure Chemical
Industries). Samples were desalted with C18 Sep-Pak columns (Wa-
ters); peptides were then dried down and resuspended in 0.2% formic
acid. Peptide concentration was estimated using a peptide colori-
metric assay (Pierce), and 1 μg of peptides was analyzed by LC-MS/
MS using an in-house packed nano-LC column (1.7-μm particle
size, BEH C18, Waters) coupled to a Thermo Orbitrap Elite with a
nano-electrospray ionization source and heated column compartment
(38). The gradient mobile phases consisted of 0.2% formic acid (A)
and 0.2% formic acid in 100% acetonitrile (B). The gradient consisted
of ramp from 0 to 70% B over 80 min, followed by a re-equilibration at
0% B, with a total run time of 110 min. The MS was operated in a
positive mode using a spray voltage of 2.5 kV, and S-lens RF of
57.1%, and a capillary temperature of 275 ◦C. Full-scan MS were
acquired at 60,000 resolving power using a Fourier transform mass
spectrometer, with 50 ms maximum injection times, 300 to 1500 m/z
range, and 1e6 AGC target. Data-dependent MS/MS (top 15) were
acquired by Fourier transform mass spectrometer with 15,000
resolving power, 100 ms maximum injection times, 5e6 AGC target,
higher-energy collisional dissociation with 30 normalized collision
energy, 0.1 s activation time, fixed first mass value of 115 m/z, 500
minimal signal, and a 2 m/z isolation width. The mass spectrometer
was operated with monoisotopic precursor selection enabled, and
with 45-s dynamic exclusions (±10 ppm).

Raw files were searched against a concatenated database con-
taining peptides form the Human Oral Microbiome Database (02/
2016) (39) and peptides in the human UniProt database (including
isoforms) using a two-step search strategy (40); this combined
database included a total of 1,329,621 entries. First, the initial
search was completed individually on each sample using COMPASS
(41), then we combined all first search identification matches to
create a reduced fasta database, a total of 759,208 sequences, for a
second search using MaxQuant (version v.1.5.6.0) (42). The search
parameters were as follows: carbamidomethyl (C) fixed modification,
oxidation (M), and acetyl (protein N-term) variable modifications, a
4.5-ppm peptide mass tolerance, a 20-ppm MS/MS fragment mass
tolerance, minimum spectral scores of 0 for unmodified spectra and
40 for modified peptides, peptide spectral match FDR of 0.01,
protein FDR of 0.01, minimum peptide length of 7, and a minimum
number of peptides (razor) of 1, and ‘use only unmodified
peptides’ was set to true. Match between runs was used with a
0.7-min matching time window and a 20-min alignment time win-
dow. In silico spectral libraries were generated with the LysC/P
enzyme specificity, and a maximum of two missed cleavages were
allowed.

MaxQuant’s resulting label-free quantification values were used for
protein quantification; for proteins quantified by one peptide, anno-
tated spectra were generated using the interactive peptide spectral
annotator (43) (Supplemental data). Identified peptide sequences were
queried against NCBI’s NR database (protein blast, v-2.4.0+) (44), and
resulting hits were filtered using MEGAN6 (45) to assign lowest
common ancestor to each peptide, which we then assembled into
functional and taxonomy assignment at the protein groups level
generated by the MaxQuant algorithm.

Data Analysis

Data were analyzed using the R statistical and graphing envi-
ronment (46). Normalization for batch effects were done with
ComBat (47). For statistical analysis, we modeled the effect of dia-
betes and PD on the abundance of each molecule with generalized
additive mixed-effect models using R package GAMLSS (48). We
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used models with fixed effects for diabetes, PD, interaction between
diabetes and PD, and confounding factors of age, gender, and
tobacco-use status. To account for replicate sampling from in-
dividuals (in MS-acquired data), we included participant identifier as
a random effect in the models. Owing to the differences in analysis
paradigms, we chose different data distributions to best fit the data:
zero-adjusted Gamma distribution (16S data and proteomics), log
normal distribution (lipidomics), and bimodal log normal distribution
(metabolomics), due to imputed values of low-level features We
evaluated significance of Pre-DM/DM and PD on our models with
log-likelihood ratio testing (Equations 1 versus 2, and Equations 1
versus 3, respectively) and Benjamini–Hochberg FDR correction.
The interaction between DM and PD was also evaluated (Equations
1 versus 4). For analysis of microbial diversity, we used R package
vegan (49), and for plotting heat maps, we used pheatmap (50).

moleculeabundance∼DM+PD+DM:PD+Age+Sex+
Tobaccouse+1|Individual (1)

moleculeabundance∼PD+Age+Sex+Tobaccouse+1|Individual
(2)

moleculeabundance∼DM+Age+Sex+Tobaccouse+1|Individual
(3)

moleculeabundance∼DM:PD+Age+Sex+Tobaccouse+1|Individual
(4)

For linking proteins to additional metadata, MEGAN6 and database
mapping files were used; these are available online at “https://software-
ab.informatik.uni-tuebingen.de/download/megan6/welcome.html”. Pro-
tein UniProt IDs and eggNOG terms were then used for mapping gene
ontology (GO) terms; this was done through web portals “https://www.
ebi.ac.uk/QuickGO/services/annotation/” and http://eggnogapi.embl.
de/nog_data/, respectively.
RESULTS

We collected three supragingival plaque samples from
buccal and palatal tooth surfaces from each of the 97 study
participants (Pre-DM/DM, n = 39; Pre-DM/DM with PD, n = 37;
PD, n = 11; or neither, n = 10, Table 1). Participants were
recruited during an already scheduled clinical visit and were
not given instructions to fast or preform any strict hygiene
procedures before the visit; as such, these samples capture a
typical state of the participant’s oral environment. The study
participants were primarily non-Hispanic white (93%) and
nonsmokers (84%); the Pre-DM/DM participants were signifi-
cantly older than the metabolically healthy participants (62 ± 16
versus 43 ± 16 years old, p < 0.001), Table 1. One plaque
sample was used for 16S rDNA sequencing, and two plaque
samples were used for MS-based analyses–proteomics, lip-
idomics, and metabolomics (Fig. 1). For 16S sequencing, DNA
sequences are easily amplified to enhance the quantitative
signal, and data processing methods for determining the fea-
tures present (i.e., microbial populations) are well established.
In contrast, for the MS-based approaches, two major chal-
lenges—limited sample amount and feature identification—still
persist. To address them, we maximized our limited samples

https://software-ab.informatik.uni-tuebingen.de/download/megan6/welcome.html
https://software-ab.informatik.uni-tuebingen.de/download/megan6/welcome.html
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TABLE 1
Patient population statistics

Group N
Sex

(female/male)

Agea

Years
Mean (SD)

Race/ethnicity
HbA1ca

%
Mean (SD)

Fasting blood
glucosea

mg/dl
Mean (SD)

Periodontal
disease

(moderate/severe)

Tobacco use
(current/former)White Hispanic

Pre-DM/DM + PD 39 (22/17) 61.3 (15.7) 37 3 7.1 (2.1) 126.0 (45.4) (35/4) (11/10)
Pre-DM/DM 37 (20/17) 64.1 (16.3) 36 1 6.7 (1.6) 126.1 (37.9) (0/0) (3/17)
PD 11 (9/2) 45.2 (15.9) 10 0 4.7 (0.2) 91.3 (6.6) (9/2) (2/6)
Healthy
(non-PD/non-DM)

10 (8/2) 39.6 (16.0) 10 0 4.9 (0.1) 91.2 (6.1) (0/0) (0/4)

Patients were grouped by pre-diabetes/diabetes (Pre-DM/DM) and periodontal disease (PD) status. Pre-DM/DM patients were significantly
older and had higher HbA1c and fasting blood glucose (p < 0.05).

ap < 0.05, Pre-DM/DM versus non–Pre-DM/DM.

Multi-omics of dental plaque
by extracting several compound classes (small molecules,
lipids, and proteins) from a single plaque sample and used
comprehensive libraries of standards and databases to anno-
tate our raw data (>650 raw files). This methodology enabled
detection of 50,752 OTUs by rRNA sequencing (99%
sequence similarity; ~ 2790/sample), 12,346 annotated protein
groups (~2025 proteins/sample), 415 lipids, and 89 metabolites
(supplemental Table S1 and Fig. 1), making this study the most
comprehensive analysis of dental plaque to date.
To permit further informatic analysis, we assembled the

dataset by first normalizing lipidomics and metabolomics data
to account for sample-size variation and then applying batch
normalization (47). Upon quality assessment, we removed two
proteomic samples because of the low number of identified
features. Finally, as we structured our statistical analysis to
compare the plaque composition in healthy versus PD or Pre-
DM/DM samples, we accounted for confounding variables,
such as age, sex, and tobacco use. This analysis was done
using log-likelihood ratio testing between generalized additive
mixed effects models comparing models with and without the
variable of interest (PD or Pre_DM/DM, see Experimental
Procedures). In addition to deciphering features associated
with the disease, we assessed microbiota diversity using both
16S rRNA–based taxonomy and proteomics-based taxonomy,
determined molecular composition of the plaque biofilms, and
clustered co-occurring molecules to infer molecular
associations.

Microbial Populations Show Unique Dysbiosis With PD and
Pre-DM/DM

Across our samples, we observed hundreds of common
OTUs (256, >75% of patients) and numerous rare OTUs
(50,496, <10% of patients). We used these to calculate stan-
dard ecology diversity metrics. The diversity within a sample,
known as alpha diversity, varied across the plaque samples
(Fig. 2A) and was greater with disease states (log-likelihood
ratio test PD versus non-PD, p = 0.03, and Pre-DM/DM versus
metabolically healthy, p = 0.004). Similarly, we assessed the
diversity across samples or beta diversity using the Bray–
Curtis distance (Fig. 2B). In contrast to alpha diversity, beta
diversity was less associated with the diseases, as we
observed a small but significant effect with Pre-DM/DM on
beta diversity (permutation MANOVA, R2 = 0.017, p =
0.03). These data are consistent with previous publications
reporting that biodiversity tends to be elevated in oral disease
(51–53).
To establish which microbial species were significantly

associated with disease, we performed linear regression
analysis on OTUs observed in >10% of the samples (n = 4169,
3048 with genus assignment, 29 with genus and species
assignment). We filtered our results based on disease signifi-
cance, log2 fold-change (Log2FC), and prevalence in the
sample population (Fig. 2C and supplemental Table S1). This
data filtering led us to identification of 56 microbial species
that were significantly different between PD and non-PD
samples and 36 that were significantly different between
Pre-DM/DM and metabolically healthy conditions. In PD, we
observed a lower relative abundance of several Streptococcus
spp., Campylobacter spp., Actinomyces spp., and Methyl-
obacterium sp. Lower levels of Streptococcus spp. in PD have
been reported previously (54, 55), and the loss of these genera
is believed to play a role in disease progression by creating
space for more pathogenic bacteria to thrive (54). We also
observed higher abundance of Capnocytophaga in plaques of
PD patients (Fig. 2C and supplemental Table S1). In contrast
to other studies which have specifically focused on microbial
measurements from the plaque at sites of periodontitis (10),
these data were collected from supragingival regions and not
specifically at affected tooth sites (supplemental Fig. S1).
Thus, microbial populations that are typically higher in PD-
affected tooth sites—red complex bacteria T. forsythus,
P. gingivalis, and T. denticola—were not necessarily expected
to be elevated in these samples.
Comparing Pre-DM/DM versus metabolically healthy group,

we identified 36 significantly different OTUs (Fig. 2D and
supplemental Table S1). Specifically, microbes belonging to
Fusobacterium and Tannerella genera—classic periodontal
pathogens (10)—were elevated in Pre-DM/MD. In agreement
Mol Cell Proteomics (2021) 20 100126 5



FIGURE 1. Sample collection and processing strategy for the microbiome, proteome, lipidome, and metabolome analyses. Patients
were classified by prediabetes/diabetes (Pre-DM/DM) and periodontal disease (PD) status. One plaque sample was used for 16S rRNA
sequencing to generate a list of operational taxonomic units (OTUs), and two plaque samples were used for MS-based analyses, proteomics,
lipidomics, and metabolomics, which led to the identification of ~4500 peptides, 415 lipids, and 126 metabolites per sample, respectively.

Multi-omics of dental plaque
with our findings, a recent study reported that red complex
genera, which includes Tannerella, were especially elevated
on healthy tooth sites in DM versus non-DM (12). The elevation
of these pathogenic bacteria in supragingival plaque could
indicate an overall dysbiosis in DM, potentially increasing
propensity for PD. Overall, our data support the hypothesis
that dysbiosis occurs in both PD and Pre-DM/DM and
importantly that the microbial changes that take place in either
disease state are distinct.

Metabolites, Lipids, and Proteins Found in Plaque Are of
Human and Microbial Origins

To further characterize the composition of the oral plaques,
we looked to our MS-based ‘omics data. We measured a
diverse array of biomolecules, including amino acids, mono-
saccharides, phospholipids, triglycerides (TGs), and human
and microbial proteins (Fig. 1). For each of the MS-based
6 Mol Cell Proteomics (2021) 20 100126
‘omics, intrapatient abundance measurements were more
similar than interpatient ones (supplemental Fig. S2). As ex-
pected, the identified compounds were likely of both human
and microbial origins. A majority of the metabolites identified
by GC-MS had been previously identified in saliva (88%, 72 of
89 compounds), as annotated in the Human Metabolomics
Database (56, 57). The remaining 17 compounds had been
detected in human feces or were annotated as human cellular
metabolites, indicating a probable human, microbial, or food
origin.
The lipids consisted of phospholipids—primarily phospha-

tidylcholine (PC), phosphatidylethanolamine (PE), and phos-
phatidylglycerol (PG)—as well as TGs and ceramides.
Approximately 28% of the lipids contained odd-chain fatty
acyl tails (supplemental Fig. S3), which are more commonly
found in bacteria than eukaryotic cells (58). The percentage of
odd-chain acyl tails was higher in the PGs (~45%) than in



FIGURE 2. Diversity of microbial populations is similar across patient plaque samples. Patients’ plaque microbial communities were
assessed by 16S rRNA sequencing. The Chao1 index was varied across patients (A) and were significantly different between patients with
periodontal disease (PD) versus nonperiodontal disease and prediabetics/diabetics (Pre-DM/DM) versus nondiabetics (log-likelihood ratio test,
p = 0.03 and p = 0.004, respectively). The Bray–Curtis distance for measuring beta diversity showed no significant difference between groups
(B). When specific operational taxonomic units (OTUs) were assessed for association with PD (C, above) or Pre-DM/DM (C, below), we found
several OTUs that were detected in a majority of our samples (prevalence in sample population > 50%) that also had q-values of <0.05 and log2
fold-change greater than 1 (up) or less than −1 (down) in disease versus nondisease.

Multi-omics of dental plaque
other lipids, likely because PGs are also more common in
bacterial than in mammalian membranes (59).
Finally, the proteins identified in the plaques belonged to

various taxonomic branches. Nine percent were from
eukaryotic taxonomic branches, and likely human in origin,
and 15% were unassigned or assigned to the root taxonomy
level (supplemental Table S1). A majority of the proteins were
from various bacterial genera, including Actinomyces, Cory-
nebacterium, Leptotrichia, Capnocytophaga, and Prevotella
(top-5 genera based on representative proteins). Actinomyces
and Corynebacterium were previously found to contribute to a
majority of the oral biofilm proteome (60), suggesting that
these genera indeed make up a majority of plaque proteins.

Proteomics and 16S Data Provide Complementary
Information About Microbial Diversity

Similar to 16S data, proteomics data provided insight into
microbial diversity and relative abundance of genera.
According to proteomics measurements, alpha diversity ten-
ded to be higher in plaques from PD and Pre-DM/DM than in
heathy patients—a similar finding to what was observed with
16S data. After accounting for confounders (sex, age, and
smoking status), this effect was, however, reduced
(supplemental Fig. S4). Beta diversity showed no significant
effect with respect to PD or Pre-DM/DM. Overall, the prote-
omics data resulted in similar trends, but with lesser effect
sizes, to those observed in the 16S data.
Next, we compared how well OTU-based bacterial identifi-

cation matched to the bacterial identification determined by
proteomics. We calculated species, genus, and phylum
overlap (18, 49, and 10, respectively, Fig. 3, A–C). Notably,
proteomics allowed for greater species-level resolution (n =
101 species level assignment, bacterial only) than 16S
sequencing (n = 52 species level assignments). This lack of
species level resolution is a well-known caveat of using 16S
for understanding bacterial populations (61); thus, for
Mol Cell Proteomics (2021) 20 100126 7



FIGURE 3. Proteomics and 16S sequencing approaches result in similar taxonomic assignment across patient samples. Taxonomy
assignment resulted in 52 species, 141 genera, and 31 phyla by 16S rDNA sequencing and 101 species, 99 genera, and 11 phyla by proteomics,
with 18 species, 49 genera, and ten phyla in common (A–C). Correlation between abundance of genera by 16S rDNA sequencing versus
proteomics within individuals was better than expected by chance alone (D). The top-abundance genera showed good overlap (E), except
Actinomyces and Corynebacterium were found in greater abundance by proteomics, while Prevotella, Selenomonas, Streptococcus, and
Veillonella were found in greater abundance by 16S rDNA sequencing.

Multi-omics of dental plaque
comparing across the 16S data and the proteomics data, we
used genus-level relative abundance measurements (Fig. 3, D
and E). Note that different taxonomic ontologies were used for
16S data (Greengenes (31)) and proteomics (NCBI taxonomy
(62)), and we, therefore, expected differences in taxonomy
assignments (63). Despite this, we observed considerable
overlap (~34%) between all detected genera and even greater
similarity for common genera (~89% overlap between genera
detected in >90% samples). In addition, abundance mea-
surements at the genus level exhibited good agreement, as
the observed within-individual correlation of abundance of
genera between 16S data and proteomics was better than
expected by chance alone (Fig. 3C, p < 0.001). We directly
8 Mol Cell Proteomics (2021) 20 100126
compared the most abundant genera detected by the two
methods across our samples (mean relative abundance
>0.1%, Fig. 3D); the notable differences between the methods
were greater relative abundance of Actinomyces and Cory-
nebacterium in proteomics versus 16S data and greater rela-
tive abundance of Prevotella, Selenomonas, Streptococcus,
and Veillonella in 16S versus proteomics data. This discrep-
ancy in abundance estimations could be due to differences in
sampling locations (supplemental Fig. S1), relative higher
expression of proteins in some genera in oral environment, or
a product of the analytical technique and normalization
strategy (relative abundance of count-based data versus
peptide m/z signal intensity); however, there is some
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precedence for microbial differences in proteomics versus 16S
data. For example, Belda-Ferre et al. (60). also noted higher
relative abundance of Actinomyces and Corynebacterium in
dental plaque as measured by metaproteomics than what was
observed with sequencing-based approaches. Yet, another
potential explanation of discrepancy could microbial size dif-
ferences leading to different gene–protein ratios (64), relative
copy number of 16S rRNA gene in a bacterium (65), and lack
of species-level resolution in a genus by partial 16S rDNA
sequences (66). These observations are intriguing and merit
further exploration with a simultaneous sample preparation
strategy (as was done with the MS-based data acquisition in
this study).

Plaques From PD Patients Contained Elevated Human-
Derived Proteins, PCs, and Amino Acids

We found 234 proteins, 76 lipids, and six metabolites that
exhibited significant associations with PD, and 46 proteins, six
lipids, and one metabolite that significantly associated with
Pre-DM/DM (q-values < 0.05, supplemental Table S1 and
Fig. 4).
For the plaque proteins that were associated with either PD

or Pre-DM/DM (234 and 46, respectively), we assessed pro-
tein enrichment for certain taxonomic classes or functional
pathways (kyoto encyclopedia of genes and genomes, and
GO). The proteins that were elevated in plaque from patients
with PD were enriched in proteins from genera Oribacterium
(q-value < 0.05) and Homo (q-value < 0.01). PD-associated
proteins were also more enriched for GO terms for signaling,
actin cytoskeleton organization, cell communication, and nu-
clear factor kappa B transcription factor activity (q-values <
0.002). Proteins that were elevated in plaques from Pre-DM/
DM patients were enriched in proteins from Campylobacter
(q-value < 0.02). Overall, PD coincided with greater detection
of human-derived proteins (phylum Chordata) than Pre-DM/
DM (Fig. 4A) and suggests potential host-factor relevance in
PD. Consistently, prior metaproteomics studies found human
saliva proteins related to innate immunity to be elevated in
periodontitis (21).
Many lipids were elevated in plaques from PD versus non-

PD (n = 76), and this list was over-represented in PCs (n =
15), plasmenyl PCs (n = 11), and ceramides containing non-
OH fatty acids and sphingosines (Cer[NS], n = 11). Some of
these lipids include Cer[NS] d18:0_15:0, Cer[NS] d18:1_15:0,
PC 39:2, and plasmenyl-PC P-18:0_20:4. Comparing lipids in
Pre-DM/DM versus metabolically healthy samples, we detec-
ted five lipids elevated with Pre-DM/DM (TG 42:1, Cer[NS]
d16:0_15:0, ether-PC O-32:1, ether-PC O-40:4, and TG
12:0_12:0_12:0) and one lipid that was lower in Pre-DM/DM
(PC 18:2_18:1). Overall, PD resulted in larger changes in pla-
que PCs and ceramides than Pre-DM/DM (Fig. 4B).
Metabolites 5-aminovaleric acid, L-alanine, tryptophan, L-

proline, and D-xylose were elevated in PD versus non-PD. D-
xylose was also elevated in Pre-DM/DM. One metabolite,
glycolic acid, was reduced in PD-associated plaques. Com-
parison of these metabolite changes in PD versus Pre-DM/DM
is shown in Figure 4C; overall, PD resulted in elevated plaque
amino acids, which is consistent with prior studies showing
elevated amino acids in saliva of PD patients (24, 67, 68).

Associations Between Lipids, Metabolites, and Proteins
Indicate Disease Signatures Related to Actin Filament

Rearrangement

To explore how the detected molecules might relate to the
microbial populations, we performed correlation analysis
across datasets using the Kendall nonparametric test. We
found hundreds of significant correlations and strikingly,
distinct clusters of correlations between proteins and metab-
olites and lipids, indicating that groups of proteins were
related to specific metabolite/lipid profiles (Fig. 5A). We used
hierarchical clustering with k-means k = 8 to define protein
clusters and k = 6 to define metabolite/lipid clusters. Several
protein clusters (clusters 2 and 3) contained a large portion of
the disease-associated proteins that were found in this study
(Fig. 5B).
To better explore the proteins and metabolites/lipids that

composed the clusters, we preformed enrichment analysis
(Fig. 5, C and D). We hypothesized that the protein clusters
would contain proteins within related metabolic pathways;
however, we found that most clusters were enriched in spe-
cific genera, while only a few clusters were enriched for spe-
cific pathways (GO biological processes, Fig. 5E). This finding
suggested that microbial populations, rather than specific
pathways, had a stronger association with metabolite and lipid
levels. Notably, protein clusters 2 and 3, which had the greater
number of disease-associated features that were found in this
study, were not enriched in bacterial proteins, but instead
were enriched in human-derived proteins. These human-
derived proteins were also associated with GO terms related
to protein binding (cluster 2 and 3), enzyme regulator activity
(cluster 2), actin binding (cluster 3), receptor binding (cluster
3), and lipid binding (cluster 3). Significant elevation of the
actin-binding proteins in plaques from PD versus non-PD
patients is possibly due to bacterial invasion process and
the loss of structural integrity at the tooth-endothelial interface
(69, 70). These proteins were also strongly correlated with
abundance of many plasmenyl-PCs, PCs, and Cer[NS], sug-
gesting these lipids might also be related to the host’s
response to disease.
Many of the microbial-associated protein clusters in

Figure 5A showed positive correlations with lipid/metabolite
cluster 3 that was enriched in PE, monomethyl phosphati-
dylethanolamine (PE-NMe), PG, and Cer[BS] lipids. As noted
earlier, the PGs are likely derived from bacterial populations,
and these clustering results are consistent with that conclu-
sion. Likewise, PE-NMe are intermediates in the synthesis of
PC in bacteria (71) and as such, would be expected to have
association with bacterial proteins.
Mol Cell Proteomics (2021) 20 100126 9



FIGURE 4. Comparison of biomolecule abundance changes occurring with periodontal disease (PD) and pre-diabetes/diabetes (Pre-
DM/DM). Each symbol represents a unique protein (A), lipid (B), or metabolite (C). Proteins are grouped by phylum (A) and lipids are grouped by
lipid class (B). DG, diacylglycerides; DM, diabetes; PC, phosphatidylcholine; PD, periodontal disease; PE, phosphatidylethanolamine; PG,
phosphatidylglycerol; PI, phosphatidylinositol; PS, phosphatidylserine; TG, triglycerides.

Multi-omics of dental plaque
Further, protein cluster 1 was enriched in proteins derived
from known oral pathogens: Prevotella, Fusobacterium, Tan-
nerella, and Selenomonas genera (10). This large cluster
exhibited positive correlations with many metabolites and
lipids, e.g., 5-aminovaleric acid, L-homoserine, hydrocinnamic
acid, Cer[BS] containing odd-chain fatty-acyl chains, and
Plasmenyl-PEs. In particular, 5-aminovaleric acid, a bacterial-
derived metabolite generated during degradation of lysine,
was positively correlated with proteins from Selenomonas and
10 Mol Cell Proteomics (2021) 20 100126
Fusobacterium – allowing us to hypothesize that these mi-
crobes might produce this metabolite. In general, the associ-
ation between elevated amino acids and oral pathogens could
explain why amino acids are biomarker candidates for PD (67,
68).
Protein Cluster 6, which featured early biofilm colonizers like

Actinomyces, Corynebacterium, and Streptococcus, dis-
played higher correlations with PE-NMe, malic acid, and 2-
isopropylmalic acid. 2-isopropylmalic acid was only



FIGURE 5. Metabolite and lipid associations with plaque proteins manifested genus-specific clusters.MS-acquired data from two plaque
samples per patient were used to investigate how metabolite and lipid signatures correlate with plaque proteins. Kendall rank–based correlation
was used to filter associations; metabolites, lipid, or proteins with at least one significant association (q < 0.05) are presented in the heat map
with hierarchical clustering of rows and columns (A). Using k-means (k = 8) to define protein clusters, we observed proteins that were found
significantly associated with either PD or pre-DM/DM in each cluster (B), but clusters 2 and 3 had higher proportions of disease-associated
proteins (23% and 26%, respectively). We used k-means (k = 6) to define metabolite/lipid clusters—these clusters showed enrichment of
specific classes of lipids and metabolites (C). The protein clusters were enriched for specific genera (D). Protein clusters 2 and 3 had significant
enrichment for GO terms (E). Cer[BS], ceramides containing beta-OH fatty acids and sphingosines; DM, diabetes; GO, gene ontology; PC,
phosphatidylcholine; PD, periodontal disease; PE, phosphatidylethanolamine; PE-NMe, monomethyl phosphatidylethanolamine; PG, phos-
phatidylglycerol; SM, sphingomyelin; TG, triglycerides.

Multi-omics of dental plaque
correlated with Corynebacterium, which reassuringly was the
only genus with detectable protein levels of the necessary
synthetic enzyme 2-isopropylmalic acid synthase (EC
2.3.3.13).
PE-NMe have been estimated to occur in only about 10 to

15% of bacteria (58, 72), and in our analysis they were strongly
correlated to Lautropia, a genus not previously described as
synthesizing PE-NMe (Fig. 6, A and B). To validate this
potentially novel finding, we compared lipid levels from two
in vitro grown strains of L. mirabilis to A. odontolyticus.
Actinomyces had demonstrated low correlation to PE-NMe in
our analysis, and thus was selected as a control. We
confirmed PE-NMe synthesis in Lautropia and in fact found
that PE-NMe were one of the more abundant lipids in these
bacteria (Fig. 6C).
Finally, beyond host and microbial lipid associations, we

found evidence of diet-associated features. In Protein Cluster
6 we found a lipid-protein association indicative of cow’s milk.
One protein (Apolipoprotein A-I, of taxonomic family Bovidae)
was positively correlated with several TGs containing
Mol Cell Proteomics (2021) 20 100126 11



FIGURE 6. Lipid–protein associations facilitate observations about food consumption and microbial lipid synthesis pathways. Following
from Figure 5, Kendall rank–based correlation was used to filter associations between metabolites, lipid, and proteins. PE-NMe were strongly
associated with many bacterial proteins in protein cluster 6 of Figure 5 (A). The PE-NMe–associated proteins were highly enriched for Lautropia
genera (B). Lipidomics profiles from single cultures of Lautropia mirabilis strains show PE-NMe are the dominate lipid class in these species (C).
One small cluster shows strong association between medium-chain-length TG and bovine proteins (taxonomic family Bovidae) (D). Greater than
70% of individuals had dairy-associated proteins (2+ bovine proteins observed) in 2/2 plaque samples (E). DG, diacylglycerides; PA, phos-
phatidic acid; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PE-NMe, monomethyl phosphatidylethanolamine; PE-NMe2, dimethyl
phosphatidylethanolamine; PG, phosphatidylglycerol; PI, phosphatidylinositol; TG, triglycerides.

Multi-omics of dental plaque
medium-chain fatty-acyl tails (TG 12:0_12:0_14:0, TG
10:0_12:0_18:1, TG 10:0_16:0_18:1, TG 10:0_12:0_18:2, TG
12:0_12:0_18:2). The next most closely correlated proteins
with these TGs were also assigned to taxonomic family
Bovidae (alpha-S2-casein, kappa-casein, and beta-
lactoglobulin). Together with APO-A1, these proteins consti-
tute some of the most abundant proteins in cow’s milk (73).
We annotated eight proteins to the taxonomic family Bovidae,
and five of the eight showed strong correlations to medium
chain–containing TGs (Fig. 6D). As TGs are also highly
12 Mol Cell Proteomics (2021) 20 100126
abundant in cow’s milk (74), we concluded that this associa-
tion was likely due to protein–lipid associations indicative of
dairy consumption. Over 70% percent of the individuals had
detectable levels of two or more of these bovine proteins in
both of their plaque samples (Fig. 6E).
In summary, the integrative MS-based multi-omics

component of this analysis revealed findings beyond those
typically seen with sequencing approaches and facilitated
discovery of host–disease, microbial–lipid, and diet-induced
associations in dental plaques, associations which are
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critical to furthering our understanding of the human
microbiome.
DISCUSSION

This study provides a comprehensive and comparative
analysis of the microbiome, proteome, lipidome, and metab-
olome of dental plaque samples from individuals with PD and
Pre-DM/DM. We detected on average 5277 features per pla-
que from 97 individuals representing three disease groups and
a control group, with over 7% of the detected features having
disease associations with either gingival or metabolic health.
We demonstrated that microbial dysbiosis occurred with PD
and that these changes were distinct from the microbial
dysbiosis that resulted from Pre-DM/DM. Specifically, PD
patient samples contained reduced levels of Streptococci
relative to controls, and the Pre-DM/DM patient samples had
increased abundance of Fusobacterium and Tannerella. We
compared microbial population estimations obtained via 16S
sequencing and proteomics. In general, we observed good
agreement between the methods; however, some genera had
higher estimations by 16S sequencing approaches (Prevotella,
Selenomonas, and Veillonella), while other genera had higher
estimations by proteomics (Actinomyces and Corynebacte-
rium). It is apparent that relatively predominant genera present
in PD samples may be different than the present in diseases
sites such as caries. Predominant oral microbes in individuals
with no PDs are Acinetobacter, Haemophilus, and Moraxella,
whereas in individuals with PD are P. gingivalis, Tannerella
forsythia, and T. denticola (75). Tanner et al. (76). showed that
caries is associated with acid-tolerant and acid-producing
Actinomyces, members belonging to the Actinomyces/Bifi-
dobacterium family. Predominance of Streptococci could be
population specific; severity of caries driven by, perhaps,
quality of oral care as Streptococcus mutans, Streptococcus
sobrinus, Streptococcus cristatus, Streptococcus australis,
and so forth, have been reported in Romanian children with
high caries in contrast to Streptococcus constellatus and
strains of Actinomyces such as HOT, 175, 446, and so forth, in
Swedish children with low caries (76). Proteomics of the oral
microbiome and therefore its relative abundance in dental
plaque is likely to be driven by availability of sugars to the
microbes besides other factors. Indeed, Rudney et al. (77)
have shown that major proteins expressed by caries micro-
cosm grown in a sucrose or sucrose-free medium have yiel-
ded different protein profiles associated with sucrose
metabolism. Our observation of significant association of the
lower abundance of Methylobacterium and Campylobacter in
PD is novel, whereas a higher abundance of Capnocytophaga
in PD has been observed before (78).
In addition, we used our MS data to correlate plaque pro-

teins with metabolites and lipids. We revealed many
microbial–molecule associations and importantly discovered
host-specific disease features, such as actin filament–related
proteins, which were highly correlated with PC and plas-
menyl PCs and strongly associated with PD. In sum, this study
provides a data-rich multilayered analysis of the complex
ecosystem found in PD and pre-DM/DM.
One of our findings was the observation of unique dysbiosis

occurring with PD and Pre-DM/DM. Although PD is often a
comorbidity of DM (6, 12), we established that the supra-
gingival microbial populations were distinct between PD and
DM. In patients with PD, we observed lower relative abun-
dance of Streptococci, a result consistent with the previous
reports on reduced abundance of specific Streptococcus spp.
in PD (54, 55). This loss of Streptococci has been suggested
to contribute to disease progression by freeing space for more
pathogenic bacteria to thrive (54). In this study, we did not
specifically sample plaques from diseased tooth sites; thus, it
is possible this loss of more neutral bacteria is wide spread in
mouths of PD patients. Glycated hemoglobin or HbA1c is
formed when glucose from blood reacts with the amino group
on the hemoglobin and forming a ketoamine. The nexus be-
tween the type 2 diabetes, HbA1c, and oral pathogens
associated with periodontitis and DM is beginning to emerge
with certain groups of oral pathogens that seem to thrive
better in above-normal HbA1c levels (79, 80). However, this
complex interaction is likely to be modulated by microbial
competition, their ability to utilize available sugars, and by the
host genetic susceptibility. In patients with Pre-DM/DM, we
observed elevated levels of periodontopathogenic pathogens,
Fusobacterium and Tannerella, which also have been detected
in other DM and non-DM obese populations (12, 81). Specif-
ically, Aemaimanan et al. (12). reported on higher populations
of these pathogens at healthy tooth sites in DM than those in
patients with PD alone and that those microbial populations
were correlated with HbA1c values, commonly used to
monitor long-term glycemic control. Indeed, it has been re-
ported that Helicobacter pylori, although not an oral pathogen,
has also been associated with higher levels of HbA1c,
possibly through the regulation of two hormones, leptin and
ghrelin (82). Salivary glucose levels have been shown to be
higher in uncontrolled and controlled diabetics than the
healthy controls (83–85), but whether that excess glucose
available in saliva is preferentially utilized by periodontal
pathogens to make dental plaque or biofilm remains to be
understood. Capnocytophaga, which had a higher relative
abundance in PD in our study, has been reported to grow
luxuriously in the presence of glucose (78). Furthermore,
F. nucleatum have been shown to be in relatively higher
abundance in people with HbA1c ≥to 8% and with a PD
≥5 mm (80). This suggests that establishment of pathogenic
bacteria at healthy sites correlated with systemic glucose load
and might expedite progression toward PD.
Furthermore, by utilizing MS-based multi-omics technologies,

we discovered host-associated disease signatures. Plaques
from PD patients contained significantly more host-derived
proteins, which were enriched in actin filament–related
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proteins and likely have a mechanistic link to microbial invasion
(69, 70). With the goal to understand how microbiota contribute
to disease, approaches such as metaproteomics and meta-
transcriptomics, which enable detection of host response, will
be critical for understanding these pathogenic interactions. We
argue that MS-based ‘omics technologies could further
strengthen our understanding of the host–microbe interactions,
not only in being able to monitor potential protein response to
microbial invasion but also in monitoring lipid changes in these
host–microbe environments. Lipids are important biomolecules
related to defense and invasion as they reside at the interface
between cells and serve as structural or signaling molecules
(72). In support of this idea, we found that the same host-derived
proteins associated with PD were also strongly correlated with
lipids classified as PCs or plasmenyl PCs. Further mechanistic
studies will hopefully reveal how these molecules change during
invasion and provide candidates for therapeutic intervention.
Beyond host–microbe interactions, lipidomics offers other

novel insights about the oral microenvironment. A few recent
studies have investigated saliva lipid profiles in chronic
periodontitis (24, 86), however, quantified only a small
number of lipids. The present study offers a far more
comprehensive profiling of the oral biofilm lipidome and
provides an important first step in linking these lipids to
taxonomic branches, diet, and oral health. The fact that this
multi-omics approach revealed a true, and yet described,
lipid pathway in Lautropia, as well as a diet-related cluster
suggestive of dairy consumption, showcases the discovery
potential of this methodology. With the goal to better un-
derstand microbial microenvironments, a proteomic–
lipidomic approach, like the one presented here, would
offer significant biological insight, and we expect that future
improvements to the methodology (i.e., improved time or
space resolution) could be hugely beneficial to our under-
standing of this complex system.
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