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Abstract: Melatonin is a pleiotropic hormone synthesized and secreted mainly by the pineal

gland in vertebrates. Melatonin is an endogenous regulator of circadian and seasonal

rhythms. Melatonin is involved in many physiological and pathophysiological processes

demonstrating antioxidant, antineoplastic, anti-inflammatory, and immunomodulatory prop-

erties. Accumulating evidence has revealed that melatonin plays an important role in pain

modulation through multiple mechanisms. In this review, we examine recent evidence for

melatonin on pain regulation in various animal models and patients with pain syndromes, and

the potential cellular mechanisms.
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Introduction
Melatonin (N-acetyl-5-methoxytryptamine), a derivative of serotonin, is an endogen-

ous neurohormone synthesized and secreted mainly by the pineal gland. Secretion

increases at night and decreases during the day, following a rhythm of diurnal and

nocturnal fluctuation.1 Melatonin is produced with tryptophan as a precursor.2 In

addition, melatonin is considered to be synthesized locally.3 Traditionally, melatonin

is known for its neurobiological role in sleep.4,5 However, melatonin has antioxidant

and anti-inflammatory properties, acting as a free radical scavenger during inflamma-

tion and injury.6,7 For example, melatonin reduced the elevated expression of nuclear

factor-kappa B (NF-κB) and inhibited the enhanced level of proinflammatory cytokines

IL-6 or TNF-α to modulate neuroinflammation in a model of diabetic neuropathy.8

Some evidence suggests that melatonin also has immunomodulatory properties.9 Study

shows that melatonin decreases peripheral and central Th1/Th17 cells responses

protecting against experimental autoimmune encephalomyelitis.10

The efficacy of melatonin as an analgesic and anxiolytic agent has been

demonstrated in animals and humans.11–13 It has been suggested that melatonin

regulates pain via membrane receptors, nuclear receptors, and simple diffusion.14–17

Given these properties with few adverse side effects, melatonin has potential as

a painkiller. The aim of this review is to discuss and analyze different lines of

evidence for the effects of melatonin on pain modulation as well as to describe the

cellular mechanisms of melatonin as a potential analgesic.

Melatonin Synthesis and Metabolism
Synthesized and secreted by the pineal gland, melatonin follows a circadian rhythm

controlled by the hypothalamic suprachiasmatic nucleus (SCN).18 In vertebrates, the

precursor of melatonin synthesis is the essential amino acid tryptophan.2 The classical

pathway of melatonin synthesis in mammals is a four-step enzyme-catalyzed reaction.19
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The first step is catalyzed by tryptophan hydroxylase (TPH)

and synthesizes 5-hydroxytryptophan (5-HT).20,21 Next, the

aromatic amino acid decarboxylase (AAAD) synthesizes

serotonin.22 At this point, the melatonin synthesis pathway

divides. Under one branch, N-acetylserotonin (NAS) is pro-

duced under the catalysis of serotonin N-acetyltransferase

(SNAT).23 In the other branch, 5-methoxytryptamine(5-MT)

is synthesized by acetylserotonin O-methyltransferase

(ASMT).24 In the final step, melatonin is synthesized either

by the catalysis of ASMTwith NAS as a substrate or by SNAT

with 5-MT as a substrate25 (Figure 1). Research has revealed

that SNAT is the rate-limiting enzyme for controlling the

amount of melatonin synthesis.26

Melatonin is an indoleamine with two functional groups,

a 5-methoxy group and a 3-amide group.27 Due to the hydro-

philicity and lipophilicity conferred by these functional groups,

melatonin can travel throughout the body.Once secreted by the

pineal, melatonin crosses the blood-brain barrier and enters the

circulation system, through which it reaches various tissues

and cells of the body. In addition to the pineal gland, melatonin

can be synthesized locally by the skin,28 bone marrow,29

oocytes,30 macrophages,31 gastrointestinal tract,32 and retina3

exerting specific intracrine, autocrine, and paracrine effects.

In vertebrates, hepatic cytochromes are the primary

enzymes responsible for melatonin catabolism. The hepatic

cytochromes (primarily CYP1A1, CYP1A2) catalyze melato-

nin to form 6-hydroxymelatonin(6-HMT).33,34 CYP1B1,

another important enzyme, can catalyze melatonin to produce

NAS.35 6-HMTand NAS are further degraded to form sulfate-

or glucuronide-conjugated compounds that are subsequently

excreted with urine.36 In the pineal gland and retina, melatonin

is deacetylated to 5-MT, which contains a pyrrole ring that is

further cleaved by either myeloperoxidase, indoleamine

2,3-dioxygenase, or reactive oxygen particles to form the

metabolites N1-acetyl-N2-formyl-5-methoxykynurenamine

(AFMK) and N1-acetyl-5-methoxykynuramine (AMK).37

AFMK and AMK are considered major catabolic products

of melatonin in the central nervous system. AFMK and

AMK act as free radical scavengers and have a synergistic

effect with melatonin that further enhances the antioxidant

capacity of melatonin in the brain.38,39

The indolic and kynuric pathways are the main meta-

bolic pathways of melatonin in skin; melatonin metabo-

lites 6-HMT, AFMK, and 5-MT are detected in different

skin cells.40 Furthermore, researchers have revealed that

aryl acylamidases (AAAs) catalyze melatonin to produce
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Figure 1 The main synthesis and catabolic route of melatonin in vertebrates.Note: The blue arrows represent the anabolic pathway of melatonin and the green arrows

represent the catabolic pathway of melatonin.

Abbreviations: 5-HT, 5-hydroxytryptophan; TPH, tryptophan hydroxylase; AAAD, aromatic amino acid decarboxylase; SNAT, serotonin N-acetyltransferase; ASMT,

acetylserotonin O-methyltransferase; NAS, N-acetylserotonin; 5-MT, 5-methoxytryptamine; AAAs, aryl acylamidases; CYPs, hepatic cytochromes; 6-HMT, 6-hydroxyme-

latonin; MAO-A, monoamine oxidase A; AFMK, N1-acetyl-N2-formyl-5-methoxykynurenamine; AMK, N1-acetyl-5-methoxykynuramine; 5-ML, 5-methoxychromitol.
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5-MT. In vertebrates, 5-MT is further catabolized by

monoamine oxidase-A (MAO-A) to form 5-methoxyin-

dole-3-acetaldehyde. 5-methoxyindole-3-acetaldehyde is

then converted to 5-methoxychromitol (5-ML) by alcohol

dehydrogenase or 5-methoxyindole-3-acetic acid by alde-

hyde dehydrogenase41 (Figure 1).

Melatonin Receptors and
Transduction Systems
Melatonin-mediated effects occur through receptor-

dependent and -independent pathways. In the receptor-

dependent mechanism, melatonin receptors are primarily

divided into cell membrane receptors or nuclear orphan

receptors from the superfamily RZR/ROR.Membrane recep-

tors (MT1 and MT2) belong to the G-protein-coupled recep-

tor (GPCR) family containing seven transmembrane

receptors.42 MT3 receptor once existed in theory, and then

was proved to be quinone reductase II enzyme.43,44 MT1 and

MT2 receptors are formed by 350 and 362 amino acids,

respectively, and shows 60% homology. The nuclear orphan

receptor GPR50, also known as the melatonin-related recep-

tor, has high sequence homology to membrane receptors.

However, melatonin or any other known ligand does not

bind to GPR50.45 Membrane receptors have been identified

and cloned in a great number of tissues in humans and

rodents, such as the retina,46 brain, pituitary,47 gastrointest-

inal tract,48 oocytes,49 and pancreatic islet.50 Changes in

MT1/MT2 and RZR/ROR receptor density fluctuate in rela-

tion to serum and intracellular melatonin levels following the

circadian rhythm of melatonin secretion.48,51

Variation of sunshine exposure owns a selective pres-

sure in melatonin receptors.52 MTNR1a is the gene for

MT1 and 1b for MT2, whose genes mutation and expres-

sion variation may contribute to cancer susceptibility.53,54

In the central and peripheral nervous systems, MT1 and

MT2 receptors both are localized on neuronal

membranes.55 The two subtypes of membrane receptors

rarely co-exist in the same cell. When they do, one of them

dominates the cell membrane.56 MT1 may play an impor-

tant role in the signaling pathway transduction of the

nervous system. Recent research indicates that MT1 recep-

tor is involved in neural pathways modulating depression

and diurnal rhythms.57–59 Interestingly, little study demon-

strated the involvement of MT1 in nociception modula-

tion, and whether MT1 is involved in the transduction of

nociceptive signals requires more research to validate.

Melatonin Effects on Nociception
Melatonin has been demonstrated to attenuate nociceptive

responses to various noxious stimulus and is considered as

a potential analgesic drug in the clinic. Administration of

melatonin or its analogs through peripheral or central pathways

has dose-dependent long-term antinociceptive effects in mod-

els of acute, neuropathic, and inflammatory pain. (Table 1)

Acute Pain
It has been shown that melatonin (25–100mg/kg, i.p.) admin-

istration dose-dependently attenuates the hyperalgesic

response and has ameliorative potential in reducing inflamma-

tion in a well-established model of hyperalgesia associated

with inflammation.11 In addition, melatonin was shown to

reduce the flinching response during Phase 1 and Phase 2 of

formalin-evoked acute pain.60 Melatonin has also been found

to play an important role in neuroprotection in acute pain

caused by complete Freund’s adjuvant (CFA).61

Interestingly, other data suggest that dental pulp damage

could cause acute pulpitis and reduce serum melatonin levels.

Supplementation with exogenous melatonin via intraperito-

neal injection induced pain relief.62 In morphine-exposed

rodents, melatonin counteracted the resulting hyperalgesia

and tolerance through inhibition of microglia activation and

protein kinase Cγ (PKCγ) activities.63–65

In the past 10 years, researchers have conducted an

increasing number of studies on the antinociceptive effects

of melatonin. In addition to animal experiments, clinical

trials have been carried out in this field. A meta-analysis of

current trials of pharmacotherapy for cluster headache sug-

gests that 10 mg of melatonin daily could be given for both

acute treatment and preventive therapy.66 Melatonin displays

a definite dose-dependent antinociceptive effect, which may

be correlated with changes in pain threshold.67Melatonin can

also effectively relieve pain induced by anodal stimulation

applied over the primary motor cortex.68 However, if the

level of melatonin in the body is disordered, it may cause

post-traumatic stress disorder.69,70 Interestingly, another clin-

ical trial shows that the treatment effect on pain of melatonin

is not observed in patients undergoing abdominal hysterect-

omy with mildly anxiety.71 Whether melatonin owns analge-

sic effect on acute pain seems to be controversial and needs

further study.

Chronic Inflammatory Pain
In the last decade, an increasing number of clinical trials

on the analgesic effect of melatonin have been carried due
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to the minor side effects and sequelae of melatonin. For

instance, chronic musculoskeletal pain and generalized

tenderness including allodynia or hyperalgesia from fibro-

myalgia syndrome are alleviated by melatonin treatment.

Melatonin administration (3 mg or 5 mg/day) alone or

combined with fluoxetine (20 mg/day) shows

a significantly therapeutic effect in patients with

fibromyalgia syndrome.12 Melatonin also attenuates

inflammation and oxidative stress and is reported to be

effective in repairing morpho-functional damage in

a fibromyalgia syndrome model.72,73 A clinic trial suggests

that reduction of melatonin synthesis and significant

increase in 6-sulfatoxymelatonin secretion are positively

correlated with clinical symptoms of fibromyalgia

Table 1 Antinociceptive Activity of Melatonin and Its Analogs

Pain Model Species Dose & Administration Effect References

O2
−evoked

hyperalgesia

Rat Melatonin,25–100mg/kg, i.p. Antinociceptive activity 11

Formalin test Rat Melatonin, 30μg/10μL, intrathecally Reduce flinching response 60

CFA Rat Melatonin, 50,60mg/kg, i.p. Neuroprotective effects 61

Melatonin, 50mg/kg, i.p. Alters mechanical and thermal hyperalgesia 76

Morphine

exposure

Rat Melatonin, 10mg/kg, i.p. Counter mechanical and thermal hyperalgesia 63

Melatonin, 50mg/kg, i.p. Reverse hyperalgesia 64

RIM Rat Melatonin, 2.5,5mg/kg, p.o. Dose and/or time dependently analgesic effects 72

Melatonin, 5mg/kg, p.o. Improve motor activity 73

Arsenic Rat Melatonin, 10mg/kg, p.o. Neuroprotective effects 83

Oxaliplatin Rat Melatonin, 20mg/kg, i.p. Alleviate mechanical and thermal hyperalgesia 85

Melatonin, 10mg/kg, i.p. Alleviate pain behavior 86

Tail Flick Test

Writhing Test

Formalin Test

Mouse Melatonin, 10mg/kg, s.c.

Benzoyl-melatonin (BMT), 25mg/kg,

s.c.

Acetyl-melatonin, 50mg/kg, s.c.

BMT increases tail flick latency time, decreases number of

writhes and reduces nociceptive response

87

CCI of sciatic

nerve

Rat Melatonin, 2.5, 5mg/kg, i.p. Attenuate thermal hyperalgesia, cold allodynia 88

Melatonin, 100mg/kg, i.p. Increase pain threshold of mechanical allodynia and slightly

increase threshold of thermal hyperalgesia.

89

Melatonin, 5–10mg/kg, i.p. Reduce thermal hyperalgesia 90

Oxaliplatin

Streptozocin

CCI of sciatic

nerve

Rat Agomelatine, 45 mg/kg, i.p. Dose dependently reduce mechanical hypersensitivity 92

CCI of median

nerve

Rat Melatonin, 37.5, 75, 150,

300 mg/kg, p.o.

Dose dependently reduce mechanical hypersensitivity 95

CCI of sciatic

nerve

Rat Extracorporeal shock wave-assisted

melatonin, 50,20mg/kg, i.p.

Superior to either one alone to improve pain 96,97

Sciatic nerve

cuff-implanted

Mouse Melatonin, 100mg/kg, i.p. Suppress mechanical allodynia and thermal hyperalgesia 17

PSL Mouse Piromelatine, 25, 50, or 100 mg/kg, i.

p.

Antinociceptive 93
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syndrome.74,75 Melatonin treatment also causes moder-

ately increased expression of mitofusin2 and proliferator-

activated receptor gamma coactivator-1alpha (PGC-1α) in
reserpine-induced myalgic (RIM) rodents meant to mimic

mitochondrial function.73

In the orofacial pain test, acute melatonin administra-

tion alters mechanical and thermal hyperalgesia with long-

term effects.76 Post-hoc analysis also shows that melatonin

treatment increases the mechanical pain threshold and

improves sleep quality in chronic inflammatory pain

patients.77–79 Another study provides evidence that mela-

tonin could reduce pain scores, lower analgesic use, and

improve sleep quality.78 Interestingly, melatonin achieved

complete pain alleviation in the first post-traumatic/sec-

ondary case of long-lasting autonomic symptoms with

hemicrania (LASH) syndrome.80 Moreover, exogenous

melatonin supplementation can significantly relieve

abdominal pain caused by irritable bowel syndrome

(IBS).81 Furthermore, melatonin reduces indomethacin

dosage during the treatment period of hemicrania continua

and shows better pain relief effect.82

In sub-chronic arsenic-induced animals, exogenous mela-

tonin administration exerts properties of scavenging oxidative

and nitrosative radicals, inhibiting pro-inflammatory cytokines

and repairing neuropharmacological disturbance.83 The hyper-

algesic and inflammatory responses induced by CFA could be

effectively attenuated by melatonin.84 In an animal model of

oxaliplatin-induced pain, melatonin alleviates nociceptive

response via repression of glial fibrillary acidic protein

(GFAP) and inflammatory cytokines such as IL-1 and TNF-

α, and neuropathic deficits via reduction of the loss of mito-

chondrial membrane potential.85,86 Moreover, melatonin

derivatives such as benzoyl-melatonin (BMT) and acetyl-

melatonin (AMT) perform the anti-inflammatory activities in

lipopolysaccharide (LPS)-stimulated macrophage cells and

exert antinociceptive effects, which result in the reduction of

nitric oxide (NO) and prostaglandin E2 (PGE2).87

Neuropathic Pain
Thermal hyperalgesia, cold allodynia, and oxidative stress

induced by chronic constriction injury (CCI) of the sciatic

nerve are significantly attenuated by administration of mela-

tonin (2.5 or 5 mg/kg, i.p.). L-arginine pretreatment can

reverse the melatonin-induced protective effect suggesting

the nitric oxide pathway is involved.88 Other researchers

have found that melatonin could increase the mechanical

pain threshold and slightly increase thermal hyperalgesia

threshold. However, naloxone pretreatment abolishes the

mechanical antinociceptive but not the thermal protect effect

of melatonin.89 In addition, melatonin also increases the

withdrawal latency during plantar tests in CCI rodents.90

Interestingly, agomelatine, a melatonin analog, administra-

tion alone had no effect on mechanical allodynia induced by

chronic constriction (ligation) injury to the sciatic nerve

(CCI-SN) or the infraorbital nerve (CCI-ION) rats but pro-

duced an anti-allodynic effect when combined with

gabapentin.91 However, in another study, agomelatine dose-

dependently decreased mechanical hypersensitivity in three

neuropathic pain models (oxaliplatin, streptozocin, and

CCI).92 The analgesic effect of agomelatine remains contro-

versial and needs to be validated. While, piromelatine,

another melatonin analog, is reported to significantly prolong

thermal and mechanical latency and improve sleep of partial

sciatic nerve ligation (PSL) mice.93 Furthermore, neuro-

pathic pain is worse due to the reduction of endogenous

melatonin from sleep deprivation or pinealectomy, while

exogenous supplement of melatonin can alleviate the beha-

vioral hypersensitivity.94,95 Otherwise, adjuvant therapy with

melatonin has a superior anti-hyperalgesia effect. For

instance, melatonin combined with an extracorporeal shock

wave has a synergistic effect with short- and long-term

improvement of neuropathic pain.96,97

Misaligned diet and sleep deprivation during the peri-CCI

surgery and post-CCI distinctly decrease the paw withdrawal

mechanical threshold, whereas melatonin pretreatment ame-

liorates the hypersensitivity and reverses the disturbed sleep

rhythm.94,98 In other neuropathic pain models, such as cuff

implantation, valproic acid, and paclitaxel, melatonin amelio-

rates mechanical and thermal allodynia by preventing the

increases in NO levels, down-regulating c-fos, and increasing

C-fiber activity.17,99,100 Growing evidence suggests that mela-

tonin administration may reverse the nociceptive threshold in

spinal nerve ligation (SNL) rodents.101,102 Meanwhile, MT2

receptor-selective antagonist treatment reverses the effect

caused by melatonin, suggesting that MT2 receptors may be

a novel target in treating neuropathic pain.15,103,104

Mechanisms of Action on Animal
Models
Melatonin Receptors
Melatonin receptors in both central and peripheral nervous

system have been considered antinociceptive, due to

mounting evidence in many rodent models of neuropathic

pain.89,93,105,106 In rat L5–L6 SNL and spared nerve injury

models, a selective MT2 partial agonist, UCM924, exerted
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anti-allodynic effects by modulating the ON/OFF cells of

the antinociceptive system, suggesting that MT2 receptor

may be an important target in analgesic drug

development.15 Meanwhile, in the hot-plate and formalin

tests, UCM765 (another selective MT2 partial agonist) and

UCM924 also exert an antinociceptive effect.14 Another

study shows that MT2 receptor agonist, IIK-7, can relieve

neuropathic pain through the inhibition of glial activation

and downregulation of proteins involved in inflammation

such as inducible nitric oxide synthase (iNOS) and

caspase-3.107 In addition, MT2 receptor agonists are con-

sidered to be effective in the treatment of neuropathic pain

and have several advantages over melatonin.108 MT recep-

tors could transmit signals through the pertussis toxin-

sensitive Gi/o protein and delivered to second messenger

systems or through Gq/11-phospholipase C (PLC) and

PKC-dependent mechanism to modulate Ca2+

signaling.109,110 Conversely, melatonin is considered to

exert protective effects by suppressing PKC.63 The poten-

tial mechanisms remain controversial and require further

investigation.

Interestingly, melatonin induces a reduction in T-type

Ca2+ channel currents via the MT2 receptor coupled to Gβγ

-mediated PKCη signal pathway. This subsequently

reduces neuronal excitability and ameliorates CFA-

induced mechanical hypersensitivity.111 Melatonin is able

to suppress the mitogen-activated protein kinase (MAPK)

and calcium signaling pathways via the MT2 receptor,

which suppresses mechanical allodynia and thermal hyper-

algesia induced by cuff-implanted.17 The membrane recep-

tors of melatonin are one of the most important

mechanisms of its antinociception effect, especially MT2

receptor. Thus, it is more critical to make extensive efforts

to explore the downstream pathways of melatonin mem-

brane receptors. Interestingly, accumulated evidence

shows that ROR2 is activated and upregulated after CCI,

while inhibition of ROR2 reverses the nociceptive effect.16

Therefore, we speculate that melatonin may exert pain-

promoting effects through activation of ROR instead of

MT receptors, which needs further study.

Ion Channels and Membrane Potential
Abnormal ion channel expression and physiology have

been demonstrated in a variety of pain models.112,113

Some groups show that melatonin inhibits abdominal pain

caused by psychological stress via interacting with Ca2+

channels.114 Melatonin modulates against Ca2+ influx via

desensitization of transient receptor potential vanilloid type

1 and melastatin type 2 (TRPV1 and TRPM2).115

Moreover, melatonin exerts anti-thermal hypersensitivity

and anti-mechanical allodynia effect by inhibiting the activ-

ities of voltage-gated sodium channels Nav1.8 and Nav1.9.

The thermal stimuli is transmitted by small unmyelinated

C-fiber and thinly myelinated A-δ fiber, while the mechan-

ical stimuli is transmitted by large myelinated A-β fiber.97

In addition, melatonin reverses the inhibition activities

of synaptosomal integral enzymes such as Na+, K+-

ATPase, and acetylcholinesterase (AChE) in neuropathic

pain induced by valproic acid.99 However, in medial lat-

eral habenula (MLHb) neurons, experiments shows that

melatonin significantly augments the amplitude of gluta-

mate-mediated evoked excitatory post-synaptic currents

(EPSC), thus increasing glutamatergic synaptic transmis-

sion, which promotes the release of glutamate and

increases neuronal excitability.116 In contrast, another

study shows that melatonin inhibits excitatory synaptic

transmission and reduces norepinephrine release in

hippocampus.117 Therefore, melatonin may have a dual

effect on neuronal excitability in the central nervous sys-

tem. Thus, future molecular studies are required to deter-

mine the main effect of melatonin on neuronal excitability

and neuropathic pain due to the complexity of central

nervous network and duality of melatonin action.

NO/NOS System
NO is a physiological gas molecule, which is synthesized

intracellularly directly by nitric oxide synthase (NOS) using

L-arginine as substrate. NOS exists as a family of three

distinct isoforms: neuronal NOS (nNOS), inducible NOS

(iNOS), and endothelial NOS (eNOS). NO/NOS system

exerts a broad spectrum of physiological and pathophysio-

logical activities in humans. Accumulating evidence

demonstrates that the NO/NOS system plays an important

role in the initiation and maintenance of nociceptive

response in animal models.118 The enhanced levels of NO

production and NOS expression are inhibited by melatonin

administration in various nociceptive states.90,99 However,

the protective effect is significantly reversed by L-arginine

pretreatment.88 Interestingly, the addition of luzindole does

not distinctly influence the expression of nNOS, suggesting

that the antinociceptive effect of melatonin in this pathway

is not mediated byMT receptors.17 Moreover, another study

reveals that NO propagates the hypersensitive potentiation

induced by hind-paw ischemia possibly mediated by group

II metabotropic glutamate receptors (mGluRs) as this effect

was blocked by group II mGluRs agonist LY354740.119
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Substantial evidence supports that melatonin partially but

effectively reduces both cyclooxygenase-2 (COX-2) and

iNOS expression, thus inhibiting the production of PGE2

and NO, respectively, which alleviates the hyperalgesia

with inflammation.11 Inhibition of NO production leads

to decrease in PKC-dependent N-Methyl-D-aspartate

(NMDA) receptor GluN1 subunit and ultimately contri-

butes to improving the mechanical allodynia following

peripheral nerve injury.120,121 In addition, another study

suggests that reduction of NO production could mitigate

allodynic and hypersensitive activities through NO-cGMP-

PKG-K+-ATPase pathways.122,123

Opiate System
Earlier studies revealed that melatonin exerts antinociception

via the opiate system.124,125 In agreement with these results,

the overexpression of opioid receptors is observed after hyper-

baric oxygen treatment of neuropathic pain, suggesting that

the opiate system participates in attenuation of allodynia.106

Piromelatine is effective in treating neuropathic pain and sleep

disturbance in PSL rats mediated by opioid receptors.93

Melatonin not only increased the pain threshold of mechanical

allodynia but also enhanced the threshold of thermal

hypersensitivity.89 Naloxone, an opioid receptor antagonist,

reversed the anti-allodynic and anti-hypersensitive effect of

melatonin suggesting that melatonin affects mechanical allo-

dynia and thermal hypersensitivity through activation of opiate

system.89,126,127 In addition, co-activation of δ-opioid and

melatonin receptors could induce much longer analgesia than

either receptor individually.128 While, naltrindole, a selective

δ-opioid receptor antagonist, can partly reverse melatonin-

induced antinociception, suggesting the activation of δ-
opioid receptors in the antinociceptive effect of melatonin in

diabetic rats.129

Adrenergic Receptors
Previous studies have shown that melatonin can accelerate

norepinephrine transmission and activation of α1- and β-
adrenoceptors.130 Moreover, activation of the noradrenergic

descending pathway inhibits the activities of the spinal cord

nociceptive receptors, such as α2-adrenoceptors.
131,132 It is

documented that intrathecal melatonin alleviates mechan-

ical allodynia response in the formalin test, which is

mediated through α1-adrenoceptors, α2-adrenoceptors,
muscarinic, and nicotinic receptors in the spinal cord.60 In

addition, agomelatine exhibits anti-allodynia through nora-

drenergic neurotransmission mediated by α2-adrenoceptors
and β2-adrenoceptors.

91

NMDA Receptors
Recent findings suggest that NMDA receptors pathways par-

ticipate in the transmission of pain.133 Melatonin is considered

to attenuate morphine-induced hypersensitivity and tolerance

by suppressing NMDA receptor subtype 1 (NR1) activities in

the spinal cord.61 The up-regulation of NMDA receptor sub-

type 2B (NR2B), Ca2+/calmodulin-dependent protein kinase II

(CaMKII), and cyclic adenosine monophosphate-response

element-binding protein (CREB) is induced by nerve injury,

which can be recovered by melatonin pretreatment.98

Furthermore, melatonin administration attenuates the NR1

expression and reduces NMDA-induced currents in dorsal

horn neurons in rodents with unilateral temporomandibular

joint (TMJ) inflammation in a dose-dependent manner.134 The

treatment of neuropathic pain achieves more efficacy using

a combination of melatonin and dextromethorphan (DM;

a clinically available NMDA receptor antagonist).135

Epigenetic Modifications
Epigenetic modifications alter gene expression without chan-

ging the primary DNA sequence. Epigenetic modifications

primarily include DNAmethylation, histone acetylation, and

non-coding RNA interference. In the past decade, a growing

number of studies have implicated epigenetic modifications

in the induction and maintenance of neuropathic pain or

inflammatory pain.136–139 Accumulating evidence suggests

that spinal ten-eleven translocation methyl-cytosine dioxy-

genase 1 (Tet1)-dependent epigenetic demethylation is asso-

ciated with nociception hypersensitivity development.140

Melatonin has been reported to inhibit Tet1 expression, Tet1-

metabolic glutamate receptor subtype 5 (mGluR5) promoter

coupling, hence leading to mGluR5 promoter methylation

enrichment and low expression of mGluR5 in dorsal horn

neurons, subsequently mitigating neuropathic pain.103

Melatonin has been reported to alleviate allodynia via histone

acetylation modification. The experiment shows that the

antinociceptive effect of melatonin is conducted by enhan-

cing spinal serine-/threonine-specific phosphatase 2A

(PP2A) expression that couples PP2Awith histone deacety-

lase 4 (HDAC4) to dephosphorylate HDAC4 as well as

prompts nuclear import of HDAC4, herein HDAC4 binds

to histone of hmgb1 gene and increases high-mobility group

protein B1 (HMGB1) expression in neurons.101,141

Other Mechanisms
Melatonin also is reported to show an inhibition of the

Toll-like receptor 4 (TLR4)/NF-κB pathway in the pulp of
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acute pulpitis rats to exert a protective effect. Moreover, in

LPS-stimulated human dental pulp cells, melatonin could

also influence the TLR4/NF-κB pathway.62 In the animal

model of hyperalgesia associated with inflammation, the

antinociceptive response of melatonin is mediated by inhi-

bition of NF-κB signaling and MAPK.11 Conversely, in

nerve injury-induced neuropathic pain, pinealectomy

reverses the protective effect of melatonin due to phos-

phorylation of p38 MAPK, activation of microglia, and

release of pro-inflammatory cytokines.95 (Figures 2 and 3)

Furthermore, the current data suggest that short-term

administration of melatonin after acute pain may be associated

with the pain regulation and neuroprotective effects of BDNF

levels.61 In addition, melatonin therapy has been found to

partially reverse morphine-induced hypersensitivity and toler-

ance by inhibiting microglia activation via the heat shock

protein 27 (HSP27)-related pathway.65 Besides, it is reported

that melatonin restored the antinociceptive effect of morphine

through altering the expression of multiple genes.142 Thus, the

molecular mechanism of melatonin exerting antinociceptive

effect remains to be further studied.

Conclusion
Althoughmelatonin and its analogs have been shown to attenu-

ate hyperalgesia and allodynia in several animal models of

acute, inflammatory, and neuropathic pain, conflicting evi-

dence exists and the mechanisms are not fully understood.

On the one hand, melatonin is a pleiotropic hormonewith little

side effects and has the potential to be used as an effective drug

in antinociception activity. Therefore, an increasing number of

clinical trials have been conducted to verify the analgesic effect

of melatonin in humans. On the other hand, melatonin can

travel throughout the body and act on a large number of targets

due to its hydrophilicity and lipophilicity. At present, the main

mechanism through which melatonin plays an antinociceptive

role has not been determined. A comprehensive understanding

of the underlying mechanisms for the observed effects of

melatonin in nociception will be necessary before its use can

be evaluated in clinical applications for the prevention and/or

treatment of different pain states in humans. Thus, the exact

mechanistic pathway by which melatonin exerts nociceptive

effect remains to be elucidated.
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Figure 2 Schematic diagram of the primary mechanisms of melatonin and its analogs on neuropathic pain management.
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