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Abstract: Background: Clinical studies have demonstrated that higher protein intake based on
caloric restriction (CR) alleviates metabolic abnormalities. However, no study has examined the
effects of plasma protein profiles on caloric restriction with protein supplementation (CRPS) in
metabolic syndrome (MetS). Therefore, using a proteomic perspective, this pilot study investigated
whether CRPS ameliorated metabolic abnormalities associated with MetS in middle-aged women.
Methods: Plasma samples of middle-aged women with MetS in CR (n = 7) and CRPS (n = 6)
groups for a 12-week intervention were obtained and their protein profiles were analysed. Briefly,
blood samples from qualified participants were drawn before and after the dietary treatment.
Anthropometric, clinical, and biochemical variables were measured and correlated with plasma
proteomics. Results: In results, we found that body mass index, total body fat, and fasting blood
glucose decreased significantly after the interventions but were not different between the CR and
CRPS groups. After liquid chromatography–tandem mass spectrometry analysis, the relative plasma
levels of alpha-2-macroglobulin (A2M), C4b-binding protein alpha chain (C4BPA), complement
C1r subcomponent-like protein (C1RL), complement component C6 (C6), complement component
C8 gamma chain (C8G), and vitamin K-dependent protein S (PROS) were significantly different
between the CRPS and CR groups. These proteins are involved in inflammation, the immune
system, and coagulation responses. Moreover, blood low-density lipoprotein cholesterol levels were
significantly and positively correlated with C6 plasma levels in both groups. Conclusions: These
findings suggest that CRPS improves inflammatory responses in middle-aged women with MetS.
Specific plasma protein expression (i.e., A2M, C4BPA, C1RL, C6, C8G, and PROS) associated with
the complement system was highly correlated with fasting blood glucose (FBG), blood lipids (BLs),
and body fat.
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1. Introduction

Metabolic syndrome (MetS) is an escalating global public health challenge. The prevalence of
MetS varies among countries and is affected by region, sex, age, and ethnicity [1,2]. According to
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the clinical diagnostic criteria of the International Diabetes Federation, approximately 25% of adults
have MetS [2]. A sedentary lifestyle, high body mass index (BMI), and relatively high socioeconomic
status have been associated with MetS. Studies have also reported that genetics, dietary habits, level of
physical activity, cigarette smoking, familial history of diabetes mellitus (DM), and level of education
influence the prevalence of MetS and its components [3]. Furthermore, according to the Ministry of
Health and Welfare in Taiwan, cardiovascular disease, DM, and hypertension associated with MetS are
listed in the ten leading causes of death in Taiwan [4].

Clinical studies have shown that caloric restriction (CR) causes weight loss, changes body
composition, and decreases a person’s basal metabolic rate [5–7]. These effects are believed to result
from lowering the thermic effect of feeding and reducing thermal substrates. Thus, it has been
considered that CR can cause metabolic adaptation. A study reported that short-term CR influenced the
secretion of adipokines from adipocytes (e.g., increased adiponectin levels and decreased leptin levels
in blood), but there was no significant difference in the amount of fat-free mass [8]. Such a change has
been regarded as in accordance with alleviation of diseases associated with MetS (e.g., atherosclerosis
and type 2 DM) [8]. Additionally, CR has been shown to reduce visceral fat [7] and has been highly
correlated with improvements in insulin levels in people with obesity. However, the effects of CR for
alleviating metabolic abnormalities are usually not as notable as expected. A study reported that caloric
restriction with protein supplementation (CRPS) promoted weight loss, improved the biochemical
markers associated with metabolism, increased lean body mass preservation, accelerated adipose tissue
catabolism, and helped maintain weight loss by increasing satiety, thermogenesis, and myofibrillar
protein synthesis [9,10]. However, proteomic animal and human studies have reported that plasma or
tissue protein profiles might be influenced by CR [11,12] and may be partly responsible for changes
in metabolism.

To the best of our knowledge, no study has examined the effect of plasma protein profiles on
CRPS in MetS. Studies have reported that middle-aged women have greater difficulty than men in
reducing body weight [13,14]. Therefore, using a proteomic perspective, this pilot study investigated
whether CRPS ameliorated metabolic abnormalities associated with MetS in middle-aged women.
This study also investigated the effects of CRPS on blood biochemical characteristics (e.g., triglyceride
(TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein
cholesterol (HDL-C), interleukin 6 (IL6), haemoglobin A1c (HbA1c), fasting blood glucose (FBG), blood
insulin levels, and body composition.

2. Materials and Methods

This pilot study was primarily conducted to analyse plasma protein profiles by using plasma
samples of middle-aged women with MetS obtained from a cohort study [15,16]. A brief description of
the selection criteria and study design follows.

2.1. Participants

The cohort study was conducted at Taipei Medical University (TMU), Taipei Medical University
Hospital (TMUH), and Wan Fang Hospital. Volunteer recruitment occurred between May 2012 and
March 2013. Volunteers were included in the cohort study when they met the inclusion criteria and
were diagnosed with MetS in accordance with the modified National Cholesterol Education Program
Adult Treatment Panel III [17] and the World Health Organization guidelines [18]. The inclusion and
exclusion criteria were as follows [16]: (1) age 30 to 65 years, (2) BMI ≥24 and ≤35 kg/m2, and (3)
waist circumference (WC) ≥90 cm in men or ≥80 cm in women. Furthermore, participants were
included if at least two of the following conditions were met: (1) TG levels ≥150 mg/dL, (2) HDL-C
levels <40 mg/dL in men or <50 mg/dL in women, (3) FBG levels >100 mg/dL, or (4) systemic
hypertension with systolic blood pressure ≥130 mmHg and diastolic blood pressure ≥85 mmHg.
Participants with a history of cardiovascular events, alcohol or substance abuse, or cardiovascular,
hepatic, renal, metabolic, endocrine, psychiatric, cerebrovascular, or peripheral vascular diseases were
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excluded. Participants who were pregnant, taking any type of lipid-lowering, antihypertension, or
hypoglycaemic medication were also excluded.

2.2. Study Design

The participants in the cohort study were randomly assigned to one of four groups after a 2-week
run-in period, and were then asked to follow a 12-week dietary intervention. The four groups were as
follows: CR, CRPS, caloric restriction with fish supplementation, and caloric restriction with protein
and fish supplementation. During the 2-week run-in period, the participants were consulted by
a dietitian to estimate their regular daily dietary intake and basal metabolic rate (Figure 1A).

In this pilot study, we focused on only two of the four groups: CR and CRPS. The inclusion criteria
were as follows: female aged ≥40 years, relatively high blood biochemical variable improvements
(i.e., BMI, WC, fasting blood glucose, and blood lipids) after the 12-week intervention, adequate plasma
sample, and provision of written informed consent. After the participant selection process, seven
and six subjects’ plasma samples were selected in CR and CRPS groups for the proteomic analysis,
respectively (Figure 1B). This additional study was approved by the Ethics Committee of the Joint
Institutional Review Board at TMU (N201704088), registered at ClinicalTrials.gov as NCT01768169,
and conducted in accordance with the Declaration of Helsinki.

During the 12-week dietary interventions, the CR group was asked to consume calorie-controlled
lunches and dinners prepared by the Department of Nutrition at TMUH. The CRPS group was asked
to consume calorie-controlled lunches and Herbalife Formula 1® (Herbalife, Los Angeles, CA, USA)
for dinner. Herbalife Formula 1® is a low-calorie nutritional drink (protein powder); the participants
were asked to mix 25 g of the protein powder (comprising 11 g of carbohydrates, 0.6 g of fat, and 8 g of
protein) with water (81 kcal/serving). Herbalife Formula 1® was provided as a protein supplement to
increase the participants’ daily protein intake.
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Figure 1. Flow chart of participant selection. (A) Participants were randomly assigned to one of
four groups: caloric restriction (CR), caloric restriction with protein supplementation (CRPS), caloric
restriction with fish oil (CRF), or caloric restriction with protein supplementation and fish oil (CRPSF).
(B) We focused on only two groups in the current study: CR and CRPS. The participants’ plasma
was digested into peptides and then analysed using LC-MS/MS. BMI: body mass index, WC: waist
circumference, FBG: fasting blood glucose, BLs: blood lipids, MetS: Metabolic syndrome.

2.3. Anthropometry and Analysis of Clinical and Biochemical Variables

The participants’ height, body weight, WC, and body composition were measured at baseline
(week 0) and after intervention (week 12). An oral glucose tolerance test and blood drawing were also
conducted at both time points. The blood samples were then stored at −80 ◦C until analysis. Briefly,
serum albumin, TG, and TC were measured using an automated analyser (Ortho Clinical Diagnostics
VITROS 950, Johnson & Johnson, New Brunswick, NJ, USA). Serum LDL-C and HDL-C were analysed
using an automated analyser (Toshiba TBA-c16000, Toshiba, Tokyo, Japan). FBG was determined
using an automated analyser (VITOR 5, 1FS, Ortho Clinical Diagnostics, Johnson & Johnson) with
Vitros Chemistry Products GLU slides. Serum insulin was analysed using a radioimmunoassay
kit (DIAsource, Lovain-La-Nueve, Belgium). HbA1c was determined using an HLC-723 GHb G7
analyser (Tosoh, Tokyo, Japan). Serum C-reactive protein (CRP) concentrations were analysed using
an automated analyser (Toshiba TBA-c16000). IL6 was measured using a Qunatikine high-sensitivity
commercial enzyme-linked immunosorbent assay kit (R&D Systems, Minneapolis, MN, USA). In this
study, the qualified and subject-matched plasma samples were used to analyse the basic biochemical
characteristics and protein profile (or proteome) (Tables 1 and 2).
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Table 1. Participants’ clinical and biochemical characteristics before and after the 12-week dietary
interventions a.

Variable
CR (n = 7) CRPS (n = 6) Post-Intervention

Baseline 12-Week Baseline WK12 p-Value b

Age (y/o) 61.97 (64.61) - 55.84 (63.87) - 0.52
Anthropometrics

BW (kg) 66.10 (75.40) 59.80 (68.90) * 67.90 (77.35) 60.60 (72.23) * 0.94
BMI (kg/m2) 28.21 (31.59) 25.46 (28.40) * 27.03 (28.25) 24.50 (26.09) * 0.62
WC (cm) 85.00 (94.00) 79.00 (86.00) * 85.50 (93.50) 76.00 (83.75) * 0.43

Body Composition
Android (%) 53.50 (55.00) 46.30 (53.10) * 47.95 (51.83) 44.20 (48.65) * 0.52
Gynoid (%) 48.40 (49.30) 43.30 (45.90) * 43.60 (49.05) 39.65 (43.80) * 0.23
TBF (%) 43.20 (46.90) 40.00 (44.10) * 40.45 (43.20) 34.85 (40.93) * 0.35

Blood Pressure
SBP (mmHg) 144.0 (162.0) 116.0 (149.0) * 147.5 (152.3) 123.0 (130.0) * 1.00
DBP (mmHg) 84.00 (93.00) 75.00 (86.00) * 81.50 (85.25) 70.50 (76.50) 0.32

Laboratory Data
GOT (U/L) 29.00 (33.00) 24.00 (31.00) 22.00 (26.25) 22.50 (25.50) 0.22
GPT (U/L) 36.00 (42.00) 24.00 (27.00) * 16.50 (21.00) 18.00 (21.50) 0.20
BUN (mg/dL) 15.00 (16.00) 12.90 (19.40) 13.50 (16.35) 13.05 (16.93) 0.62
CR (mg/dL) 0.72 (0.73) 0.64 (0.75) 0.63 (0.67) 0.62 (0.69) 0.28
ALB (g/dL) 4.20 (4.50) 4.40 (4.60) 4.30 (4.30) 4.25 (4.33) 0.07

Glucose Metabolism
FBG (mg/dL) 103.0 (105.0) 97.0 (101.0) * 102.5 (127.0) 91.0 (97.8) * 0.06
PC (mg/dL) 132.0 (155.0) 121.0 (138.0) 146.5 (198.8) 119.5 (135.0) 0.43
Insulin (µIU/mL) 11.00 (14.70) 7.86 (14.40) 10.09 (12.58) 7.43 (9.16) * 0.28
HbA1c (%) 5.70 (5.90) 5.60 (5.90) 5.75 (6.55) 5.70 (6.48) 0.94
HOMA-IR 2.85 (3.70) 1.86 (3.45) 2.60 (3.58) 1.60 (2.07) * 0.18
QUICKI 0.33 (0.33) 0.35 (0.36) 0.33 (0.34) 0.36 (0.37) * 0.22

Blood Lipids
TG (mg/dL) 167.0 (184.0) 100.0 (137.0) * 122.0 (155.3) 96.0 (108.3) 0.78
TC (mg/dL) 209.0 (233.0) 184.0 (207.0) 202.0 (210.3) 180.5 (217.0) 1.00
HDL-C (mg/dL) 49.40 (58.00) 44.70 (54.90) 45.25 (63.50) 41.95 (73.13) 0.78
LDL-C (mg/dL) 129.0 (150.0) 127.0 (138.0) 117.0 (138.8) 117.0 (124.5) 0.52

Inflammatory Status
CRP (mg/dL) 0.36 (0.77) 0.22 (0.58) 0.22 (0.51) 0.21 (0.30) 0.83
IL-6 (pg/mL) 2.42 (3.80) 1.71 (2.59) * 3.50 (4.96) 1.68 (2.86) 0.89

BW: body weight, BMI: body mass index, WC: waist circumference, TBF: total body fat, SBP: systolic blood pressure,
DBP: diastolic blood pressure, GOT: glutamate oxaloacetate transaminase, GPT: glutamate pyruvate transaminase,
BUN: blood urea nitrogen, CR: creatinine, ALB: albumin, FBG: fasting blood glucose, PC: postprandial glucose,
HOMA-IR: homeostatic model assessment for insulin resistance, QUICKI: quantitative insulin sensitivity check
index, TG: triglyceride, TC: total cholesterol, HDL-C: high-density lipoprotein cholesterol, LDL-C: low-density
lipoprotein cholesterol, CRP: C-reactive protein, IL-6: interleukin 6, CR: caloric restriction diet, CRPS: caloric
restriction with protein supplementation. a Data are presented as median (75th percentile values are in parentheses).
b p-value according to Mann–Whitney U test for postintervention-comparing between groups. * p < 0.05,
in comparison with baseline measurements within groups and according to Wilcoxon signed-rank test.

Table 2. Different protein plasma levels between the groups after the 12-week dietary interventions a.

Accession Entry Name Protein Name CR (n = 7) CRPS (n = 6) p-Value b

P01023 A2MG_HUMAN Alpha-2-macroglobulin
(A2M) 92.0 (94.1) 105.0 (116.0) 0.01

P04003 C4BPA_HUMAN C4b-binding protein
alpha chain (C4BPA) 7.55 (8.71) 4.19 (6.45) 0.04

Q9NZP8 C1RL_HUMAN
Complement C1r

subcomponent-like
protein (C1RL)

1.74 (3.05) 0.80 (1.79) 0.02

P13671 CO6_HUMAN Complement component
C6 (C6) 8.22 (9.94) 5.39 (7.50) 0.02

P07360 CO8G_HUMAN Complement component
C8 gamma chain (C8) 1.59 (2.17) 0.20 (1.26) 0.04

P07225 PROS_HUMAN Vitamin K-dependent
protein S (PROS) 4.73 (5.62) 3.50 (4.48) 0.02

CR: caloric restriction diet, CRPS: caloric restriction with protein supplementation. a Data are presented as median
(75th percentile values are in parentheses). Units of raw data are spectral counting (SPC)/total spectral counting
(T-SPC) × 10,000. b p-value according to Quade’s test for postintervention-comparing between groups with baseline
measurements as covariates.
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During the study period, the participants attended ten weekly sessions of a nutrition course that
provided information on healthy diets, exercise, dietary habits, and dietary behaviour modification.
Participant compliance was assessed as attendance in the weekly sessions.

2.4. Liquid Chromatography–Tandem Mass Spectrometry

Five microliter qualified plasma samples were spiked with protein standard β-lactoglobulin
(LACB) and were processed with dithiothreitol (DTT) and iodoacetamide (IAA) for reduction
and alkylation, respectively. Processed plasma samples were digested with SMART Digest Kit
(SMART Digest Trypsin Kit, P/N60109-101, Thermo Fisher, Bedford, MA, USA), reduced, desalted
(Millipore®Ziptips Micro-C18, P/NZ720003, Sigma, St. Louis, MO, USA), and purified by SOLAµ™
SPE Plates (Thermo Fisher, Bedford, MA, USA). Finally, the processed samples were dissolved in 0.1%
formic acid for LC-MS/MS analysis. After sample preparation, digested peptides were loaded into
a LTQ-Orbitrap Elite mass spectrometer with a nanoelectrospray ionisation source (Thermo Electron,
Waltham, MA, USA) connected to a nanoACQUITY UPLC system (Waters, Milford, MA, USA). Peptide
samples were first loaded with a single injection model into the nanoACQUITY UPLC system, and then
peptides were captured and desalted on a C18 trap column (2 cm × 180 µm, Symmetry C18, Waters,
Milford, MA, USA). The peptide samples were separated using a BEH130 C18 column (25 cm × 75 µm,
Waters, Milford, MA, USA) with a 0–95% segmented gradient of 3–40% B for 168 min, 40–95% B
for 2 min, and 95% B for 10 min at a flow rate of 0.5 µL/min. Mobile phases were prepared as
solution A (0.1% formic acid in water) and solution B (0.1% formic acid in acetonitrile). The eluted
peptides were ionised with a spray voltage of 2.33 kV and introduced into the LTQ-Orbitrap Elite
mass spectrometer. The mass spectrometer was conducted in the positive ion mode and on the
basis of a data-dependent acquisition method (isolation width: 1.5 Da). Mass spectrum data of
the peptides were obtained using a full mass spectrometer survey scan (m/z range of 350–1600) of
30,000. According to the data-dependent acquisition method, the first 15 most intensively charged
peptide ions were scanned. High-energy collisional dissociation of the selected precursor peptide
ions was stimulated with helium. The MS data were deposited as mzML to the ProteomeXchange
Consortium (http://proteomecentral.proteomexchange.org) with identifier PXD012213 (Project DOI:
10.6019/PXD012213). An enzyme-linked immunosorbent assay (ELISA) was conducted to confirm the
liquid chromatography–tandem mass spectrometry (LC-MS/MS) proteomic results.

2.5. Protein Identification

The acquired proteomic raw data files were then applied to search against a UniProt human
protein database (containing 162,989 protein sequences; released on April 2017; http://www.uniprot.
org/) by using PEAKS Studio 7.5 (Bioinformatics Solutions, Waterloo, Ontario, Canada). The settings in
PEAKS Studio 7.5 combined with UniProt for searching the protein database were as follows: enzyme
set as trypsin with a maximum of two missed cleavage sites; precursor and fragment mass tolerance
of 20 ppm and 0.8 Da, respectively; and false discovery rate <1%, obtained through search against
a decoy database in all protein and peptide characteristics. A protein was identified when at least one
unique peptide was matched. Protein quantification was based on label-free quantitative analysis.
Furthermore, spectrum counts were normalised with the total identified spectra per biological sample
and the proteins. The proteins (containing at least two matched peptides or one unique peptide)
with statistically higher or lower peptide counts in the participants (nonparametric Quade’s test was
conducted in SAS version 9.4, Cary, NC, USA) were considered as different expressions. All mass data
of this study have been documented as raw files and peak lists in ProteomeXchange. The selected
proteins were based on the biochemical characteristics improvements (included: blood pressure-,
coagulation-, complement system-, glucose metabolism-, inflammatory, lean body mass- and lipid
metabolism-associated proteins) and missing values in nanoLC-MS/MS based proteomics dataset
(Figure 2).

http://proteomecentral.proteomexchange.org
http://www.uniprot.org/
http://www.uniprot.org/
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Figure 2. Flow chart of statistical analysis of plasma protein profiles. After the plasma samples
(digested peptides) were analysed using nano-LC-MS/MS, PEAKS Studio 7.5 was used to identify and
quantify the proteins. nano-LC-MS/MS: nanoflow liquid chromatography–mass spectrometry. 12-wk:
12-week, ver.: version.

2.6. ELISA Analysis of Selected Protein

Commercial available plasma C4b-binding protein (C4BP), complement component C6 (C6),
complement component C8 gamma chain (C8G), and vitamin K–dependent protein S (PROS) were
respectively measured using the following commercial ELISA kits: (1) C4BP ELISA kit (#EC2202-1,
Assaypro, St. Charles, MO, USA); (2) C6 ELISA kit (#EC6101-1, Assaypro, St. Charles, MO, USA);
(3) C8G ELISA kit (#EC8120-1, Assaypro, St. Charles, MO, USA); and (4) PROS ELISA kit (#AB190808,
Abcam, Cambridge, UK). Seven and six subject-matched plasma samples were used in CR and CRPS
groups for the ELISA analysis, respectively.

2.7. Statistical Analysis

Differences between the postintervention clinical and biochemical characteristics of the treatment
groups were compared using the Mann–Whitney U test. A comparison between the baseline and
postintervention clinical and biochemical measurements between the groups was conducted using the
Wilcoxon signed-rank test. Using the LC-MS/MS-derived proteomics data, the nonparametric Quade’s
test was adopted to compare the different postintervention protein expressions between the treatment
groups with baseline measurements as covariates. Moreover, a Spearman’s rank correlation coefficient
was calculated to evaluate the relationship between the specific plasma protein expressions and clinical
variables. All statistical analyses were performed using SAS version 9.4. Data are presented as the
median (75th percentile values in parentheses), and p < 0.05 was considered statistically significant.

3. Results

3.1. Anthropometric and Clinical Characteristics

Among those in the CR (n = 44) and CRPS (n = 45) groups (Figures 1 and 2), there were seven
and six middle-aged female participants, respectively, enrolled in this pilot study. Their plasma
samples were processed, and their protein profiles were analysed using LC-MS/MS. According to
the database from the cohort study, the groups showed no significant differences in age: CR = 61.97
years and CRPS = 55.84 years, p = 0.52. Body weight, BMI, android fat, gynoid fat, total body fat (TBF),
and FBG decreased significantly in the groups throughout the 12-week interventions, but no significant
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differences were observed between the groups (Table 1). The basic characteristics of subjects were
shown in Supplementary Materials.

3.2. LC-MS/MS Proteomic Analysis

A proteomic analysis conducted using LC-MS/MS (Thermo Scientific LTQ-Orbitrap Elite, Thermo
Fisher, Bedford, MA, USA) revealed that postintervention alpha-2-macroglobulin (A2M) protein
expression in the CRPS group was significantly higher than in the CR group. Furthermore, C4BPA,
complement C1r subcomponent–like protein (C1RL), C6, C8G, and PROS expression was significantly
lower in the CRPS group than in the CR group after intervention (Table 2). To verify the results derived
from LC-MS/MS, ELISA kits were used to determine the absolute amount of proteins. C4BPA, C6, C8G,
and PROS expression between the groups was consistent with the results obtained from LC-MS/MS
(Figure 3).
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Figure 3. Absolute changes in the plasma levels of several proteins in female patients with metabolic
syndrome after the 12-week dietary interventions analysed using an ELISA kit: caloric restriction (CR)
or caloric restriction with protein supplementation (CRPS). Box plots represent values between the
25th and 75th percentile. The solid line within the box is the median value, and the symbol within the
box is the mean value. The circles are values that are 1.5 times the interquartile range above the upper
quartile and below the lower quartile. Units of raw data are ng/mL. * p < 0.05 in comparison with
postintervention measurements between the groups and according to the Quade’s test with baseline
measurements as covariates.

3.3. Correlation of Specific Protein Candidates with Biochemical Variables

A Spearman’s rank correlation coefficient was calculated for the specific protein candidates and
showed significant differences between the groups with the selected anthropometric and biochemical
variables. A significantly positive correlation was observed between C6 and blood LDL-C levels in the
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CR group (rs = 0.93, p < 0.01) (Figure 4A). Furthermore, C1RL plasma levels were negatively correlated
with the android-to-gynoid ratio (A/G%) (rs = −0.90, p = 0.01) and TBF (rs = −0.84, p = 0.04) in the
CRPS group. C1RL expression was also negatively correlated with HbA1c levels in the CRPS group
(rs = 0.81, p = 0.05). C6 levels were positively correlated with TC (rs = 0.94, p < 0.01) and LDL-C
(rs = 0.99, p < 0.01) levels, whereas there was a significantly positive correlation between C8 and FBG
levels in the CRPS group (rs = 0.99, p < 0.01) (Figure 4B).J. Clin. Med. 2019, 8, 195 10 of 17 
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and postintervention in the CR (A) and CRPS (B) groups. The left red–blue scale heatmaps show the
estimates of Spearman’s correlation coefficients, whereas the right yellow-scale heat maps show the
p-values for the same protein–clinical variable pairs. AG: android/gynoid fat ratio, ALB: albumin,
TBF: total body fat, BMI: body mass index, CRP: C-reactive protein, FBG: fasting blood glucose, HOMA:
homeostatic model assessment for insulin resistance, IL6: interleukin 6, LDL-C: low-density lipoprotein
cholesterol, MONO: mononuclear, NEU: neutrophil, PLA: platelet, QUICKI: quantitative insulin
sensitivity check index, TC: total cholesterol, WBC: white blood cell, A2M: alpha-2-macroglobulin,
C1RL: Complement C1r subcomponent–like protein, C4BPA: C4b-binding protein alpha chain,
C6: complement component C6, C8G: complement component C8 gamma chain, Protein S: vitamin
K-dependent protein S, CR: caloric restriction, CRPS: caloric restriction with protein supplementation.

3.4. Plasma Proteomic Measurements

Figure 5 displays a volcano plot of the plasma selected proteomic ratio measurements within
each group throughout the trial. The proteins depicted as red dots represent the plasma protein
levels that increased significantly (p < 0.05) with a 1.25-fold change (25% change threshold), whereas
the proteins depicted as blue dots represent the plasma protein levels that decreased significantly
to 25% changes of the original value. Apolipoprotein A2 (APOA2), complement component 3 (C3),
A2M, fibrinogen alpha chain, alpha-1-microglobulin/bikunin precursor (AMBP), and fibronectin
(FINC) levels decreased significantly following the 12-week intervention in the CR group. Moreover,
apolipoprotein B-100 (APOB-100), apolipoprotein C2 (APOC2), and C6 levels increased significantly
throughout the intervention in the CR group (Figure 5). Moreover, FINC levels decreased significantly
following the 12-week intervention in the CRPS group (Figure 6). The detailed proteins characteristics
were shown in Supplementary Materials.
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Figure 5. Volcano plot of plasma selected proteomic ratio measurements between baseline and
postintervention in the CR group. Fold change means the postintervention value divided by the
baseline value, and the p-value was according to a Wilcoxon signed-rank test that compared the
different protein expressions before and after the interventions within the groups. Thresholds are
presented as dotted lines. The fold change cut-off points were 1.25 and 1/1.25, and the p-value
cut-off point was 0.05. Both data were converted to a natural logarithm, as shown. CR: caloric
restriction, A2M: alpha-2-macroglobulin, AMBP: alpha-1-microglobulin/bikunin precursor, APOA2:
apolipoprotein A2, APOB: apolipoprotein B-100, APOC2: apolipoprotein C2, CO3: complement
component 3, CO6: complement component 6, FIBA: fibrinogen alpha chain, FINC: fibronectin.
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Figure 6. Volcano plot of plasma selected proteomic ratio measurements between baseline and
postintervention in the CRPS group. Fold change represents the postintervention value divided
by the baseline value, and the p-value is associated with a Wilcoxon signed-rank test that compared
the different protein expression levels before and after the interventions within the group. Thresholds
are presented as dotted lines. The fold change cut-off points were 1.25 and 1/1.25, and the p-value
cut-off point was 0.05. Both sets of data were converted to a natural logarithm as shown. CRPS: caloric
restriction with protein supplementation, ALBU: albumin, FINC: fibronectin.

4. Discussion

4.1. Effects of the Dietary Intervention on the Clinical Variables

After comparing the anthropometric and biochemical variables between the groups, we found no
significant differences in baseline measurements. According to the literature review, we found that the
short dietary interventions (12 weeks), loose target for the CR group (1500 kcal/per day), and relatively
low protein supplementation dose provided (17% kcal/per day) in this study might explain the reasons
for the minor effects of CRPS. A study by Flechtner-Mors et al. showed that a relatively high protein
intake (35% kcal/day) combined with 1300 kcal/per day contributed to a significant body weight
loss throughout a 12-week intervention [19]. Furthermore, Josse et al. suggested that a relatively
high protein intake (28% kcal/day) combined with 1500 kcal/per day contributed to significant body
weight and body fat mass losses and a significant increase in lean body mass after a 16-week dietary
intervention [10]. Further study on protein supplementation should be considered to enable the use of
a relatively high protein dose for a longer intervention period.

4.2. Effect of Protein Supplementation on Plasma Protein Profiles

The results showed that eight plasma proteins (A2M, C4BPA, C1RL, C6, C8G, and PROS) were
significantly different between the groups. Those plasma protein candidates have been associated
with inflammation (A2M and C4BPA), the complement system (C1RL, C6, and C8), and coagulation
responses (PROS).

A2M is regarded as a powerful protease inhibitor that is involved in proteolysis [20]. Studies
have also shown that A2M is an acute phase protein (APP) that increases slightly during inflammatory
responses (e.g., surgical trauma, myocardial infarction, and severe burns) in humans [21–23]; however,
A2M levels are significantly decreased in people who are overweight or obese. Moreover, a significantly
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negative correlation was found between A2M levels and BMI [24]. A study reported that the expression
of A2M is likely to increase under a relatively low consumption of calories and animal-derived
proteins [21]. In the current study, A2M plasma levels were significantly higher in the CRPS group
than in the CR group after intervention. However, there were no significant differences in IL-6 or CRP
levels between the groups throughout the interventions. Thus, we infer that the increased A2M plasma
levels in the CRPS group were influenced by the plant-derived protein supplementation.

C4BP has been shown to be involved in not only the complement system but also inflammation.
Moreover, it is regarded as a positive APP. Human C4BP is mainly composed of an α chain (C4BPA)
and a β chain (C4BPB), and there are three isoforms (α7β1, α6β1, and α7β0) of C4BP in humans [25].
A study suggested that C4BP α7β0 isoform levels increase significantly in inflammation [26]. Clinical
research also showed a significant increase in C4BPA expression in inflammatory responses [27].
We observed a significant decrease in C4BPA protein expression in the CRPS group, which shows the
potential benefit of CRPS in inflammatory responses in people with obesity.

C1RL has been associated with the classical pathway and has a catalytic effect on proteolysis
of pro-C1s, stimulating the activation of the pathway [28]. Furthermore, animal experiments have
demonstrated a significant increase in mRNA C1RL levels under inflammation conditions [29]. C6 and
C8G are thought to be part of the membrane attack complex (MAC), a structure typically formed
from the activation of a host’s complement system [30]. The MAC is involved in cell lysis, and recent
studies have demonstrated that it is also an inflammatory trigger [31,32]. Moreover, studies have
suggested that the MAC stimulates the release of proinflammatory substrates following the activation
of endothelial cells and platelets [33]. In the current study, we found that C1RL, C6, and C8G plasma
levels were significantly lower in the CRPS group compared with the CR group, which suggests that
CRPS reduces inflammatory responses in people with obesity.

Studies have reported that PROS is an anticoagulant protein and is mainly involved in catalysing
the inactivation process of factor V and factor VIII through activated protein C (APC) [33,34]. A study
showed that PROS expression was inhibited by NF-κB in inflammation [35]. However, in the current
study, postintervention PROS plasma levels were significantly lower in the CRPS group compared
with the CR group. Moreover, IL-6 and CRP levels, which have been associated with inflammatory
responses, were not significantly different between the groups. According to the absolute amount
of PROS derived from ELISA, the mean plasma level of PROS in the CRPS group was 20.34 µg/mL,
which was still within the normal range (20–25 µg/mL) [36].

4.3. Spearman’s Correlation of Selected Plasma Protein Candidates with Biochemical Variables

Although we observed several significant differences between the plasma protein candidates and
the selected biochemical variables, C6 plasma levels were significantly correlated with LDL-C levels in
both groups. A study showed that LDL-C plasma levels decreased through an LDL apheresis (LDL-A)
operation in patients with familial hypercholesterolaemia. Moreover, the LDL-A operation was shown
to prevent cardiovascular events [37]. In another proteomic study, Yuasa et al. suggested that C6
is involved in the cause and pathophysiology of atherosclerosis [38]. To the best of our knowledge,
the current study is the first to report a highly significant difference between C6 and LDL-C levels.
Further studies with a larger sample size are required in the future.

4.4. Effects of CRPS on Plasma Protein Profiles

FINC plasma levels decreased significantly in both the CR and CRPS groups after the 12-week
dietary interventions. A significantly positive correlation was found between FINC plasma levels
and the degree of obesity in the participants [39]. Furthermore, the adipose tissue gene expression
of FINC was significantly downregulated in those who successfully maintained their weight after
the CR intervention and the following weight maintenance phase [40]. Studies have suggested
that increased FINC plasma levels are related to DM, cardiovascular disease, kidney disease,
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and pre-eclampsia [41–46]; therefore, the significant decrease in FINC plasma levels throughout the
interventions in both groups suggests that CRPS is beneficial in metabolic abnormalities.

4.5. Limitations

This study has several limitations. First, although this study was designed as a pilot study, a small
sample size led to inadequate statistical power. Second, an inadequate dietary intervention might have
influenced the effect of the protein supplementation. Large double-blinded randomised studies on
patients with MetS are required to confirm our findings.

5. Conclusions

The findings suggest that CRPS improves inflammatory responses in middle-aged women with
MetS. Furthermore, specific plasma protein expression associated with the complement system was
highly correlated with FBG, blood lipids (BLs), and body fat. The precise effect of CRPS and the
relevance of specific plasma proteins as potential predictors of biochemical variables should be
investigated in large clinical trials.

Supplementary Materials: The following are available online at http://www.mdpi.com/2077-0383/8/2/195/s1.
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