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Background: Melanoma is a heterogeneous tumour, but the impact of this heterogeneity upon therapeutic

response is not well understood.

Methods: Single cell mRNA analysis was used to define the transcriptional heterogeneity of melanoma

and its dynamic response to BRAF inhibitor therapy and treatment holidays. Discrete transcriptional states

were defined in cell lines and melanoma patient specimens that predicted initial sensitivity to BRAF in-

hibition and the potential for effective re-challenge following resistance. A mathematical model was de-

veloped to maintain competition between the drug-sensitive and resistant states, which was validated in

vivo.

Findings: Our analyses showed melanoma cell lines and patient specimens to be composed of >3 tran-

scriptionally distinct states. The cell state composition was dynamically regulated in response to BRAF in-

hibitor therapy and drug holidays. Transcriptional state composition predicted for therapy response. The

differences in fitness between the different transcriptional states were leveraged to develop a mathemat-

ical model that optimized therapy schedules to retain the drug sensitive population. In vivo validation

demonstrated that the personalized adaptive dosing schedules outperformed continuous or fixed inter-

mittent BRAF inhibitor schedules.

Interpretation: Our study provides the first evidence that transcriptional heterogeneity at the single cell

level predicts for initial BRAF inhibitor sensitivity. We further demonstrate that manipulating transcrip-

tional heterogeneity through personalized adaptive therapy schedules can delay the time to resistance.
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Research in context

Evidence before this study

The majority of patients with BRAF-mutant melanoma are
not cured through BRAF-MEK inhibitor therapy. Current tar-
geted therapy paradigms for melanoma are based upon con-
tinuous BRAF-MEK inhibitor treatment. This almost invari-
ably leads to therapy failure that results from the selection
of resistance-conferring genetic mutations or the adoption
of drug resistance- associated transcriptional programs. Some
melanoma patients who failed BRAF inhibitor therapy can
be successfully re-challenged, through mechanisms that re-
main poorly understood. Recent work has demonstrated that
melanomas are transcriptionally heterogeneous and may be
comprised of multiple populations of cells with differing lev-
els of drug resistance. It is therefore likely that drug sched-
ules could be personalized to maintain the balance between
sensitive and resistant cell states, improving the durations of
response. There is already some preclinical evidence that in-
termittent BRAF inhibitor dosing, using fixed on/off sched-
ules can delay the time to resistance in some melanoma
xenograft models. In the present study, we sought to un-
derstand how transcriptional diversity at baseline predicted
for BRAF inhibitor sensitivity and the likelihood of a success-
ful re-challenge after therapeutic escape. This data was then
leveraged to define mathematical model-driven personalized
dosing schedules that improved therapeutic responses in vivo.

Added value of this study

Little is known about how transcriptional heterogene-
ity impacts the response of BRAF-mutant melanoma to
BRAF inhibitor therapy. The present study used single cell
mRNA analyses to define the transcriptional heterogeneity of
melanoma at baseline, following treatment and then follow-
ing the withdrawal of BRAF inhibitor therapy. These patterns
of heterogeneity, which were predictive of both baseline ther-
apy response and sensitivity to re-challenge, were mathemat-
ically modelled and leveraged to define personalized on/off
drug schedules in real-time that led to improved therapeu-
tic responses in in vivo melanoma models. Our work provides
the first preclinical evidence that transcriptional heterogene-
ity at the single cell level predicts for the initial sensitivity
to BRAF inhibitor therapy, and the potential for re-challenge
following therapy failure. We further demonstrate that ma-
nipulating transcriptional heterogeneity through personalized
adaptive therapy schedules can delay the time to resistance.

Implications of all of the available evidence

The cumulative data suggest that melanomas are tran-
scriptionally diverse and can adopt phenotypes with a wide
range of behaviours and drug sensitivities. It is likely that the
transcriptional composition of melanomas at baseline is pre-
dictive of the depth of the initial response to therapy and
whether patients will respond to subsequent rounds of treat-
ment following the onset of resistance. Personalizing drug
dosing schedules to account for the dynamics of transcrip-
tional heterogeneity could be one strategy of improving out-
comes for melanoma patients using existing FDA-approved
therapies.

. Introduction

Continuous MAPK pathway inhibition in BRAF-mutant

elanomas typically leads to transcriptional reprogramming

nd a switch to an epithelial-to-mesenchymal transition (EMT)-
ike phenotype characterized by upregulated receptor tyrosine

inase (RTK) expression [1–3], increased c-JUN expression and

ecreased expression of the melanocyte lineage factor microph-

halmia (MITF) [4–9]. Transcriptional reprogramming is one of the

ost common responses to BRAF inhibitor therapy, occurring in

p to 94% of cases [10]. This switch in transcriptional state results

n the emergence of phenotypically dedifferentiated, invasive and

rug-tolerant tumour cells [10]. At this time, it is not known

hether all of the melanoma cells in a tumour respond to BRAF

nhibition in a similar manner, if there is any heterogeneity in

he transcriptional response at the single cell level, or what these

ifferences could mean for therapeutic response.

Current clinical management for stage IV melanoma dictates

hat most patients, irrespective of BRAF mutational status, will

eceive immune checkpoint therapy as their frontline treatment.

hile this is usually undertaken with the hope of a curative

esponse, only ~30% of patients are likely to respond [11,12].

mong patients with advanced BRAF-mutant melanomas who re-

eive BRAF inhibitors and the BRAF-MEK inhibitor combination,

hree patterns of response are typically seen: 1) a majority initially

espond to therapy and then later relapse, 2) a percentage expe-

ience very long-term responses to therapy, 3) a small percent-

ge of patients show little or no response to therapy [13]. Among

hose who initially respond to BRAF inhibitor therapy and then

rogress, resistance can sometimes be reversible. A recent clini-

al trial showed that up to 34% of patients who failed prior BRAF

nhibitor therapy could be successfully retreated, suggesting that

rug-sensitive melanoma cells are retained in these cases [14]. At

his time, little is known about the molecular characteristics of

he BRAF-mutant melanomas that exhibit outstanding responses to

RAF-MEK inhibitor therapy, or those that may benefit from drug

olidays followed by retreatment.

Current targeted therapy paradigms are based upon continu-

us BRAF-MEK inhibitor treatment, which almost invariably leads

o resistance [10,15,16]. A different approach, pioneered by our

roup, exploits the fact that tumours are phenotypically hetero-

eneous and that drug-resistant cells show reduced fitness in the

bsence of drug. Under this paradigm, short bursts of intermit-

ent therapy to reduce tumour volume are followed by appropri-

tely timed drug holidays that allow residual sensitive cells to re-

row, restoring drug sensitivity and prolonging responses [17–19].

lthough this strategy has shown promise in early-stage clinical

rials [17–19], little is currently known about its molecular basis.

n the present study, we performed single cell transcriptional anal-

sis of melanoma cells on/off BRAF inhibitor therapy and defined

ow the transcriptional states were modulated by the therapy. We

dentified melanomas in which the initial drug sensitive state was

etained under chronic BRAF inhibitor therapy, which allowed for

uccessful therapy re-challenge. This data led to the development

f a mathematical model that defined real-time personalized BRAF

nhibitor on/off schedules that led to improved tumour control

n vivo.

. Materials and methods

.1. Cell culture, tumour tissues and reagents

The 1205Lu, WM9, WM793, WM164, WM983A, WM39 and

51Lu melanoma cell lines were a generous gift from Dr. Meenhard

erlyn (The Wistar Institute, Philadelphia, PA, USA). SK-Mel-28

nd A375 melanoma cell lines were purchased from ATCC (Man-

ssas, VA). M229 and M233 cell lines were a generous gift from

r. Antoni Ribas (UCLA Medical Center, Santa Monica, CA, USA).

ll cell lines were authenticated using short tandem repeat val-

dation analysis (BioSynthesis Inc., Lewisville, TX, USA). WM164R

nd 1205LuR cell lines were generated through chronic treatment
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with vemurafenib (2 μM and 3 μM, respectively) [20]. WM164R-

DW and 1205LuR-DW cell lines were generated by withdrawing

chronic BRAF inhibitor treatment from WM164R and 1205LuR lines

for 10+ weeks. Cell lines were maintained in 5% FBS/RPMI-1640,

with the addition of vemurafenib for resistant cell lines, and rou-

tinely tested for mycoplasma contamination.

2.2. Single cell gene expression analysis

One million cells were plated in 10 cm tissue culture plates and

allowed to attach overnight. Cell culture media was changed to

fresh media and cells were allowed to grow an additional 24 h.

Cells were detached through trypsinization and loaded onto the

Fluidigm C1 IFC, for single, live cell annotation, lysis, reverse tran-

scription and pre-amplification according to manufacturer’s proto-

col. cDNA products were split up evenly among ten Dynamic Array

IFCs, including pooled cDNA and multiple other positive and neg-

ative controls to monitor amplification and plate-to-plate effects.

IFCs were analysed on the Fluidigm Biomark HD using a panel of

88 Delta Gene Assays (Supplemental Table 1). This was a custom-

built gene panel chosen to represent the key signalling molecules

and transcription factors known to be involved in melanoma biol-

ogy and BRAF inhibitor resistance.

2.3. Analysis of heterogeneity and transcriptional state landscape

The SinCHet MATLAB toolbox was utilized for the analysis of

heterogeneity and to identify the transcriptional states present in

each sample, as described in [4]. Briefly, unsupervised hierarchical

cluster analysis using Ward linkage was used to cluster 292 cells

among four cell lines into distinct subpopulations whose transcrip-

tional states are significantly different, based on single cell gene

expression similarities. Shannon Profile (SP) consists of the Shan-

non index, a quantitative measure of how many different tran-

scriptional states exist in the dataset and their proportional abun-

dance, calculated at all possible resolutions (from 1 to 292 for

this dataset) to evaluate overall transcriptional heterogeneity for

all 292 cells. The profile of the differences of Shannon index, PSD,

was calculated as the Shannon index differences at the same res-

olution as SP across all possible clustering resolutions and was

used to characterize the heterogeneity differences. The D statis-

tic, defined as the differences of the areas under the PSD between

two conditions, was calculated to evaluate heterogeneity difference

between pair-wise conditions or cell lines. Its statistical signifi-

cance was estimated using 1000 permutations. Change points of

the PSD between two conditions were detected using multivariate

adaptive regression splines (MARS) model as previously reported

[25]. In this study, there are total 6 pair-wise comparisons across

the four cell lines. The number of identified transcriptional states

was determined using the minimum change point of the PSDs

(Supplemental Fig. 1A) with significant heterogeneity differences

(p < .05, Supplemental Fig. 1B). A snapshot of the transcriptional

states was summarized using a pie chart and heatmap (Fig. 1F,

Supplemental Fig. 1C and Supplemental Table 2). For biomarker

comparison across phenotypic states (Supplemental Figs. 2–3), a

Kruskal-Wallis test was first performed for overall p-value, while

pair-wise p-values were generated to adjust for multiple compar-

isons. False discovery rate (FDR) was estimated using the Ben-

jamin and Hochberg method to adjust for the multiple hypothe-

ses testing (across genes). Interactome analysis of top 15 differ-

entially expressed genes was performed using Metacore (Clarivate

Analytics, Philadelphia, PA, USA) and visualized using Cytoscape

(cytoscape.org).
.4. Western blot

Western blot analysis was performed as previously described

21]. Antibodies for pERK (Thr202/Tyr204, #9101) and ERK (#9102)

ere purchased from Cell Signalling Technology (Danvers, MA,

SA).

.5. Patient single cell RNAseq analysis

A previously published melanoma single cell RNAseq dataset

as downloaded through Gene Expression Omnibus (accession

umber GSE72056) [22]. A total of 1159 tumour cells (from the

riginal 4645 single cells, which included non-malignant cells)

rom 14 patients were included in this analysis. To identify the po-

ential corresponding phenotypic states in these patient samples

sing the observed states in our cell line data, the overlapping 88

enes were first harmonized and de-batched using COMBAT [23].

he de-batched expression dataset was then used in the consec-

tive analysis. To investigate the expression similarity of each pa-

ient cell with respect to the 4 transcriptional states identified in

ell line data (N = 292 cells), we modified the unsupervised clus-

ering algorithm as follows: First, the centroid of each transcrip-

ional state from the cell line data (i.e., 69 cells in state 1, 109 cells

n state 2, 104 cells in state 3 and 10 cells in state 4) was calcu-

ated and assigned to represent the original identified state (Sup-

lemental Table 2). Then, unsupervised hierarchical cluster analysis

f a total of 1163 cell groups was performed. The 1163 cell groups

ere consisted of the 4 pre-identified clusters of cells from cell

ines and 1159 tumour cells from patient samples. The weight of

ach cell group, when calculating distance between cell groups us-

ng Ward linkage, is the number of cells in each cell group. That is,

9 was the weight for the cell group with 69 cells in state 1, and

09 as the weight for the cell group with 109 cells in state 2, 104

or those in state 3, and 10 for those in state 4 while 1 was used as

he weight for each tumour cell in patient samples. After the hier-

rchical cluster analysis was performed, the final number of tran-

criptional states was determined using the minimum number of

lusters while the originally identified 4 transcriptional states re-

ained identified as separated states. Therefore, the final number

f states would be ≥4 depending on the expression similarity be-

ween patient tumour cells and cells in cell lines.

.6. Flow cytometry

One million cells were plated in 10 cm tissue culture plates

nd allowed to attach overnight. Cell culture media was changed

o fresh media and cells were allowed to grow an additional

4 h, then detached using trypsinization. Cells were fixed using 4%

araformaldehyde for 10 min. Cells were permeabilized with 100%

ce-cold methanol and stained using Axl conjugated to Alexa Fluor

47, ERBB3 conjugated to Alexa Fluor 594 (R&D, Minneapolis, MN,

SA), Ki67 conjugated to BV786, pERK conjugated to BV421 (BD,

ranklin Lakes, NJ, USA) and MITF conjugated to Alexa Fluor 488

Abcam, Cambridge, UK). Staining data was captured on the BD LSR

I instrument and analysed using FCS Express software (De Novo

oftware, Glendale, CA, USA). The same cell state gating strategy

Supplemental Fig. 4) was use on all samples. For transcriptional

tate analysis following intermittent drug treatment, 3 μM vemu-

afenib was used. One million WM164 cells were plated in 10-

m cell culture dishes and allowed to attach overnight. Then cells

ere treated according to different treatment schedules: 4 days on,

0 days on, 4 days on then 4 days off, and 10 days on then 4 days

ff. Cells were then harvested and analysed as above. WM164R

ultured under chronic vemurafenib (2 μM) and treatment-naïve

M164 were used as controls.

http://cytoscape.org
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Fig. 1. Defining the transcriptional diversity of melanoma. A. Overview of the experimental workflow. B. Single cell mRNA analysis of BRAF inhibitor naïve and treated

WM164 and 1205Lu melanoma cells identifies 4 different transcriptional subpopulations. Heatmaps of gene expression data of 88 genes (y-axis) for individual cells (x-axis)

of treatment-naive WM164 and 1205Lu and their drug-resistant (R) counterparts. Colour-coding under the dendogram depicts the transcriptional state and the cell line each

cell belongs to. C. BRAF inhibition leads to either an increase or a decrease in transcriptional diversity. Shannon heterogeneity analyses of the single cell data from Fig. 1B

reveals WM164 to become more diverse on therapy and the 1205Lu cells to become less diverse. Transcriptional richness is a measure of distinct transcriptional states

present. Graphs show the number of distinct transcriptional states, as well as the Shannon Diversity Index, at different heights along the gene expression dendogram from

Fig. 1B. D. t-SNE analysis demonstrates the relationship between drug-naïve and treated melanoma cell lines and the 4 transcriptional states. Data points show the individual

cells and their orientation in transcriptional space. Note that drug-resistant (WM164R) cells are the most transcriptionally diverse. States #1, #3 and #4 are quite distinct with

#2 showing overlap with #1 and #3. E. Four transcriptional states are statistically distinct. Principal component analysis and Kruskal-Wallis test performed comparing all cells

in each transcriptional state highlights strong differences in gene expression among the four states. F. WM164 and 1205Lu cells show different transcriptional landscapes,

which change under chronic BRAF inhibitor treatment. Pie charts are derived from data shown in Fig. 1B using SinCHet software analysis and show the percentage of cells

in each transcriptional state.
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.7. Cell growth assays

For short-term growth analyses, cells were plated at 100,000

ells/well in 6-well cell culture plates and allowed to adhere

vernight. Cells in each well were then counted using the Count-

ss Automated Cell Counter (Invitrogen, Carlsbad, CA, USA) over

he course of 4–5 days until confluency. Doubling time was calcu-

ated based on Td = (t2-t1)∗((log(2)/log(q2/q1)), where Td is dou-

ling time, t1 is the first day of measurement, t2 is the last day

f measurement, q1 is the number of cells on the first day of

easurement and q2 is the number of cells on the last day of

easurement. For long-term growth analyses, one million WM164

r 1205Lu cells were plated into T75 flask and allowed to attach

vernight. Cells were then treated chronically with 2 μM (WM164)

r 3 μM (1205Lu) vemurafenib. Cells are counted at confluency and

e-plated at one million cells per T75 flask for 72 days. The pro-
 3
ected total cell number, had the cells not been split, was calcu-

ated based on cell counts at each passage.

.8. Growth inhibition assay

MTT growth inhibition assays were carried out as previously

escribed [24] using vemurafenib. IC50 values were calculated by

on-linear regression analysis of log(inhibitor) vs. response using

raphPad Prism Software (La Jolla, CA, USA).

.9. Apoptosis assay

One million cells were plated in 10 cm dishes and allowed to

ttach overnight. Cells were then treated with vehicle control or

μM vemurafenib for 72 h. Cells were trypsinized, stained using
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tetramethylrhodamine methyl ester (TMRM) and analysed by flow

cytometry.

2.10. Mouse xenografts

Seven-week-old female NSG mice (The Jackson Laboratory,

Bar Harbor, ME, USA) were subcutaneously injected with 5 × 105

WM164 cells per mouse. Tumours were allowed to establish over

3 days. Mice were randomly separated into treatment cohorts us-

ing GraphPad’s random treatment group assignment (graphpad.

com), consisting of 11 mice per cohort. Mice received D10001 con-

trol chow or AIN-76A 417mg/kg PLX4720-formulated chow (Re-

search Diets, New Brunswick, NJ, USA) daily. Tumour volumes

(½× L(length) × W(width)2) were measured every 2–3 days. All an-

imal experiments were carried out in compliance with ethical reg-

ulations and protocols approved by the University of South Florida

Institutional Animal Care and Use Committee.

2.11. Mathematical model for personalized adaptive xenograft

treatment

To describe tumour volume response to BRAF inhibitor

treatment, a two-compartment Ordinary Differential Equation

model was developed consisting of a sensitive (S) and a re-

sistant (R) compartment, dS
dt

= gs(1 − S+R
K )S − δS − αS + βR, dR

dt
=

gR(1 − S+R
K )R + αS − βR, where gS, R indicate growth rate of S and

R, respectively, and δ is the death rate of S. The two compartments

share a carrying capacity K, the maximum capacity of the tumour

either due to nutrient or space constraints. We also allow transi-

tion between the two states (α and β are the transition rates). To

predict an effective fixed intermittent inhibitor therapy schedule,

the model was calibrated to xenograft tumour growth dynamics on

no-treatment, continuous, 2-day on/6-day off, 7-day on/7-day off

and 14-day on/14-day off schedules. These estimated parameters

were later used as initial ranges for parameterizing the mathemat-

ical model to determine the individual mouse-specific treatment

schedules. To predict adaptive therapy for each mouse, we trained

the model to reproduce all previous tumour volume changes, and

then used it to forecast the expected tumour volumes (both on

and off) at future time points. The mathematical model was cal-

ibrated with each mouse tumour volume change data every 2–

3 days. We used an optimization algorithm called implicit filtering,

a steepest descent algorithm for problems with bound constraints,

to determine the parameters (H) that minimised the difference be-

tween predicted normalized tumour volume (V(t;H), V(0,H) = 1)

and mouse tumour volume (D(t)/D(0), normalized tumour volume)

[25]. The mathematical definition of our problem was:

min f (H) = min

√∑
i

(V (t; H) − D(t)/D(0))2

where the goal is to minimize the objective function f subject to

the condition that H ∈RN is in the feasible region �. Estimated pa-

rameters produced fitted curves and small root-mean-squared er-

rors (average error = 0.34, minimum error = 0.09, and maximal er-

ror = 0.79). Then, a critical tumour volume (Fig. 4D, yellow aster-

isk) was calculated that produces the most impact when switching

treatment off (c.f., Fig. 4D below dotted line, off volume < on vol-

ume). Using the estimated parameters for each individual mouse,

we simulated the impact of treatment both on and off for two or

three days, resulting in multiple potential tumour volume trajec-

tories. We then compared the simulated tumour volumes of these

two groups (on and off treatment). We examine the predicted tu-

mour volume increase in comparison to the previous treatment

decision (either on or off) time point. If this predicts that the tu-
our volume on (V on) > tumour volume off (V off) at the next

ime point, we name this volume the “critical volume”. Next, we

ompared the actual tumour volume to the critical value and rec-

mmended whether to restart or hold drug; if for example, ac-

ual tumour volume < critical tumour volume, the model suggests

o stop treatment, by calculating the probability of success on/off

rug. To accommodate individual tumour dynamics, both the crit-

cal volume and the treatment on/off decisions were personalized

or each mouse.

. Results

.1. Defining the transcriptional diversity of melanoma

To better understand the role of transcriptional heterogeneity

n melanoma drug response, we developed a single cell analysis

orkflow to simultaneously quantify the expression of 88 genes

er cell (Fig. 1A–B, Supplemental Tables 1–3). This gene panel was

hosen to represent the key signalling molecules and transcrip-

ion factors involved in melanoma biology and the response of

elanoma cells to BRAF inhibitor therapy. The goal was to de-

ne the number of distinct cell states in melanoma cultures, and

o determine how these cell states were regulated by BRAF in-

ibitor therapy. We used isogenic cell line pairs that were either

rug naïve or had been continuously treated with BRAF inhibitor

or >6 months until resistance was acquired [3,26]. Single cell gene

xpression data was analysed using the Single Cell Heterogeneity

SinCHet) MATLAB toolbox developed by our group, which allows

ifferent, coexistent transcriptional states to be identified [27]. Us-

ng Shannon diversity index metrics that quantify species richness

a measure of the number of distinct transcriptional states present)

nd evenness, and the D statistic that quantifies an overall differ-

nce of Shannon index between two populations [27], we found

ome melanomas exhibited an increase in diversity/heterogeneity

fter chronic drug treatment while others showed decreased diver-

ity (Fig. 1C). These transcriptional changes were also mirrored by

hanges in the diversity of cell morphologies seen (Fig. 1C, Sup-

lemental Fig. 5). Our SinCHet analysis, which used the minimum

hange point at the lowest cluster level (Supplemental Fig. 1), ini-

ially identified four distinct transcriptional states (Fig. 1D–F). An

xamination of the relationship between the transcriptional states

sing T-distributed stochastic neighbour embedding (t-SNE) anal-

sis, showed #1, #3 and #4 to be more distinct, with state #2

eing highly diverse and occupying the most transcriptional space

Fig. 1D). Overlay of the cell line identity data demonstrated the

ommonality of the states between the two cell lines and high-

ighted the increased diversity of the WM164 cells and the re-

uced diversity of the 1205Lu cells following chronic BRAF inhibi-

ion (Fig. 1D). Principal component analysis and Kruskal-Wallis test

emonstrated that the four transcriptional states were statistically

istinct (Fig. 1E). Phenotypic snapshots generated by our SinCHet

oftware showed melanoma cell lines with BRAF inhibitor sensi-

ivity (such as WM164) to be composed of a dominant popula-

ion of transcriptional State #1 and minor populations of transcrip-

ional States #2 and #4; this changed following chronic BRAF inhi-

ition, with State #1 declining and States #2, #3 and #4 expand-

ng (Fig. 1F). In contrast, some melanomas with low BRAF inhibitor

ensitivity (such as 1205Lu) lacked cell state #1 and instead con-

isted of transcriptional states #2 and #3 at baseline, with tran-

criptional state #3 being enriched following long-term drug treat-

ent (Fig. 1F). Both cell lines showed an equivalent initial level

f ERK inhibition following BRAF inhibitor treatment (Supplemen-

al Fig. 6), suggesting that the different patterns of transcriptional

eterogeneity at baseline did not impact the level of inhibition in

he MAPK signalling pathway.

http://graphpad.com
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.2. The effects of BRAFi therapy upon transcriptional heterogeneity

We interrogated the transcriptional data and represented the

op 15 genes using Violin plots to show the diversity of the gene

xpression across the population at the single cell level (Fig. 2A

hows the top genes, Supplemental Fig. 2 shows the entire panel).

hese data showed State #1 to be characterized by high expression

f cyclin D1, ERBB3, STAT3/5, ATF1, ATF4, MITF and β-catenin and

ow expression of c-JUN and RTKs such as Axl and EGFR (Fig. 2A

nd Supplemental Figs. 2–3). State #2 was characterized by high

xpression of ERBB3, Axl and the transcription factor c-JUN. De-

reased levels of MET, RELB, E2F1, BIM, ULK1, SMAD1/9 and XIAP

ere also observed. State #3 was characterized by high Axl, c-

UN, E2F1, WEE1, c-MET and EGFR expression and lower expres-

ion of MITF, ERBB3 and SMAD9. Increased integrin β1 expression

nd lower E-cadherin expression was also seen, characteristic of

n EMT-like state. State #4 had low MITF/RTK expression and a

enerally suppressed gene expression profile associated with cell

eath; this state was excluded from further analyses. The same

ellular states were also conserved in melanoma clinical speci-

ens. SinCHet Analysis of single cell RNAseq data from 14 human

elanoma specimens [22] detected all three transcriptional states,

ith each melanoma showing a unique transcriptional makeup

Fig. 2B). Grouping these changes into network maps highlights

he differences between the RTK signalling, cell cycle regulation

nd transcription factor dependencies of each of the three major

ellular states (Fig. 2C). In light of previous studies demonstrat-

ng that MITF and Axl are anti-correlated [5,28], we next looked

t the expression of these two genes at the single cell level. It

as noted that although some cells were MITF high and Axl low,

population of cells (~17%) were identified that were both Axl-

igh and MITF-high (Fig. 2D). This population had a gene expres-

ion profile that was intermediate between cells that were ei-

her Axl-high or Axl-low and clustered with both transcriptional

tates #1 and #2 (Fig. 2D, Supplemental Fig. 3). Key genes that

istinguished the MITF-high/Axl-high and the MITF-high/Axl-low

ere increased expression of CDH2 (N-cadherin), CEBPA, EGFR,

OXO3, RELA, JUN, Vimentin and TP53 and decreased expression

f Integrin αV, ETS1/2, c-MET and WEE1 (Supplemental Fig. 3). It

herefore seemed that the MITF-High/Axl-low and MITF-low/Axl-

igh expression signatures were not binary states, and that the

elanoma cells could potentially adopt a range of intermediary

henotypes. An analysis of the phenotypic behaviours of the tran-

criptional states demonstrated State #1 to express high levels of

i67 (consistent with the highest cyclin D1 and E2F1 expression),

hereas State #2 had the highest MAPK pathway signalling as

hown by increased phospho-ERK levels (Fig. 2E). Together these

ntegrated transcriptional and functional data predicted that State

1 would be proliferative, but sensitive to BRAF inhibition, State

2 to be less proliferative with higher baseline MAPK signalling

nd that State #3, with its enrichment for EGFR, c-JUN and Axl,

ould potentially show BRAF inhibitor resistance.

.3. Transcriptional state composition dictates response to BRAF

nhibition

To more easily quantify melanoma heterogeneity across mul-

iple samples, we defined three markers that allowed the cell

tate compositions to be delineated flow cytometry (Supplemen-

al Fig. 4). Although this methodology relies on protein-level ex-

ression as opposed to mRNA level expression and the identifica-

ion of a small number of MITF high/AXL high cells from State #

may be missed, the proportions of the transcriptional state sub-

opulations identified by flow cytometry were analogous to those

efined by the single cell analysis approach. Application of these

ethods to a larger cell line panel revealed an association between
high percentage of cells in transcriptional State #1 and a lower

emurafenib IC50 (two sample t-test: t =−2.02, p = .07; Fig. 3A and

upplemental Fig. 7), suggesting that this represents a more drug

ensitive state. Only one cell line, the M229, exhibited high sensi-

ivity to vemurafenib but did not appear to harbor many cells in

tate #1. We next determined the influence of cell-state compo-

ition at baseline and the time to BRAF inhibitor resistance. Here,

he cell lines were treated with vemurafenib and the growth dy-

amics under chronic drug treatment were measured. We found

elanomas lacking State #1 became resistant more rapidly than

hose in which State #1 was the dominant population (Supple-

ental Fig. 8). As evolution-based studies have demonstrated drug

esistance to be associated with a fitness cost, we next asked

hether the transcriptional state composition determined growth

tness in the absence or presence of drug. It was noted that

elanomas with a greater growth fitness (shortest doubling times)

n the absence of drug experienced a reduction in growth fitness

fter the acquisition of resistance (Supplemental Table 4). In con-

rast, treatment-naïve melanomas that lacked the drug-sensitive

tate #1 already exhibited reduced growth fitness at baseline (Sup-

lemental Table 4, doubling time 1205Lu > WM164) and experi-

nced little change in their fitness after the acquisition of drug re-

istance (Supplemental Table 4, doubling time 1205Lu~1205LuR).

One surprising finding from the single cell mRNA analyses was

he observation that the drug sensitive State #1 was not eradi-

ated from the population, even after >6 months of drug treat-

ent (Fig. 1F), with small numbers of cells from drug-resistant

M164 cells remaining clustered with the drug-naïve WM164

ells (Fig. 3B). An analysis of the gene expression profiles showed

very strong overlap between State #1 populations from the two

ell lines (Fig. 3B,C). We reasoned that this minor population of

ensitive cells would exhibit greater fitness during a drug holiday

nd may have the potential to outgrow the resistant cells. Analy-

is of the cell state dynamics showed that treatment of drug-naïve

M164 cells with BRAFi led to a rapid decline in the proportion of

ells in State #1 by day 4, but this partly recovered following re-

oval of drug (Fig. 3D). Importantly, the recovery of State #1 was

lso seen in cultures that had been chronically treated with BRAF

nhibitor therapy. Removal of drug from BRAF-inhibitor resistant

M164R cells led to a slow return to drug sensitivity, that was as-

ociated with an expansion of transcriptional State #1 and the re-

ression of the other states (Fig. 3E). This return to sensitivity was

lso associated with the restoration of the apoptotic response to

emurafenib in the drug-withdrawn cultures (Fig. 3F). By contrast,

cell line that lacked the drug-sensitive transcriptional State #1

t baseline did not return to sensitivity when drug was removed

or up to 10 weeks (Fig. 3E,F). It thus seemed likely that the initial

resence of cellular State #1 was one determinant of both initial

rug sensitivity and also future response to drug re-challenge fol-

owing initial relapse. The potential clinical significance of these

ndings was indicated by a retrospective chart review that iden-

ified 34 BRAF-mutant melanoma patients treated with BRAF and

RAF-MEK inhibitor therapy, at least 23 of whom displayed a sec-

nd clinical response upon drug holiday and re-treatment (Supple-

ental Table 5). It is thus possible that the secondary responses

o BRAF and BRAF-MEK inhibitor therapy observed in melanoma

atients could reflect a drug sensitive population of cells being re-

ained even following the acquisition of overt resistance.

.4. Development of a mathematical model to maintain drug

ensitive cell states through adaptive drug-dosing

The analysis of our heterogeneity data predicted that some

elanomas were composed of a transcriptional state with a high

evel of drug sensitivity that declined on therapy and then re-

overed when drug was withdrawn. We next determined whether
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Fig. 2. Gene level analysis identifies unique transcriptional profiles for each transcriptional state. A. Violin plots showing expression of each of the top 15 differentially

expressed mRNAs clustered by transcriptional state. Note higher Axl and c-JUN in States #2 and #3, Cyclin D1 (CCND1), MITF in State #1, ERBB3 in States #1 and #2 B.

Melanoma patient samples exhibit a diverse array of transcriptional state compositions. Data shows heterogeneity analysis of single cell RNA-Seq data from ref. (22) of

melanoma patient specimens, based upon the 88 genes from our panel. C. major signalling differences among the three main transcriptional states. Metacore interactome

analysis of the top 15 differentially expressed genes among the three transcriptional states illustrates rewiring of major signalling among the subpopulations. Node colour

denotes mean level of mRNA expression detected (green = lower expression, red = higher expression). D. MITF-High/Axl-low and MITF-low/Axl-high expression signatures

are not binary states. Dot plots showing the relative expression of MITF, AXL and ERBB3 in all cells derived from data in Fig. 1B show the varied distribution of MITF/AXL

expression and the need to examine additional markers (such as ERBB3) for a more complete analysis of the transcriptionally heterogeneous subpopulations. E. Transcriptional

State #2 has the highest pERK levels and Transcriptional State #1 shows the highest proliferative capacity. Comparison of pERK and Ki67 staining by flow cytometry between

transcriptional States #1, 2 and 3. Data shows expression of phospho-ERK in each transcriptional state resolved by the gating shown in Supplemental Fig. 4 in WM164 and

WM164R cells. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Transcriptional state composition determines BRAF inhibitor sensitivity. A. BRAF-mutant melanoma cell lines with a high percentage of Transcriptional State #1 exhibit

a reduced vemurafenib IC50. Transcriptional state composition was measured in 11 cell lines by flow cytometry based on Axl, MITF and ERBB3 (top); Vemurafenib IC50s

were calculated by MTT assay (bottom). B. t-SNE analysis showing that Transcriptional State 1 is the same in both the drug sensitive WM164 and resistant WM164R cell

lines. C Gene expression heatmap comparing cells in State #1 from drug sensitive (WM164) and drug resistant (WM164R) melanoma cells. D. Drug holidays allow for the

recovery of Transcriptional State #1. Transcriptional state distribution was measured in WM164 cells using flow cytometry (as above) following different treatment/drug

holiday schedules. E. Resistant melanomas that retain drug-sensitive Transcriptional State #1 return to sensitivity following drug holidays. Data show responses of drug-

naïve WM164 and 1205Lu, drug-resistant WM164R and 1205LuR and drug-resistant WM164R and 1205LuR with vemurafenib removed from cell culture media for increasing

periods of time (1–10 weeks, top) by MTT assay. Transcriptional state composition was measured by flow cytometry. F. Return of melanoma cell lines to sensitivity following

drug removal. Flow cytometry-based apoptosis assay shows the percentage of apoptotic (TMRM-) cells in control, resistant and resistant cultures following drug withdrawal

treated with vemurafenib (72 h, 3 μM).
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he differences in fitness between the sensitive and resistant tran-

criptional states could be leveraged to improve tumour control

hrough dosing schedules that maximized the number of sensitive,

rug responsive cells in the tumour (Schematic in Fig. 4A). We rea-

oned that the decrease in tumour volume on drug and then the

ate of re-growth in the absence of drug in vivo was a reflection

f the balance between sensitive (#1) and resistant (#2 and #3)

ranscriptional states. To better understand this, we developed a

wo-compartment mathematical (ODE: ordinary differential equa-

ion) model that described the competition between sensitive (S:

tate #1) and resistant (R: States #2 and #3) cell growth dynamics

Fig. 4B). The model allowed for transition between the sensitive

nd resistant cell types and was calibrated using tumour growth

ynamics from melanoma WM164 xenografts grown under vehi-

le, continuous, 2-day on/6-day off, 7-day on/7-day off and 14-day

n/14-day off treatments with the BRAF inhibitor PLX4720 (Sup-

lemental Fig. 9). The estimated parameters generated tumour dy-

amics that matched with experimental data (R-squared = 0.97 and

verage relative error = 0.35, 35%, Fig. 4C). The estimated parame-

er set served as an initial insight into designing the personalized

daptive dosing schedule, in which each mouse had a 2-week lead-
n of PLX4720 followed by mathematical model-driven treatment

ecisions. The model was re-calibrated in real-time using individ-

al animal tumour growth dynamics three times per week, which

hen determined whether drug should be held or reinitiated for

ach mouse (Fig. 4D). It is known that clinical responses are only

een to BRAF inhibitor therapy when tumour pERK levels are de-

reased by >80% [29]. With this in mind, we retained the standard

ose of PLX4720 and instead altered the schedule to ensure that

he drug sensitive population of cells was retained.

As the final step, we validated our mathematical model in

ivo to determine whether personalized, adaptive dosing sched-

les would lead to improved anti-tumour responses. For the adap-

ive arm, mouse tumours were measured every 2–3 days. The tu-

our volumes were then entered into the mathematical model in

eal-time to predict whether the inhibition of tumour growth on

hat day would be better if drug was administered or held. Sup-

lemental Fig. 10 shows the distribution of the estimated parame-

ers for the 11 mice on the adaptive treatment arm. As our com-

arator arms, we used standard continuous dosing schedules (such

s those used clinically) and a fixed intermittent dosing sched-

le, that has been postulated to outperform continuous dosing
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Fig. 4. Development of a mathematical model to maintain drug sensitive cell states through adaptive drug-dosing. A. Model showing the basis for using personalized

intermittent (adaptive) therapy to control transcriptional heterogeneity. It is assumed that melanomas are composed of cells with transcriptional states that either convey

drug sensitivity (red) or resistance (green). Drug holidays are associated with the recovery of cells with drug sensitivity. B. Scheme showing projected temporal changes in

tumour growth in a two-compartment model consisting of a sensitive (S) and a resistant (R) compartment (top). Mathematical expression for the model, where gS, R indicate

growth rate of S and R, respectively; K is a carrying capacity; δ is death rate of S; α & β are transition rates between two states (bottom). C. Linear regression curve shows

the model parameters generated tumour dynamics that matched with experimental data (R-squared = 0.97 and average relative error = 0.35, 35%). D. Modelling the effects

of intermittent/continuous BRAF inhibitor treatment in human melanoma mouse xenografts. Model prediction was updated in real-time using the compartment model and

direct tumour volume sampling. Tumour volume trajectory was then calculated for which the effects of drug off was greater than drug on (Voff < Von, dotted box). A critical

tumour volume was then determined (VC, indicated by yellow asterisk) that satisfied the condition Voff < Von. The decision to treat was determined by comparing the

critical tumour volume with experimentally measured tumour volume (VE). If VE was less than VC, the mouse was taken off treatment. Otherwise, treatment continued.

Experimental data is depicted in black, model predicted volume changes during treatment-off is blue, model predicted tumour volume during treatment-on is red. The

yellow asterisk indicates a critical tumour volume, which is simulated tumour volume at the current time point that makes volume on (V on) > tumour volume off (V off)

at the next time point. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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schedules in preclinical studies [30]. Control mice were treated

with PLX4720 either continuously or on a fixed intermittent dosing

schedule (2 weeks on/1 week off; Fig. 5A). The efficacy of PLX4720

compared to vehicle control has been well established previously

by our group and others (Supplemental Fig. 11) [9,21,31]. The adap-

tive schedule outperformed both continuous treatment and a fixed

drug-holiday schedule, and led to significantly improved tumour

control (Fig. 5B). Intriguingly, the adaptive dosing schedules were

quite different for each mouse, despite the same cell line being

xenografted, suggesting the potential influence of host factors in

regulating heterogeneity (Fig. 5C–D). Supplemental Fig. 12 shows

model predictions of tumour volume change from day 0 to day 37

fit to the measured tumour volumes for each mouse and Supple-

mentary Table 6 contains the 200 parameter sets for each mouse

that generated the model prediction curves. An analysis of final

tumour volume at the end of the experiment demonstrated sig-

nificantly smaller tumour volumes for the adaptive dosing sched-

ule compared to either the continuous drug dosing or the 2 week

on/1 week off intermittent dosing (Fig. 5B).
. Discussion

The treatment landscape for advanced melanoma has changed

ramatically over the past 7 years [12,32–34]. Although these new

herapies, including the BRAF-MEK inhibitor combination and im-

une checkpoint inhibitors, have reduced death rates by ~30%,

ures remain infrequent and most patients eventually fail therapy.

or the patients with BRAF-mutant melanoma, a legitimate goal

s to develop therapy schedules that prolong the duration of re-

ponse and/or disease control. There is already clinical evidence

hat a sub-set of patients with BRAF-mutant melanoma can be suc-

essfully re-challenged with BRAF and BRAF-MEK inhibitor therapy

ollowing an initial round of response [14,35]. In the present study

e have used innovative single cell heterogeneity analyses to de-

ne how the baseline mixture of cellular states predicts for initial

RAF inhibitor sensitivity. This data was then leveraged to develop

ersonalized adaptive dosing schedules that accounted for the fit-

ess of individual melanoma cells within heterogeneous tumours,

ith the goal of improving therapeutic responses in vivo.
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Fig. 5. Evolutionary-informed BRAF inhibitor dosing schedules outperform continuous or fixed intermittent dosing in vivo A. Treatment schema for mouse experiment

comparing continuous and fixed intermittent schedule of BRAF inhibitor treatment to personalized, adaptive dosing using mathematical modelling of individual xenografted

tumours. B. Evolutionary-informed adaptive dosing schedules are associated with better tumour control than either continuous or fixed intermittent drug dosing. Data show

mean tumour volume data from WM164 melanoma xenografts between the three BRAF inhibitor treatment groups over time (left). Untreated “sentinel” mice receiving drug

free chow is shown by the dotted line. Average tumour volumes are shown for each treatment group on the last day of the experiment (right). C. Mathematical modelling

of tumour response dynamics under drug predicts individual dosing schedules for each mouse. Individual tumour volume and treatment data are shown from the adaptive

treatment group over time (green line = off therapy, red line = on therapy). D. Chart shows individual dosing schedules for each mouse on the adaptive treatment arm of the

xenograft experiment (grey: on therapy. White: off therapy), along with the increases in individual tumour volumes at the end of the experiment. (For interpretation of the

references to colour in this figure legend, the reader is referred to the web version of this article.)
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Our single cell mRNA and heterogeneity analyses suggested that

melanoma cell lines and patient specimens consisted of four tran-

scriptional states. Among these, State #1 had a proliferative gene

expression profile and showed a good level of BRAF inhibitor sen-

sitivity [5,16,28]. Transcriptional State #3 showed increased ex-

pression of c-JUN and EGFR; two genes previously associated with

BRAF inhibitor resistance [2,6–8]. These findings mirrored those of

another recent single cell RNA-Seq analysis that identified multi-

ple transcriptional states in melanoma Patient Derived Xenografts

(PDXs) that were characterized as #1) high MITF expression #2)

increased AP-1 expression (e.g. c-FOS and c-JUN) associated with

an EMT-like state and #3) a neural-crest like state [36]. Our in-

depth heterogeneity analysis demonstrated that the AP-1-high cell

state could be divided into two distinct sub-states. One of these

states, that we defined as State #2, was noted to be high in c-

JUN and Axl but statistically distinct from States #1 and #3. Spe-

cific gene expression differences between State #2 and #3 included

lower expression of Rel-B, c-MET and higher expression of ERBB3.

Transcriptional State #2 also exhibited some overlap between both

State #1 and #3, and appeared to be a diverse intermediate (or

transitional) state that was frequently enriched for under drug

treatment. The identification of intermediate cell states is not un-

precedented. The development of single cell RNA-Seq technologies

have allowed intermediate transcriptional states to be defined in

other contexts, including the epithelial-to-mesenchymal transition

(EMT). In this instance, multiple transitional transcriptional states

have been defined during EMT that fall in between those states

typically characterized as either epithelial and mesenchymal [37].

A prevailing paradigm in the melanoma field has been the role

of the melanoma lineage marker MITF in the switch between a

proliferative state (high MITF) and an invasive state (low MITF).

Our single cell analyses demonstrated the co-existence of individ-

ual cells that were MITF- high/Axl-low and MITF-low/Axl-high in

the majority of melanoma cell lines and patient specimens. These

changes in MITF, which are often anti-correlated with expression

of Axl, have been linked to melanoma drug sensitivity with MITF-

high/Axl-low melanomas showing increased sensitivity to BRAF in-

hibitors and the MITF-low/Axl-high melanomas being intrinsically

resistant [5,28]. At the same time, increased expression of MITF has

also been reported to be associated with drug resistance [38]. One

explanation for these seemingly contradictory findings is our ob-

servation that the MITF-high cells can cluster with distinct tran-

scriptional states that are either drug-sensitive or drug resistant

(e.g. States #1 and #2). At the single cell level, individual cells

were identified that had high expression of MITF, Axl and cyclin

D1 and increased expression of resistance conferring genes such as

EGFR [2,39]. A further minor subset of cells was also identified that

were MITF-low and Axl-low, which clustered with transcriptional

State #1. Together these studies demonstrate that melanomas con-

sist of cells that can adopt a range of phenotypic behaviours, some

of these adopting hybrid or intermediate transcriptional profiles

that fell outside of the well-defined MITF-high/Axl-low and MITF-

low/Axl-high states. It is likely that this range of transcriptional

profiles constitutes a reservoir of cells with differing levels of drug

sensitivity and that some of these may ultimately drive resistance.

There is already some evidence that these minor populations of

cells have unique therapeutic vulnerabilities and that these can be

targeted to prevent the onset of drug resistance [36]. Studies from

our own group have shown that combined targeting of BRAF along

with c-JUN transcriptional activity through HDAC8 inhibition can

also suppress the onset of resistance [9].

Multiple transcriptional states were often present in treatment-

naïve melanoma cell lines and melanoma specimens, confirming

previous reports that pools of resistant cells may pre-exist in drug-

naïve tumours [40] [36]. We conversely demonstrated that small

numbers of drug-sensitive cells were also retained under drug
esistance and, in some cases, these could then expand follow-

ng drug holidays, permitting secondary therapeutic responses. Al-

hough the need to retain drug sensitive cells under a state of

rug resistance is not immediately clear, there are examples from

he ecology field in which heterogeneity within cell populations

erves as a bet-hedging strategy against population extinction [41–

3]. In organisms as diverse as yeast and bacteria, small num-

ers of phenotypically distinct cells are consistently identified in

therwise normal populations [43]. These cells typically show di-

inished fitness under normal conditions, but their reduced rates

f growth and tolerance to harsh conditions provide an effective

uffer against drastic environmental changes. Our data show the

onverse is also true and suggest that the retention of a drug sensi-

ive cell population in drug-resistant melanoma could be leveraged

s a strategy to improve therapeutic responsiveness. Of course,

here may be other eco-evolutionary explanations that describe

he retention of drug-sensitive cells in an otherwise drug resis-

ant culture such as the social foraging theory, which may explain

ow heterogeneous, group-living subpopulations of cells may gain

rom persistent “social” bonds and lead to increased tolerance in

ompetitive environments, including the producer-scrounger game

44–46].

Various mathematical and computational models have been

sed in personalized medicine. An ordinary differential equation

ODE) modelling approach, which we utilized here, is typically

sed to describe cell population-level responses to therapy or mi-

roenvironmental changes. Excellent studies utilizing this approach

nclude models predicting the impact of a cytokine on survival and

xpansion of hematopoietic cells [47], as well as models of pre-

icting adaptive therapy response [19,48]. Brady et al. developed

comprehensive quantitative framework to simulate prostate can-

er dynamics during treatment [49]. In their study, >70 patients

ndergoing multiple intermittent androgen deprivation therapies

ere modelled and used to identify a key determinant resistance.

partial differential equation modelling approach has also been

mployed to describe individual patient brain tumour MRI changes

uring treatment [50]. Agent-based modelling has proven useful in

escribing the behaviour of individual cells as wells as their inter-

ction with neighbours (cancer cells, stromal cells, immune cells).

recent review by Karolak et al. discussed various individual cell-

ased models that considered the spatial architecture of tumours

nd addressed tumour growth as well as treatment response [51].

The identification of drug-specific dynamics between the tran-

criptional states and the maintenance of a pool of sensitive cells

ollowing treatment offered the possibility of developing adaptive

RAF inhibitor dosing schedules that were tailored to the mix of

ranscriptional states in each tumour. To achieve this, we devel-

ped a mathematical model calibrated by the growth dynamics of

elanomas in vivo on/off BRAF inhibitor therapy. The decisions to

old or initiate therapy were based on predicted tumour growth

ynamics and the assumption that tumour growth was mostly dic-

ated by the expansion and contraction of transcriptional State #1.

ur goal was to achieve initial tumour shrinkage and then to main-

ain sensitive cells within the tumour, preventing the uncontrolled

xpansion of the more resistant cellular states. Personalization of

he dosing to each mouse revealed a wide variation in schedules,

ith some tumours requiring a relatively short drug holiday and

thers showing improved responses following longer drug holi-

ays. This variability was not entirely unexpected, as it is likely

hat environmental constraints help shape transcriptional diversity

t baseline. It was found that tailoring the treatment schedules to

he dynamics each tumour delivered more profound anti-tumour

esponses than either continuous or fixed intermittent therapy

chedules. These results provided the first evidence that person-

lizing therapy to tumour response dynamics may be of utility in

elanoma.
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There is already clinical evidence that a subset of melanoma

atients exist who can be successfully re-challenged following ini-

ial BRAF inhibitor therapy [14], and that the magnitude of the re-

ponse at re-challenge is predicted by the depth of the initial ther-

peutic response [35]. This work offers the first mechanistic in-

ights into these clinical observations and provides a framework

o develop better, more personalized BRAF inhibitor dosing sched-

les. Our new data may also allow new biomarkers to be devel-

ped that allow patients to be stratified to receive BRAF-MEK in-

ibitor therapy as their frontline treatment (e.g. those with a very

igh percentage of cells in transcriptional State #1) in place of im-

unotherapy. This is particularly pertinent in light of recent long-

erm follow up data showing that 5-year overall survival in pa-

ients on BRAF-MEK inhibitor therapy can be up to 34% [13]. Our

tudies further provide the proof-of-concept that resistance can

e delayed through adaptive scheduling of existing FDA-approved

rugs, with the advantages of reduced drug exposure and toxic-

ty to the patient. In future refinements of this approach and our

athematical model, we envision integration of our approach with

ore conventional diagnostic metrics (circulating DNA, imaging,

nd biomarkers) to further improve patient outcomes. Our group

as recently initiated a phase I feasibility trial of adaptive BRAF-

EK inhibitor therapy to test this concept in patients with ad-

anced BRAF-mutant melanoma (NCT03543969).
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