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Resonant quantum principal component analysis
Zhaokai Li1,2,3,4†, Zihua Chai1,2,3†, Yuhang Guo1,2,3, Wentao Ji1,2,3, Mengqi Wang1,2,3, 
Fazhan Shi1,2,3, Ya Wang1,2,3*, Seth Lloyd4, Jiangfeng Du1,2,3*

Principal component analysis (PCA) has been widely adopted to reduce the dimension of data while preserving 
the information. The quantum version of PCA (qPCA) can be used to analyze an unknown low-rank density matrix 
by rapidly revealing the principal components of it, i.e., the eigenvectors of the density matrix with the largest 
eigenvalues. However, because of the substantial resource requirement, its experimental implementation re-
mains challenging. Here, we develop a resonant analysis algorithm with minimal resource for ancillary qubits, in 
which only one frequency-scanning probe qubit is required to extract the principal components. In the experi-
ment, we demonstrate the distillation of the first principal component of a 4 × 4 density matrix, with an efficiency 
of 86.0% and a fidelity of 0.90. This work shows the speedup ability of quantum algorithm in dimension reduction 
of data and thus could be used as part of quantum artificial intelligence algorithms in the future.

INTRODUCTION
In many optimization and machine learning applications, principal 
component analysis (PCA) plays an important role in the process 
of feature extraction and dimension reduction because of its ability 
to preserve the information of the data (1, 2). It is achieved by pro-
jecting the data point onto a new low-dimensional basis spanned by 
the vectors called principal components, which are the eigenvectors 
of the dataset’s covariance matrix. To reduce the dimension, one 
can select only the eigenvectors with large eigenvalues as principal 
components and discard the ones with eigenvalues below a given 
threshold. In this way, the variance of the projected data is maxi-
mized, while the data are mapped into the low-dimensional space. 
The process of computing the principal components, i.e., the largest 
eigenvectors of the covariance matrix, involves the diagonalization 
of a Hermitian matrix and can be speed-up by adopting quantum 
algorithms. It was shown that the quantum version of PCA (qPCA) 
(3, 4) is exponentially more efficient than classical methods if the 
covariance matrix is low rank and is stored in the form of a quantum 
state. In combination with recent advances in other linear algebra– 
based quantum algorithms such as solving linear systems (5–8), 
data analysis (9, 10), quantum random accessed memory (11, 12), 
and learning algorithms (13–25), this could lead to more applica-
tions of quantum machine learning.

The problem of qPCA reduces to the question of how to distill 
the principal components of an unknown low-rank density matrix 
 = ∑ii∣i〉〈i∣, where 〈i ∣ j〉 = ij. If many copies of  are given 
in the quantum form, then one can use them to construct the uni-
tary operator e−it (3, 26) and then adopts the quantum phase esti-
mation algorithm (PEA) (27) for the analysis. With the ability of 
accessing log(ϵ−1) ancillary qubits and applying e−i2kt conditioned 
on the state of kth ancillary qubit, PEA can reveal the information of 
eigenvalues and eigenstates to the accuracy ϵ within time O(poly(ϵ−1)). 

On an ideal quantum processor, PEA achieves a good level of preci-
sion of eigenvalues (2−m) given a large number m of the ancillary 
qubit adopted. However, the demonstration of qPCA remains tech-
nically challenging and elusive because of the high requirements for 
both the number of qubits and the precision of quantum opera-
tions. Furthermore, how far one can reveal the information of the 
principal components in a coherence-limited physical system is still 
an open question.

In this work, we propose a resonance-based quantum PCA (RqPCA) 
algorithm to avoid the high requirements of PEA-type methods. In-
stead of a large PEA ancillary register, our RqPCA adopts an energy- 
tunable probe qubit to locate and distill the principal components 
of the unknown matrix. This scalable scheme only needs one ancillary 
qubit and also simpler quantum operations, which makes it capable 
to be demonstrated experimentally with current technology. In the 
experiment, we use a prototype hybrid spin system in diamond 
under ambient conditions and measure the eigenvalues of principal 
components with a precision of 2−10. We find that the decoherence 
of the ancillary qubit becomes the dominant source limiting both 
the distillation efficiency and the accuracy of the result. To suppress 
this effect, we further develop the RqPCA algorithm to combine with 
the dynamical decoupling strategy, enabling the high-fidelity and 
high-efficient principal component distillation. The first principal 
component is then distilled from the mixed state  with a fidelity of 
0.90 and the distillation efficiency of 86%.

RESULTS AND DISCUSSION
The basic idea of our scheme is illustrated in Fig. 1. We start with an 
ancillary qubit conditionally coupled to an n-dimension quantum 
register with the overall Hamiltonian H = ∣1〉〈1∣⊗ . Its time evo-
lution generates exactly the conditional evolution operator e−it, 
which is the core of qPCA. Then, a tunable energy offset was intro-
duced, leading to the Hamiltonian   H  int   = ∣1〉〈1∣⊗  +   _ 2      z   ⊗  I  n    
where x,y,z is the Pauli operator of the probe qubit and In is the 
identity matrix with dimension n. The energy spectrum of this sys-
tem is shown in Fig. 1A, where ∣n〉 is the eigenstate corresponding 
to the largest eigenvalue, i.e., the principal component of interest. If 
a small external field drives the ancillary qubit with strength c, then 
the transition between eigenstates ∣1〉∣i〉 and ∣0〉∣j〉 will be ex-
cited when i = j and ∣ − i∣ is small. The ancillary qubit thus 
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probes the transition occurring condition  ≈ i by monitoring its 
state change.

Given the copy of quantum state of interest , we initialize the 
probe qubit on the state ∣0〉 and have the initial state ini = ∣0〉〈0∣⊗ . 
Then, the system is evolved under the Hamiltonian

  
 ℋ  Rq  (ω) =   ω ─ 2    σ  z   ⊗  I  n   + c  σ  x   ⊗  I  n   + ∣1〉〈1∣⊗ ρ      

     
=  ∑ 

i
       ω −  λ  i   ─ 2    σ  z   ⊗ ∣ λ  i   〉〈  λ  i  ∣+ c  σ  x   ⊗  I  n   +  I  2   ⊗  ∑ 

i
        λ  i   ─ 2  ∣ λ  i   〉〈  λ  i  ∣

   

(1)

for a certain time . Once the frequency  matches one specific 
eigenvalue i of , the probe qubit will flip from ∣0〉 to ∣1〉 with 
the probability

    P  i  () =    i    D i  
2   sin   2  (     c ─  D  i  

   )  , i = 1, 2, … , n   (2)

where   D  i   =  √ 
_

    (2c)   2  _ 
 (2c)   2  +  ( −    i  )   2 

    . The transition probability Pi() approaches 
its optimal value i in the resonant condition, i.e.,  − i ≪ c and  
 ≈    _ 2c  . By scanning the frequency  and recording the readout prob-
ability being in state ∣1〉, one can obtain a typical resonance spec-
trum, as shown in Fig. 1A, where the position of each resonance 
peak tells the specific eigenvalue.

After having the probability distribution information, one can 
quickly locate the eigenstate of interest, e.g., the first principal com-
ponent ∣n〉 corresponding to the largest eigenvalue n. In the resonant 
condition of  − n ≪ c, only the transition from ∣0〉∣n〉 to ∣1〉∣n〉 
is excited, while all other components ∣0〉∣j〉(j ≠ n) remain in the 
subspace of ∣0〉. After a projective measurement of the probe 
qubit, the readout of state ∣1〉 indicates that the quantum register is 

projected into ∣n〉. If the probe is still in ∣0〉, which means that no 
transition was excited, then one can return to the start of the algo-
rithm and rerun the circuit. The probability of success in a single 
run equals to Pn() and is close to n in the optimal case, which is 
the population of the first principal component in the initial state . 
The efficiency of principal component distillation, defined as how 
many populations of principal component are captured, equals to 
  D i  

2  =    (2c)   2  _ 
 (2c)   2  +  ( −    i  )   2 

  .

The evolution of Hamiltonian ℋRq() can be implemented 
through the Suzuki-Trotter decomposition (Fig. 1B) (28). The con-
trolled operation of e−it can be implemented with extra copies of  
(3,  26). In comparison with the conventional qPCA algorithm, 
RqPCA minimizes the number of ancillary qubits required in quan-
tum phase estimation at the cost of increasing quantum circuit 
repetitions for the frequency scanning. To further optimize our 
method, we adopt the adaptive implementation which greatly 
reduces the repetition times by focusing the area around the eigen-
values of interest. On the other hand, the length of the quantum 
circuit of RqPCA has the similar scaling property as conventional 
qPCA, with potential complexity advantage benefit from the lower 
number of qubits. Therefore, this method is more applicable to cur-
rent intermediate-scale quantum computers.

We experimentally demonstrate this algorithm on a nitrogen- 
vacancy defect (NV) center electron spin associated with the nitro-
gen nuclear spin (N) and a nearby carbon nuclear spin (C). The 
electron spin (∣0〉 : mS = 0, ∣1〉 : mS = + 1) is chosen as the probe 
qubit, and two nuclear spins (14N, mI = { + 1,0}; 13C, mI = {+ 1/2, − 1/2}) 
are used as the quantum register to store the density matrix  for 
analysis. In this hybrid spin system, electron spins offer fast, 
versatile, and high-fidelity readout and control (29–37), and nuclear 

A

B

Fig. 1. Schematics of resonant quantum PCA algorithm. (A) The energy structure of the coupled probe-register system with H = ∣1〉〈1∣ ⊗ . ∣i〉 is the ith eigenstate 
of , and i ∈ [0,1] is the corresponding eigenvalue. After introducing the probe qubit’s Hamiltonian, the energy of lowest level moves to the green dashed line. Once the 
scanning frequency  ≈ i, the Rabi oscillations of the probe qubit is induced. (B) The quantum circuit of RqPCA using the Suzuki-Trotter decomposition (Nt = ). The 
projective measurement of the probe qubit in the state ∣1〉 indicates success of the algorithm, with principal component being distilled in the register.
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spins provide additional qubits for the quantum register with long 
coherence time (38–42). The Hamiltonian of the NV-C-N system 
driven in an external microwave field is described by

   ℋ  NV   =    ─ 2     z  
e   +      MW   ─ 2     x  e   + ∣ 1〉     e   〈1 ∣ ⊗ ( A ∥  C   I z  

C  +  A ∥  N   I z  
N )  (3)

in the rotating frame of microwave frequency, where MW is the 
amplitude of the microwave control field and   A ∥  C   and   A ∥  N   denote the 
hyperfine coupling strengths between the electron spin and the two 
nuclear spins, respectively (see Materials and Methods).

The density matrix of interest in this experiment is  ρ = 0.15  σ z  
1  + 

0.09  σ x  1  − 0.03  σ z  
2  +  I  4   / 4 . Because it is not a product state, a combina-

tion of nuclear spin rotation, nonlocal controlled operation, and a 
controllable laser-induced dephasing process is required to prepare 
initial state ini = ∣0〉〈0∣⊗ . The initialization fidelity reaches the 
value of up to 95%. For a given , the corresponding evolution 
Hamiltonian ℋRq() can be constructed from the Hamiltonian of 
the NV system through a local transformation and mapping (see 
Materials and Methods). Figure 2A shows the experimental diagram 
proceeding in three steps. The evolution time is setting as  = /2c 
so that the transition probability is optimized. Last, the electron 
spin state is optically readout to get the transition possibility for dif-
ferent , from which the eigenvalues are obtained directly.

Figure  2B shows the transition spectrum obtained through an 
adaptive implementation of the method. A considerable large driving 

strength is firstly applied to quickly estimate the eigenvalues in a 
broad frequency range. After this, the driving strength and the scan-
ning range are tuned adaptively according to the resonance peak 
information obtained in the previous step. In four adaptive steps, 
the spectral linewidth (resolution) approaches to a lower bound, 
while the number of sampling points keeps low. In combination 
with the adaptive method, RqPCA can thus greatly reduce the 
frequency scanning repetition times. However, the enhancement of 
the resolution is at the cost of longer experiment length and there-
fore losing the probability of success because of the decoherence effect 
in realistic experiments (Fig. 2D). Thus, the uncertainty of the peak 
position decreases initially with the reduction in spectral linewidth but 
lately increases because of the lower success probability (Fig. 2C). In 
the experiment, the observed peak position has a maximal deviation 
of 3 × 10−4 to the theoretical eigenvalue due to the external magnetic 
field instability (see Materials and Methods). The resulting eigen-
value precision is 2−10, equivalent to perfect PEA implementation 
with 10 ancillary qubits in the conventional qPCA algorithm.

To better understand the above results, we numerically simu-
lated the dephasing of electron spin using independently measured 
decoherence quantities. We find good agreement between the 
modeled results (solid lines in Fig. 2D) and the experimental re-
sults (dots) of both the uncertainties of the eigenvalue and success 
probabilities. The success probability reduces because the electron 
spin loses its coherence during its flip to ∣1〉, because of the 

A

B 

C

D

Fig. 2. The resonant spectra obtained from an adaptive implementation of RqPCA. (A) The schematic circuit of resonant quantum PCA. The electron in NV serves as 
probe qubit, while the nuclear spins are used to store the information of the matrix  (see Materials and Methods for details.) (B) The transition spectra are obtained 
through an adaptive implementation of the method. The resonant peaks appear when  is close to one of the eigenvalues j of . (C) The deviations of the experimental-
ly measured eigenvalues of the first principal component ∣4〉, compared to the theoretical expectations. The experimental eigenvalue and its uncertainty are obtained 
through a Gaussian spectrum fitting of the transition spectrum in (B). Results of different driving strength c are compared with the same times of circuit repetitions. 
(D) The probability of success and the resolution of 4, with respect to different driving strength c. The dots refer to the experimental results, and the solid lines denote 
the modeled result taking into account the dephasing of the electron spin. The dashed line marks the lower bound of the resolution    2  *   =  √ 

_
 ln 2   / (  T 2e  *    f  map  )  due to the 

dephasing of the probe qubit (see Materials and Methods).
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dephasing process. Thus, the resolution of the eigenvalue is lim-
ited by the dephasing rate of the electron spin. To suppress the de-
phasing and increase the success probability, we extend the current 
scheme to an approach that naturally combines with the dynamical 
decoupling technique (43). The single evolution period is split into 
two half periods with the first  pulse applied at the middle and the 
second  pulse used at the end (Fig. 3A). The resonant spectra with 

this modification (red, denoted as ECHO method below) and the 
native method (blue) when c = 6 × 10−4 are shown in Fig. 3B. While 
using the ECHO method, the probability of success is increased 
greatly, leading to the higher efficiency of principal component 
distillation in later steps. Figure 3C shows how the likelihood of 
success and the resolution of the eigenvalue vary with different c. 
When c is small, the possibility of success adopting the ECHO method 

A

B

C

D

Fig. 3. RqPCA with ECHO pulses to suppress the decoherence of the probe qubit. (A) Schematic diagram of the ECHO pulses used to suppress the decoherence effect 
(see Materials and Methods for details). (B) The resonant spectra with ECHO (red) and the native method (blue) when c = 6 × 10−4. (C and D) The resolution of the eigen-
value and the probability of success with respect to driving strength c. The probability of success has an upper bound (dashed horizontal line) that equals to the popula-
tion of the first principal component in . Here, dots are the experimental results, and solid lines are theoretically simulated results with modeled decoherence.

A B C

Fig. 4. The principal component distillation. (A) The initial state before RqPCA obtained by state tomography. (B and C) The states after applying the native and ECHO 
methods of RqPCA, respectively, with the same parameters: c = 6 × 10−4 and  = 0.4566 determined from Fig. 3B. Here, the subspace ∏k is spanned by the eigenbasis of 
 (∣1,2,3,4〉) while the probe (electron spin) is in the state ∣k〉(k = 0,1). The bars denote the populations of the basis states ∣1,2,3,4〉 in the experimentally measured states.
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is always much higher than the one in the native way. In contrast, 
the resolution of both methods approaches to a lower bound that 
comes from the dephasing of the electron spin.

To reveal the first principal component ∣4〉, we tune the resonance 
frequency  to be the largest eigenvalue 4 measured in previous 
steps, so only the first principal component will be on resonant. 
After applying the circuit of RqPCA, if the probe qubit is measured 
as ∣1〉, then the other qubits will collapse to the first principal com-
ponent of , i.e., ∣4〉. To better understand how well the principal 
component is distilled, we measured both the state before and after 
the RqPCA using state tomography (see Materials and Methods). 
The first column of Fig. 4 shows the measured initial state repre-
sented in terms of four eigenstates of . A mixture of four eigen-
states is observed in the subspace of probe being in ∣0〉, while almost 
no population is in the subspace of ∣1〉. The same measurements 
are performed after RqPCA, and the results using native and ECHO 
methods are shown in the second and third columns, respectively. 
After running the circuit, the state in the subspace of ∣1〉 is close to 
the principal component ∣4〉, when the state in the subspace of ∣0〉 
remains a mixture of different eigenstates. It is noted that although 
both methods (ECHO and native) can distill the principal compo-
nent ∣4〉 from the background of the mixed eigenstates in , the 
efficiencies of distillation are different. While adopting the ECHO 
method, 86.0% of the population of ∣4〉 transits to the subspace of 
∣1〉, which indicates a high efficiency of principal component distil-
lation. At the same time, very few populations of other components 
(∣1,2,3〉) appear in the subspace of ∣1〉, leading to a distillation fi-
delity of 0.90. In the case of the native method, both the efficiency 
(48.1%) and the fidelity (0.73) are much lower because of the elec-
tron spin’s dephasing effect.

The resonance-based PCA algorithm in our work adopts an 
energy-tunable ancillary qubit to locate and distill the principal 
components of an unknown matrix. Compared to the PEA-type 
methods, which have high requirements for the size and controlla-
bility of the quantum processor, our method only needs one ancil-
lary qubit and simpler operations, making it more applicable with 
current technology. In the experiments, the first principal compo-
nent of the density matrix is distilled with high efficiency and high 
fidelity. This method can be easily applied to resolve other eigen-
state finding problems such as molecular energy simulation in 
quantum chemistry (44). If combined with a faithful demonstration of 
density matrix exponentiation, our method could serve as an essen-
tial part of a variety of quantum machine learning implementations. 
Furthermore, the ability to combine with decoherence- suppressed 
technique makes the method applicable to the intermediate-scale 
noisy quantum computers nowadays.

A

C

B

D

Fig. 5. Initial state preparation. (A and B) The pulsed optically detected magnetic resonance (ODMR) spectrum of laser initialized state 0 and the state after applying 
the CNOT operation. (C) The decay of 14N nuclear spin’s coherence under the green laser illumination. The pulse sequence is shown in the inset, including the preparation 
of the coherent state  (∣0〉     N   + ∣1〉     N   ) /  √ 

_
 2   , the laser- induced dephasing, and the map to the electron spin for optical readout. (D) The repolarization of 14N nuclear spin 

from the state ∣1〉N to the state ∣0〉N under laser illumination.

Exp
Theory0.5

0.0

000

111 111
000

Fig. 6. Experimental measured results of the initial state ini. Only the diagonal 
blocks relevant for our analysis are shown here.
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MATERIALS AND METHODS
Experimental setup and spin system
The experiment was carried out on a home-built confocal micro-
scope under ambient conditions. A continuous wave laser at 532 nm 
is used for optical pumping and readout of the NV spin and is gated 
with two acoustic-optic modulators. The laser beam was focused by 
an oil objective, while the fluorescence signal was collected by the 
same objective. An active temperature control to within 5 mK was 
used to increase the magnetic field stability. The microwave signal 
used to control the electron spin was generated by an arbitrary 
waveform generator (AWG; crs1w000b, CIQTEK) in combination 
with a microwave generator through the in-phase and quadrature 
(I/Q) modulation. The radio-frequency signal used to control the 
nuclear spins was also generated by the same AWG.

We used a NV center containing one coupled 13C nuclear spin 
(  A ∥  C  ≃ 12.8 MHz ) and an intrinsic 14N nuclear spin (  A ∥  N  ≃ − 2.16 MHz ) 
in a [100]-oriented diamond. To improve the photon collection ef-
ficiency, a solid immersion lens was fabricated on the NV centers. 
An external magnetic field of 380 G was applied to remove the de-
generacy between the electronic states mS = + 1 and mS = − 1. The 
dephasing time of the whole spin system is measured as   T 2,e  *   ∼  5.8 s,   
T 2,C  *   ∼  2.0 ms, and   T 2,N  *   ∼  5.0 ms. In comparison to the evolution 
time of the whole circuit, only the dephasing of electron spin is domi-
nant for the effect of decoherence.

Hamiltonian mapping
By applying a rotation of angle ′ on the 13C nuclear spin, the Hamiltonian 
ℋNV is transformed into

  ℋ =    ─ 2     z  
e   +      MW   ─ 2     x  e   + ∣1〉     e   〈1∣⊗ (  I z  

C  +   I x  C  +  A ∥  N   I z  
N )  (4)

where   =  A ∥  C  cos   ′  ,  =  A ∥  C  sin   ′   . By setting  = fmap( − 1/4) and 
MV = 2fmapc with a mapping factor fmap = 2 × 36.25 MHz, the 
Hamiltonian of NV is mapped to the evolution Hamiltonian ℋRq() 
with a difference of constant term that can be neglected.

State preparation
Because of dynamical optical pumping (45), the spin system starts from 
an initial state 0 = ∣0〉e〈0∣ ⊗ C ⊗ ∣ 0〉N〈0∣, with     C   = ( 0.85  0  0  0.15 ) . 
The spin rotation RY(1) ≔ e−iy1/2 on the nitrogen nuclear spin and 
a nonlocal CCROTN(2) gate then distribute populations among 
nuclear spin state subspace. Here, CCROTN(2) denotes the spin 
rotation of nitrogen nuclear spin   R Y  N (   2  )  conditioned on the carbon 
nuclear spin being in state ∣0〉. This is realized by a conditional 

phase gate on the electron spin, in combination with local controls 
(39). As can be seen in Fig. 5, the electron spin transition spectrum 
associated with nitrogen state ∣1〉N changed to the one associated 
with nitrogen state ∣0〉N after the CCROTN() gate, while it did not 
change when the carbon nuclear spin state is in the state ∣0〉C. The 
resulting state is

   0.85∣0〉     C    〈0∣⊗  
(

    
 α 1  2 

  
 α  1    β  1  

  
 α  1    β  1  

  
 β 1  2 

   
)

   + 0.15∣1〉  C   〈1∣⊗  
(

    
 α 2  2 

  
 α  2    β  2  

  
 α  2    β  2  

  
 β 2  2 

   
)

     

(5)

where      1   = cos  (       1   +    2   _ 2   )    ,      1   = sin  (       1   +    2   _ 2   )    ,      2   = cos  (       1   _ 2   )    , and      2   = sin  (       1   _ 2   )    . 
After this, a laser-induced dephasing process is introduced to elimi-
nate the off-diagonal matrix terms. As shown in Fig. 5, at a laser 
power of 190 W, a fast dephasing time (  T 2,laser  *   ∼ 0.6  s) of nitrogen 
nuclear spin was observed, accomplished by a repolarization to the 
state ∣0〉N〈0∣ with a decay rate of T1, laser ∼ 2.1 s. On the basis of 
these results, we choose a laser pulse length of 1.4 s to completely 
dephase the coherence and 1 = 0.58 and 2 = 0.31 to account for 
the finite repolarization. The quantum state turns into

   0.85∣0〉     C    〈0∣⊗  (   0.53  0  0  0.47  )   + 0.15∣1〉  C   〈1∣⊗  (   0.70  0  0  0.30  )     (6)

Last, a single-qubit rotation    R Y  C  (     _ 6   )     on the carbon nuclear spin and 
a   R Y  N ()  pulse on the nitrogen nuclear spin were applied; the system 
was prepared into the state  with fidelity 95%. Figure 6 shows the 
density matrix obtained by the state tomography.

Error analysis
To understand the deviation between experimental and theoretical 
eigenvalues, we notice that the external magnetic field slowly drifts 
during the experiments. Suppose B0 changes B during the experi-
ments, then the Hamiltonian ℋ becomes

   ℋ  drift   =   ( −    e      B  ) ─ 2     z  
e   +      MW   ─ 2     x  e   + ∣1〉     e   〈1∣⊗ (  I z  

C  +   I x  C  +  A ∥  N   I z  
N )  

(7)

According to the linear mapping between ℋ and ℋRq(), the 
effective  in ℋRq() changes to

     eff   =  −  =  −    e      B   /  f  map    (8)
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Fig. 7. Numerical simulation for dynamical decoupling–combined PCA. (A) Resolution obtained from resonant spectra for different driving strength c and the order 
of echo M. (B) The probability of success obtained from resonant spectra for different c and M.
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The change of external magnetic field B thus causes the deviation 
of  in the experiments. By estimating the instability of magnetic 
field via recording the electron spin’s resonance frequency in 14 hours, 
we find that B satisfies a Gaussian distribution and the standard 
deviation (SD) is 12.4 kHz, which corresponds to  = 3.4 × 10−4, 
consistent with the eigenvalue inaccuracy observed in the experiment.

Dynamical decoupling–combined component analysis
Here, we consider the effect of dephasing of the electron spin 
while using a general sequence in the form of    (      _ 2M  −  −    _ 2M  −  )     M  , 
where  = /2c. The native and ECHO methods correspond to the 
case of M = 0 and M = 1, respectively. The dephasing is considered by 
adding an additional term fz/2 into the total Hamiltonian ℋRq(), 
with f satisfying a Gaussian distribution with the SD determined by 
  T 2,e  *   . For the native case, this model returns to a pulsed spin resonance 
with a spectral width   √ 

_
 ln 2   / (  T 2,e  *  )  (46).

A more general consideration of the dephasing is performed 
through the numerical simulation. Figure 7 shows the spectra and the 
extracted features of resolution and amplitude, from M = 0 to M = 8. 
One can see that when the driving strength c is very weak, increas-
ing the number 2M of  pulses can continuously improve the am-
plitude of peak to the upper bound, with almost no broadening of 
peak width.

Performance of RqPCA
Compared to the qPCA using PEA, RqPCA minimizes the number 
of ancillary qubits needed at the cost of increasing quantum circuit 
repetitions for the frequency scanning. RqPCA only requires one 
tunable ancillary qubit when PEA-type methods usually need a large 
ancillary register consisting of tens of qubits, e.g., 10 qubits to achieve 
the same accuracy as our work. Both methods need the ability to 
apply the conditional evolution operator e−it with the help of mul-
tiple copies of  and require the evolution time  = O(ϵ−1) to achieve 
the accuracy ϵ of the eigenvalues. Following the smaller scale of the 
quantum circuit in RqPCA, the number and complexity of multiqubit 
quantum operations are also reduced, enabling the high-fidelity and 
high-efficient experimental implementation. Although the RqPCA 
requires more quantum circuit repetitions to obtain the resonant 
spectrum, the adaptive implementation used in this work can greatly 
reduce the repetition times by only focusing the area around the 
eigenvalues of interest. In the worst case, the repetition time needed 
to obtain the resonant spectrum scales as O(ϵ−1), which also scale 
polynomially with the desired accuracy of the eigenvalues.

In RqPCA, the distillation efficiency   D i  
2   is determined by the ac-

curacy of eigenvalue measurement. To improve it, the evolving time of 
the system  needs to be increased to accumulate more information 
on the density matrix of interest. The infidelity of the distilled prin-
cipal eigenvectors comes from unwanted excitations, which brings in 
the information of other eigenvectors. This cross-excitation emerges 
when another eigenvalue is close to the interested one. This can be 
suppressed by reducing the driving strength c, which causes a trade-
off between the distillation efficiency and the fidelity. For a very 
coherent quantum system, both the distillation efficiency and the 
fidelity can be very high.
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