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Velocity dependent up-winding 
scheme for node control volume 
finite element method for fluid flow 
in porous media
Abdul Salam Abd & Ahmad Abushaikha*

We present a novel velocity based up-winding scheme for the node control volume finite element 
(NCVFE) method. The NCVFE method solves for the pressure at the vertices of elements and a control 
volume mesh is constructed around them; where the advection of fluids is modelled. Therefore, each 
element shares several control volumes, and traditionally the fluid saturations used in calculating the 
mobilities over each element  −  hence updating pressure  −  are arithmetically weighted. In this paper, 
we use the velocity vector to allocate the upstream direction of the fluid flow in each element and use 
the upstream fluid saturation in calculating the mobility needed for the pressure equation. We test his 
novel approach using triangle and tetrahedron elements, and we show that it produces more accurate 
fluid saturation profiles than the traditional approach. The method can easily be implemented in current 
NCVFE simulators.

Upstream mobility calculation in modelling multi-phase flow in porous media is widely accepted and considered 
stable and accurate. This approach uses fluid phase information from the upstream cell/grid for the calculation 
of fluxes when modelling the transport of fluids to solve fluid dynamic problems. Aziz and Settari1 applied the 
method for finite difference based reservoir simulators to model multi-phase fluid flow in petroleum reservoirs. 
The method is similar to the donor cell up-wending scheme applied in the finite volume method2. Sammon3 
and Brenier and Jaffre4 showed that the method is consistent, convergent and well-defined (for one dimensional 
cases). Higher order schemes of the method were also applied5,6.

The equations governing multi-phase fluid flow in subsurface porous media are of mixed characteristics. The 
pressure equation is elliptic and the transport equations of fluids are hyperbolic. These governing equations have 
been implemented in various studies to predict fluid flow in naturally fractured reservoirs7 and even in pore-scale 
modelling of heterogeneous porous media8. Moreover, the hydrology community relies on similar numerical 
models to simulate groundwater movement, contaminants transport in aquifers chemical reactions between min-
erals9,10. The numerical method used to solve these equations is the core of reservoir simulation. Such methods 
discretize the equations from partial differential form to algebraic equations in space and time. Two popular 
categories for numerical discretization of flow problems amongst the reservoir community are the finite volume 
method (FVM) and finite element method (FEM), where the latter is divided into three approaches: sadfss. FVM 
is a simple and common numerical method in the computational flow dynamics community. It is used discretize 
the reservoir fluid flow equations and is well adapted for conservation laws. However, its geometrical flexibility 
is limited since it is dependent on the level of orthogonality between the cells11. This is considered a large handi-
cap as it makes it very difficult to model the complex geometry of hydrocarbon reservoirs and requires very fine 
meshes to obtain reasonable results which is computationally very expensive11,12.

In FEM, the domian is divided into a set of elements that communicate through interpolation function. The 
governing equations are written in integral formulation and forms a system of local algebraic equations written in 
matrix form. This matrix is solved to obtain the pressure value at the nodes which can be located at the vertices, 
centroid, or interfaces of the elements. FEM represent the domain using various shapes of elements: line, trian-
gle, tetrahedron, prism, hexahedron and others. This large library of elements gives the method the ability and 
the strength to model domains with large complexity including discrete fracture models13. To solve for complex 

Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Education 
City, Qatar Foundation, P.O. Box 34110, Doha, Qatar. *email: aabushaikha@hbku.edu.qa

OPEN

https://doi.org/10.1038/s41598-020-61324-4
mailto:aabushaikha@hbku.edu.qa


2Scientific Reports |         (2020) 10:4427  | https://doi.org/10.1038/s41598-020-61324-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

reservoir engineering problems, many advances have been made over the past 50 years, which can be categorized 
into three main approaches. In the Coupled upwind-weighted finite element method (CUFE) approach, we solve 
for the fully coupled flow equations, saturation and pressure equations with up-streamed mobility values14–16. The 
interfaces between neighboring elements do not necessarily have to be to be orthogonal12 and and the accuracy 
of the method is mesh dependent17–20. Moreover, Newton’s method is needed to solve for the coupled equations 
which increase the computational cost deeming it as a drawback12,21.

In the Node control volume finite element method (NCVFE) approach, the saturation and pressure equa-
tions are decoupled while imposing a secondary mesh around the finite element nodes (vertices). This method 
was first introduced to the computational flow dynamics community by22. In NCVFE, we we use the Galerkin 
finite element method to solve for the pressure on the element’s vertices, while the saturation is solved explicitly 
on the control volumes. After that, the the phase velocities are computed using Darcy’s law and the pressures. 
Finally, the continuity equation is used to calculate the advection and transport of fluid on the node control 
volumes12,19,21,23–25.

The NCVFE can be used to model complex structures while yielding better simulation results than CUFE 
methods. However, the capillary pressure can only vary in a continuous fashion for the method to be accurate12,21. 
Moreover, adaptive mesh in space and time can be used easily in NCVFE, as proposed by11, and the use of discrete 
fracture models (DFM) in 2D and 3D meshes12,26,27. However, a main drawback of NCVFE is the fact that the 
control volume mesh is constructed around the nodes and the material properties are assigned on elements. This 
entails that there is a loss of physical accuracy and artificial fluid smearing when modelling multi-phase flow in 
highly heterogeneous and fractured reservoirs.

In order to overcome this drawback of artificial smearing, continuous fluxes across element interfaces need 
to be assured. This concept is applied in the mixed finite element (MFE) method25,28–32. In this methods, two or 
more primary variables are solved where in fluid flow problems, the MFE method solves the pressure and the 
velocity fields simultaneously. The continuity of fluxes across the elements’ interfaces is guaranteed by vectorial 
interpolation functions, i.e. Raviart-Thomas33. The fluxes are solved on the element interfaces and the pressure is 
solved on the centroid of element in a fully implicit scheme similar to34. The main difference between MFE and 
NCVFE methodsis that MFE approximates flow variables more accurately and realistically than NCVFE in small 
highly heterogeneous permeability cases35.

In our work, we utilize node control volume finite element (NCVFE) method. As mentioned earlier, the ellip-
tic and hyperbolic equations are decoupled, and they are solved on two different meshes. The former is solved 
using the Galerkin method on a finite element mesh and the latter using the finite volume method on the node 
control volume mesh12,36, see Fig. 1. These two meshes are not aligned since the control volume mesh is con-
structed around the vertices of the finite element mesh. Therefore, each element shares several control volumes; 
hence several values of the transport information (i.e. fluids saturation, see Fig. 1), and traditionally these fluid 
saturations are arithmetically weighted over each element to be used for the pressure equation, as we show in 
Section 3. While the transport equations use the upstream method to compute the phase fluxes between the node 
control volumes. This mismatch in the mobility calculation between the pressure and transport equations along 
with the misalignment of the corresponding meshes produce inaccurate fluid saturation profiles. Especially, in 
heterogeneous media since the material properties are imposed on the elements and the transport values are 
computed on the control volumes, as discussed by Abushaikha et al.37. Higher order schemes for the mobility 
calculation between the control volumes have also been applied38,39.

The objective of this paper is to present and investigate a new mathematical formulation for mobility 
upstreaming over mesh elements in a reservoir simulation. The method entails a velocity vector that starts from 
the element’s interface and is piece-wise constant in first order elements. The vector is used to approximate the 
upstream saturation in the given element. This results showed accurate saturation profiles when compared to the 
traditional arithmetic weighting method,even in multiphase flow scenarios. Furthermore, the UMC method can 
be easily implemented in current NCVFE based simulators. The paper is organized as follows. In Sections 2 and 3, 
the governing equations and the Node Control Volume Finite Element method are introduced. In Section 4, the 
upstream mobility calculation for NCVFE is described, and in Section 5, numerical tests are presented. Finally, 
conclusions are given in Section 5.

Figure 1.  Node control volume mesh for triangular elements. The material properties are defined on the 
elements and the pressure and transport variables are computed on the control volumes.
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Governing equations
We consider two-phase immiscible fluid flow of water and oil in heterogeneous porous media described by the 
continuity equation and Darcy’s law40. We assume a slightly compressible rock. The mass balance for the fluid 
phase α is, 
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v q
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ρ ρ
∂

∂
= −∇ ⋅ +α α
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S is the saturation of the phase, φ is the porosity of the rock, ρ is the density of the phase, q is the source-sink 
rate of the phase, v is the Darcy velocity for phase, and t is time. We also assume capillarity and gravity forces are 
negligible. The Darcy phase velocity is, 

λ= − ∇α α αv K P (2)

 where P is the phase pressure, K is the absolute rock permeability, and λ is the phase mobility, 
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 where kr is the relative permeability of phase and μ is fluid viscosity of phase. The fluid viscosity is constant 
and usually different for each phase. The relative permeability is saturation dependent, and in this paper we use 
Corey-type41 functions, 
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 where No and Nw are history matching parameters, krw
o  is the end point of the water relative permeability, Swo is 

the normalized water saturation, Swi
 is initial water saturation and Sor is residual oil saturation.

In our simulation, we assume a closed system with know boundary conditions, and flowing source/sink terms 
represented by wells. For the cases when incompressible fluids are assumed, we can write a pressure equation that 
is independent of the water saturation of the system25.

The pressure equation is, 
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 where Cr is rock compressibility, qt is the total source-sink rate of both phases and v is the total velocity, 
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 where λt is the total mobility given by, 
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We then calculate the velocity of the phase using Darcy’s law. Equation (2) and the advection transport of fluid, 
Eq. (1). The pressure and advection equations are then coupled non-linearly and the total mobility (saturation 
dependent over time and space) is upstreamed, Eq. (8).

Numerical method
In the NCFVE method, a multi-phase flow problem is solved in two steps. First, the primary variable, pressure, 
is calculated using the finite element method; in this paper we use the well-established Galerkin method12,37,39 
Then, the advection of fluid between the node control volumes is calculated using the finite volume method. In 
this paper, we do not detail the discretization procedures of the governing equations and the construction of the 
secondary control volume mesh, as they are thoroughly discussed by Abushaikha et al.37. We rather present the 
final form of the pressure equation: 

C P
T

P P qK K K g( ) (9)r t w c w w o o tφ λ λ λ ρ λ ρ∂
∂

− ∇. ∇ − ∇. ∇ − + ∇ =

There are five finite element matrices that need to be defined for each element based on the recovery mecha-
nisms in the pressure equation:

	 1.	 Conductance matrix [M].
	 2.	 Capillarity matrix [CP].
	 3.	 Gravity matrix [G].
	 4.	 Capacitance matrix [C].
	 5.	 Source/sink terms (force vector) [F].
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 We use implicit pressure and explicit saturation (IMPES) so Eq. (9) becomes: 

 C t M P C P t F CP G([ ] [ ] )[ ] [ ] [ ] ([ ] [ ] [ ] ) (10)t t t t t t t t1 1+ = + + −+ +

where t is the time-step. The former equation is an Ax = b equation and we solve for the unknown, the next 
time-step of pressure [P]t+1, using the Generalized Minimum Residual (GMRES) linear solver with final residual 
of 1.0 × 10−942.

Figure 2.  Equation (9) parameters for: triangle (left), tetrahedron (right). The blue dot is the calculated 
upstream saturation for the element.

Figure 3.  Comparison of the analytical solution of the Buckley-Leverett problem at distance 0.5 m from the 
left-hand boundary to the numerical solution of the NCVFE method using three meshes for triangles (left) and 
tetrahedron (right) elements. Water is injected at the left and displaces oil in a homogeneous porous medium.

Figure 4.  Convergence of the L2 error of water saturation as a function of the mesh element length for the 
numerical solutions of the Buckley-Leverett problem using the 3-D tetrahedral (left) and @-d traingular (right) 
elements.
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After the pressure is calculated, we integrate the transport equation over the node control volume (n) and 
apply the divergence theorem and the forward Euler discretization in time to get: 

 ∑
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where CV is the pore volume V(n), area A(n), or line L(n) depending on the type of node control volume mesh (it is 
pressure dependent: updated each time step using equation ei

C P P( )r iφ φ= − , SI is the number of faces in node 
control volume (n), and the flux(n),j is the flux of face j in node control volume (n) and calculated by, 
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 where N is the are normal vector.
We are only interested in the new saturation values applied in Eq. (8) to update the pressure equation, Eq. (9). 

We discuss this in the next section.

Upstream mobility calculation (UMC) for NCVFE method
Using the upstream node control volume, similar to the finite volume method, for the mobility calculation in 
Eq. (8) for the pressure Eq. (6) produce unphysical fluid saturation profiles, as discussed by Abushaikha43. In this 
paper, we introduce an equation to allocate the upstream direction of the fluid flow over each element. It uses 
the element velocity vector and a weighting procedure to determine the saturation at the point where the tail of 
velocity vector intersects the element, see Fig. 2. The equation is given below, 
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where Supstream is the calculated upstream water saturation for element, F is the number of interfaces and nodes 
for element (equals 6 for a triangle and 8 for a tetrahedron), Sk is the water saturation at location K for element, 
and Ak is given by, 

A max a vel[0, ] (14)k k= ⋅

where Ak is the component of the distance vector projected onto the velocity vector, if this dot product is positive 
(no obtuse angle) its saturation is accounted for, otherwise it is not, vel is the element velocity and ak the distance 
vector from location k (node or centroid of interface) to element centroid, see Fig. 2. This equation is used to 
compute Eq. (8) to be used in Eq. (6).

The algorithm below shows the implementation steps for NCVFE numerically.

Numerical tests
In this section we test the UMC in the NCVFE method for various cases. In all the tests, water and oil viscosities are 
0.4 and 2.5 mPa.s respectively and the rock compressibility equals 4.0 × 10−10Pa−1. We assume the medium is fully 
saturated with oil and the porosity and permeability are 0.2 and 100 mD respectively, unless otherwise stated.

Algorithm 1.  The algorithm for NCVFE.
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Validation: Buckley-Leverett problem.  To validate the new upstream mobility calculation for the 
NCVFE method, we use the one dimensional analytical solution of the Buckley-Leverett problem, where gravity 
and capillarity are negligible4,26. The domain is represented by a plane with dimensions of 1 m  ×  Element Length 
to test the triangle elements and by a rectangular tube with dimensions of 1 m  ×  Element Length  ×  Element 
Length for the tetrahedron elements. Figure 3 compares the analytical solution to the numerical solutions of the 
traditional approach (arithmetic weighting) versus the UMC method for the two types of domains using different 
element lengths. We can see the UMC method produces a more confined saturation profiles with a shaper front 
than the traditional approach for both types of elements.

To measure the difference between the two methods, we calculate the error L2 norm for the saturation profiles 
for various element lengths (also to measure the rate of convergence). Figure 4 shows this error for triangle and 
tetrahedron elements, respectively (both elements produce almost identical saturation profiles from this prob-
lem). The UMC method produces less error for the same element length than the traditional approach for this 
validation test. Also, both methods produce a sub-linear convergence rate of approximately 0.4. These relatively 
modest convergence rates are a result of the shock between the two fluids that dominates the overall error. Schmid 
et al.39 and Hoteit and Firoozabadi44 applied the Buckley-Leverett problem for various numerical methods. They 
observed low convergence rates for the Buckley-Leverett problem regardless of the numerical method used, as we 
saw here, because of this sharp separation between the two fluids.

In this test, we validated and tested the convergence of the traditional approach and the new method for tri-
angle and tetrahedron elements. We saw the traditional approach not producing very accurate saturation profiles 
because the fluid mobility needed for the pressure calculation is computed using the arithmetic weighting of the 
encompassed control volumes saturations. On the other hand, the UMC method employs the velocity vector to 
allocate the upstream saturation therefor producing more accurate saturation profiles. Next, we test the method 
for multi-dimensional domains.

Homogeneous test: five spot case.  The five-spot is a simple case of a water flooding scenario in a homo-
geneous domain. Water is injected at constant rate in the top left and lower right corners, while oil (including 
water after breakthrough) is extracted at the same constant rate in the lower left and upper right corners. The 
domain is represented by a plane with dimensions of 1 m  ×  1 m to test the triangle elements and by a cube with 
dimensions of 1 m  ×  1 m  ×  Element Length for the tetrahedron elements (see Fig. 5). In this test, we use two 
meshes (coarse and fine) for each domain and test the UMC method and the traditional approach (arithmetic 
weighting). The mesh properties are listed in Table 1.

 Figure 6 show the water saturation profiles after pore volumes of water have been injected in the domains 
composed of triangles and tetrahedrons. We see the water is more confined and the front is less smeared when 
applying the UMC method for both domains and mesh resolutions versus the traditional approach. To analyse 
this behaviour, we calculate the water cut at the oil producers as a function of pore volumes injected to measure 
the breakthrough time for both methods. The water cut is given by 

WC
q
q (15)
w

t

=

Figure 5.  The domain of the homogeneous case with producers and injectors at the corners.

Element type Mesh Elements Nodes

Triangle Coarse 242 142

Fine 26,528 13,465

Tetrahedron Coarse 881 325

Fine 82,538 27,556

Table 1.  The mesh properties of Homogeneous test.

https://doi.org/10.1038/s41598-020-61324-4
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 where qt = qw + qo, qw and qo equal the water and oil production flow rates.
 Figures 6 and 7 show the water breakthrough times at the oil producers for the domains composed of tri-

angles and tetrahedrons. Moreover, we observe in Fig. 8 that the breakthrough is delayed when applying the 
UMC method and water reaches the oil producers sooner when using the traditional approach. We can also see 
the effect of grid orientation where fine meshes produce a high resolution of the water front and a delay of the 
breakthrough time versus the coarse meshes for both domains. This behaviour is in agreement with the previous 
validation test (Buckley -Leverett) as the UMC method produces a more confined water saturation profiles with 
a sharper front delaying the breakthrough time.

Next, we test the UMC method in more heterogeneous domains represented by highly conductive zones 
(fractures).

Heterogeneous domain.  In this last test, a heterogeneous petro-physical model of Coats Engineering 
upscaled model of SPE10 layer 1045 The area is meshed in 2-D using triangular elements with a central water 
injector that pushes the oil into the four producers located at the corners as shown in Fig. 9. The properties of the 
mesh used in this test are detailed in Table 2.

The water cut for the producers is plotted in Fig. 10 against the production time using Eq. (15). The results 
are compared for the arithmetic and UMC approach of estimating the mobility. It is noticed that the water cut 
profiles, when arithmetic mobility is used, lag behind the UMC curve in the four producers. This observation is 
consistent with the results of the homogeneous test where the breakthrough of water is delayed with UMC. The 
breakthrough point of water is different at each injector despite the fact the injector is placed in the center at equal 
distance from the producers. This could be explained by the highly heterogeneous layer that produces varying 
pressure responses at different locations due to permeability variations. Hence, the direction of the flow will be 
skewed towards the region with high permeability, and thus different breakthrough times are noticed.

This velocity up-winding scheme is very crucial when up-scaling techniques are implemented. A solid under-
standing of the flow functions governing fluid flow in fractured reservoirs provides the necessary foundation 
for up-scaling laboratory results to the field scale using numerical simulators. Scaling groups are mainly used to 
increase computational efficiency of simulators by several orders of magnitudes. However, truncation error in 
up-scaling is inevitable, and the up-winding of the velocity using UMC can contribute to improving the satura-
tion calculation.

Figure 6.  Water saturation field modelled using ARM (left) and UMC (right) approaches for mobility 
calculations using a coarse and a fine mesh for triangular elements (2-D).

https://doi.org/10.1038/s41598-020-61324-4
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Summary and Conclusions
In this work, we have presented a novel approach for up-streaming mobility calculation in NCVFE simulators 
for triangular (2-D) and tetrahedral (3-D) domains. Based on our results, we were able to show that our method 
produces more accurate fluid saturation profiles compared to the traditional (arithmetic) approach. The utili-
zation of the velocity vector to determine the appropriate saturation for upstreaming is more accurate than the 
arithmetic weighting of the saturations in the control volumes. Upon injection of water in a simulation case, the 
water front was less smeared when UMC is used for different mesh resolutions and the breakthrough of water is 
delayed. Moreover, the UMC approach can show good accuracy when the method is used for up-scaled models, 

Figure 7.  Water saturation field modelled using UMC (left) and ARM (right) approaches for mobility 
calculations using a coarse and a fine mesh for tetrahedral elements (3-D).

Figure 8.  Comparison of the water cut profiles per injected pore volume for triangular (left) and tetrahedral 
(right) elements for the mesh sizes seen in Table 1.
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up-scaling is an essential approach when the aim is to reduce simulation time and cost, and UMC allows for better 
prediction of the movement of the water front in such scenarios.

This novel approach can be easily implemented in current reservoirs simulators and has a wide range of appli-
cability to various fields of hydrocarbon recovery, ground water movement and contaminant transport.

Appendix A
We explicitly define the five finite element matrices of the pressure equation (10).

[M(e)] is the conductance matrix, and for tetrahedron element equals, 

-

  

λ=















∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂































∂
∂

…
∂

∂
∂

∂
…

∂
∂

∂
∂

…
∂

∂

















×M K V

N
x

N
y

N
z

N
x

N
y

N
z

N
x

N
x

N
y

N
y

N
z

N
z

[ ] ( )

(A 1)

e
n n t

e e

e e e

n
e

n
e

n
e

e
n
e

e
n
e

e
n
e

( ) ( ) ( )

1
( )

1
( )

1
( )

( ) ( ) ( )

1
( ) ( )

1
( ) ( )

1
( ) ( )

[CP(e)] is the capillarity matrix, 
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[G(e)] is the gravity matrix, 
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Figure 9.  The figure in (a) shows the domain with injectors and producers while (b) shows the heterogeneous 
permeability of the domain.

Element type Mesh Elements Nodes
Grid/Element 
size (m2)

Triangle Fine 3300 1736 72

Table 2.  The mesh properties of the heterogeneous test.
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Figure 10.  Plots of water cut vs. time (days) comparing the ARM and UMC mobility approaches in mobility 
estimation for the four oil producers.

Figure 11.  Linear finite elements: triangle (left), and tetrahedron (right).
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The interpolation function N and their derivatives are defined for a triangle and tetrahedron as follows (see 
Fig. 11).
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