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Existing models for predicting mortality based on traditional Cox proportional hazard approach (CPH) often have low prediction
accuracy.This paper aims to develop a clinical riskmodel with good accuracy for predicting 1-year mortality in cardiac arrhythmias
patients using random survival forest (RSF), a robust approach for survival analysis. 10,488 cardiac arrhythmias patients available
in the public MIMIC II clinical database were investigated, with 3,452 deaths occurring within 1-year followups. Forty risk factors
including demographics and clinical and laboratory information and antiarrhythmic agents were analyzed as potential predictors of
all-cause mortality. RSF was adopted to build a comprehensive survival model and a simplified risk model composed of 14 top risk
factors.The built comprehensive model achieved a prediction accuracy of 0.81 measured by c-statistic with 10-fold cross validation.
The simplified risk model also achieved a good accuracy of 0.799. Both results outperformed traditional CPH (which achieved
a c-statistic of 0.733 for the comprehensive model and 0.718 for the simplified model). Moreover, various factors are observed
to have nonlinear impact on cardiac arrhythmias prognosis. As a result, RSF based model which took nonlinearity into account
significantly outperformed traditional Cox proportional hazard model and has great potential to be a more effective approach for
survival analysis.

1. Introduction

Cardiac arrhythmias are defined as a group of conditions
in which the electrical activity of the heart is irregular or
faster or slower than normal [1]. Some arrhythmias are life-
threatening and would result in sudden cardiac death if not
treated in time. It is one of the most common causes of
death when travelling to a hospital. A major challenge in the
management of arrhythmias in hospital is the availability of
reliable prognosticmodels that enable patients andphysicians
to have a realistic expectation of prognosis and to guide treat-
ment options including medical treatment, use of devices,
more intense monitoring, or end-of-life care. In addition,
getting insights intowhich factors relate to poor outcomemay
help the physicians adopt appropriate medical treatments.

Until now, several models for predicting different kinds
of cardiovascular diseases outcome such as heart failure
(HF) and coronary heart diseases have been developed using
data from clinical trials or observational studies [2–6]. In
addition, several risk models for mortality in community
were reviewed by Kwok et al. in [7]. However, researches
on morality prediction for cardiac arrhythmias patients are
still very rare as presented by Hinkle Jr. et al. [8]. In addi-
tion, most risk models presented above are based on multi-
variable Cox proportional hazard regression (CPH), which
was proposed by Cox [9]. CPH is an intuitive and popular
survival model by illustrating the importance of each variable
and its relationship with a regression coefficient. However,
proportional methods suffer from high variance and poor
performance as demonstrated by Breiman [10, 11] as solving
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the model is very complex, especially for those involving
multiple variables and further more nonlinear effects cannot
be modeled. Fox example, considerable controversy is still
unsettled regarding the precise association of body mass
index (BMI) with prognosis. Even though BMI is often
considered with poor survival in general population, some
researchers such as Uretsky et al. have identified a possible
obesity paradox among patients with heart disease in which
increased body mass predicts better survival using univariate
CPH [12]. The above results are biased due to a linear
assumption between BMI and mortality and not considering
the interaction between BMI and some other factors. There-
fore, complex patterns about possible reverse causation in
underweight individuals, including interactions with smok-
ing and an unclear inflection point at which increasing body
mass leads to increased risk, were noted by Adams, Flegal,
and Fontaine et al. [13–15] through manually adding the
interactions between BMI and other factors or subdivision
of the population into different small groups. However, all
of the methods mentioned above are from a subjective point
of view. Random survival forests (RSF) modeling, a direct
extension of random forest for survival analysis, is proposed
by Ishwaran et al. [16] to handle the above difficulties by
automatically assessing the complex effects and interactions
among all variables from objective view, that is, following the
inherent relationship between any factors and the predictive
result. Ishwaran et al. also demonstrated that RSF has another
advantage of insensitivity to noise brought by missing values
or error data [16]. Thus, it has been used in several risk
models for different kinds of diseases such as heart failure
[17] by Hsich et al. and breast cancer [18] by Omurlu et al.
The results show that the RSF model can identify complex
interactions among multiple variables and performed better
than traditional CPH model. Therefore, the aim of our study
is to identify important risk factors and their complex effects
onmortality and develop an available mortality risk model in
cardiac arrhythmias patients using RSF.

2. Material and Methods

2.1. Study Population. Our study is based on the public
MIMIC II (Multi-Parameter Intelligent Monitoring in Inten-
sive Care) clinical database [19, 20], which contains com-
prehensive clinical data including results of laboratory tests,
medications, ICD9 diagnoses, and more obtained from hos-
pital medical information systems, for 32,536 ICU patients.
The data were collected over a seven-year period, beginning
in 2001, from a variety of ICUs (medical, surgical, coronary
care, and neonatal), in Boston’s Beth Israel Deaconess Med-
ical Center (BIDMC). We defined the patients with cardiac
arrhythmias according to ninth revision of the international
classification of diseases (ICD9) adopted in the database with
ICD9 of 427. We define the start point of each patient as
the time of ICU admission and the end point as the death
time in the hospital or 365 days after the start point. Using
this approach, 10,488 patients with cardiac arrhythmias were
extracted to establish the predictive model, during which
3,452 deaths occurred in hospital or after discharge over 1-
year follow-up period for each patient.

2.2. Study Variables. Potential clinical variables previously
reported to be associatedwithmortalitywere evaluated in our
study.The following 40 variables were assessed for prognostic
value: demographics including age, sex, and BMI, clinical
variables such as arrhythmias type (CA,VF,VT,AF, and other
slow arrhythmias), valvular heart diseases, renal failure, and
CHF, laboratory variables with missing value less than 20%,
including glucose, NA, K, SCR, BUN, RBC, WBC, PT, PTT,
INR, BR, AST, ALT, and CKPK, and antiarrhythmic agents
including class I, class II, class III, class IV, and class V agents
(as listed in Table 1). All of the clinical variables are binary
and defined as 1 if the patient suffers from this disease at
the admission time, otherwise defined as 0. The laboratory
variables are real-valued numbers measured at the admission
time to the ICU and the measurement scales for all variables
are presented in Table 1.Themedicationwas defined as 1 if the
patient was prescribedwith and took this kind ofmedications
during the ICU stay.

2.3. Statistical Analysis with Random Survival Forest. In our
study, continuous variables such as age, BMI, SCR, and BUN
were log-transformed before analysis to eliminate the tail
effect brought by larger or smaller value. Random survival
forest [16], a new extension of random forest for survival anal-
ysis, was implemented in our study to establish prediction
models in the following ways:

(1) B bootstrap samples are randomly extracted from
the original dataset, with each bootstrap sample pre-
cluding an average 37% of the data, that is, out-of-bag
data (OOB data). B is defined as 1000 in our study.

(2) A survival tree is grown for each bootstrap sample to
develop a comprehensive model composed of all 40
variables. 6 candidate variables are randomly selected
for each node based on the rule defined in [16]. The
candidate variable with the ability of maximizing the
survival difference between child nodes is selected to
split the node.

(3) Every tree was grown to full size until each leaf node
is with less than 𝑑

0
> 0 unique deaths. In our study,

𝑑
0
is set to be 3.

(4) Select predictive variables by filtering on the basis of
minimal depth, that is, the minimum distance from
the trunk to the branch level of the nearest maximum
subtree, which is the largest subtree whose root node
splits on the variable. The smaller the minimal depth
is, the more impact the variable has on prediction.

(5) Construct a simplified survival forest of 1000 survival
trees based on the predictive variables selected above
to get an optimized model with fewer variables.

(6) The cumulative hazard function for each terminal
node in a grown tree is estimated by Nelson-Aalen
estimator [21]. Drop each case 𝑋

𝑖
in the validation

dataset down the grown tree; its cumulative hazard
function is the Nelson-Aalen estimator [21] for the
case’s falling terminal node. The individual hazards
are then averaged to compute the cumulative hazard
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Table 1: Baseline characteristics of dead and alive patients during one-year followup.

Characteristics Dead Alive 𝑃 value
𝑁 3452 7036
Demographics

Age, years 75.32 (12.84) 71.94 (23.596) <0.001
Gender, male 59% 57% 0.1
BMI, kg/m2 22.76 (102) 33.48 (2588) <0.001

Clinical variables
Arrhythmias type
CA 518 (15%) 352 (5%) <0.001
VF 138 (4%) 211 (3%) 0.459
VT 390 (11%) 844 (12%) 0.095
AF 2727 (79%) 5488 (78%) 0.281
Slow arrhythmias 276 (8%) 1055 (15%) <0.001

HF 1484 (43%) 2110 (30%) <0.001
Myocardial infraction 621 (18%) 1266 (18%) 0.867
Bundle branch block 18 (0.5%) 38 (0.6%) 0.168
Valvular heart diseases 517 (15%) 915 (13%) 0.088
Stroke 424 (12%) 633 (9%) 0.01
Hypertension 932 (27%) 2251 (32%) <0.001
Acute pulmonary heart disease 79 (2%) 141 (2%) 0.238
Chronic pulmonary heart disease 178 (5%) 352 (5%) 0.277
Uncomplicated diabetes 690 (20%) 1547 (22%) 0.001
Complicated diabetes 242 (7%) 352 (5%) 0.001
Hypothyroidism 345 (10%) 704 (10%) 0.143
Renal failure 483 (14%) 422 (6%) <0.001
Liver disease 138 (4%) 141 (2%) <0.001

Laboratory variables
K, mEq/L 4.81 (0.89) 4.96 (0.94) <0.001
NA, mEq/L 139.21 (4.25) 138.85 (2.93) <0.001
WBC, K/𝜇L 19.79 (13.88) 16.1 (8.13) <0.001
RBC, K/𝜇L 4.09 (0.75) 4.15 (0.58) <0.001
ALT, IU/L 185.57 (659) 87.54 (372) <0.001
AST, IU/L 345.31 (1388) 125.49 (631) <0.001
CKPK, IU/L 711.67 (4944) 532.99 (2061) 0.017
SCR, mg/dL 2.49 (2.03) 1.8 (1.76) <0.001
BUN, mg/dL 56.64 (34.15) 38.68 (26.22) <0.001
Glucose, mg/dL 196.91 (85.41) 187.57 (58.71) <0.001
PT, seconds 22.97 (15.88) 20.78 (12.69) <0.001
INR 3.29 (5.49) 2.49 (2.88) <0.001
PTT, seconds 75.79 (47.99) 69.10 (43.64) <0.001
BR, mg/dL 2.08 (4.66) 1.09 (2.02) <0.001

Medications
Class I agents 86 (2.4%) 112 (1.6%) 0.006
Class II agents 2481 (72%) 5366 (76%) <0.001
Class III agents 153 (4.4%) 781 (11%) <0.001
Class IV agents 810 (23%) 1205 (17%) <0.001
Class V agents 2255 (65%) 4622 (66%) 0.716
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function for each tree. The ensemble cumulative
hazard function is then obtained by averaging the
cumulative hazard functions for all of the grown trees.
Nelson-Aalen estimator was also used for comparison
between estimated and real cumulative hazard func-
tions for the validation dataset.

(7) Prediction error is calculated based on Harrell c-
statistics [22] for the ensemble cumulative hazard
function, with the 𝑏th value being the error rate for
the ensemble computed using the first 𝑏 trees. The
method to calculate variable importance (VIMP) for
a variable 𝑥 is presented in [16].

To demonstrate the effectiveness of the RSF based models,
Cox proportional hazards models were then used for com-
paring and evaluating the basic association between potential
risk factors and mortality [23], with Wald tests for signifi-
cance testing. Cross validation [24] was employed to validate
the proposed models. In 𝑘-fold cross validation, the original
dataset is randomly divided into 𝑘 equal-size subsets with
a single subset as the validation dataset and the remaining
𝑘 − 1 subsets as the training datasets. The cross validation
process is repeated 𝑘 times. The results from the 𝑘 processes
are averaged to produce a single estimation. As 10-fold cross
validation is commonly used in most of situations, it was also
used in our study to optimize the prediction performance.

All analyses were carried out with R version 3.0.1. RSFwas
implemented based on the “RandomSurvivalForest” package,
which can be accessed from the public R software packages
freely.

2.4. Baseline Characteristics of the Study Cohort. Thebaseline
characteristics of alive and dead patients one year after
presenting cardiac arrhythmias of the study cohort are shown
in Table 1. During a followup of 1 year for each patient, 3452
individuals died, while 7036 were censored. The mean age
for those who died within one year was 75.32 ± 12.84 and
71.94 ± 23.6 for patients that remained alive. From Table 1
we can see that demographics and clinical risk factors such
as age, BMI, CA, slow arrhythmias, CHF, and stroke were
significantly different between alive and dead patients. All
laboratory results were also significantly different between
alive and dead patients. With the exception of class V agents,
all antiarrhythmic agents were significantly different between
alive and dead patients.

3. Results

3.1. Model Validation. To validate the performance of pro-
posed risk models, prediction ability in terms of c-statistic
with 10-fold cross validation was used in our study. The c-
statistics for different models (comprehensive model versus
simplified model) with different methods (RSF versus CPH)
are presented in Table 2. From the table we can see that the
RSF can improve the discrimination ability greatly for both
comprehensive model and simplified model with high signif-
icance level (c-statistic of 0.81 versus 0.733 for comprehensive
model and 0.799 versus 0.718 for simplified model with 10-
fold cross validation). In addition, the proposed simplified

Table 2:C-statistics for comprehensivemodel and simplifiedmodel
with different methods.

Model Method
RSF CPH 𝑃 value

Comprehensive model 0.810 0.733
<0.01

Simplified model 0.799 0.718
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Figure 1: Minimal depth from RSF analysis. Horizontal line is
threshold for separating predictive variables that are below the line.
The diameter of each circle is in proportion to the forest-averaged
number of maximal subtrees for that variable: 1: cardiac arrest, 2:
log of BUN, 3: log of BMI, 4: log of AST, 5: log of age, 6: log of
SCR, 7: log of BR, 8: log of K, 9: log of WBC, 10: log of ALT, 11:
log of NA, 12: log of CKPK, 13: class II agents, 14: log of glucose,
15: log of INR, 16: CHF, 17: renal failure, 18: log of RBC, 19: log
of PTT, 20: class V agents, 21: log of PT, 22: stroke, 23: sex, 24:
AF, 25: class IV agents, 26: myocardial infarction, 27: hypertension,
28: uncomplicated diabetes, 29: valvular heart disease, 30: slow
arrhythmias, 31: VT, 32: VF, 33: hypothyroidism, 34: complicated
diabetes, 35: class III agents, 36: liver disease, 37: chronic pulmonary
heart disease, 38: acute pulmonary heart disease, 39: class I agents,
40: bundle branch block.

model can realize good predictive accuracy with limited
variables based on a c-statistic of 0.799.

3.2. Comprehensive Risk Model Predicting 1-Year Mortality
with RSF. From the comprehensive RSF analysis with all 40
variables, 14 variables were selected to be predictive for 1-year
mortality, including cardiac arrest, BUN, BMI, AST, age, SCR,
BR, K, WBC, ALT, NA, CKPK, class II agents, and glucose
(the detailedminimal depths of all variables can be seen from
Figure 1, in which 14 predictive variables were separated from
the remaining nonpredictive variables by the horizontal line).
The 6 variables on the extreme left including cardiac arrest,
BUN, BMI, AST, age, and SCR are easily seen to be the most
predictive variables.

3.3. Simplified Model Development for Clinical Application.
In order to improve the availability of the proposed model,
we reduced the comprehensive models to include the most
important 14 risk factors selected from the comprehensive
RSF analysis and developed a simplified model. The error
rates for ensemble cumulative hazard function and VIMP
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Figure 2: Error rates with simplified RSF for ensemble cumulative hazard function and VIMP for predictors. ClsII indicates class II agents.
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Figure 3: (a) Ensemble survival function for each individual. Red line is overall ensemble survival, while green line is Nelson-Aalen estimator.
(b) Comparison of the population ensemble survival function and the Nelson-Aalen estimator.

for predictors are presented in Figure 2 with an estimated
c-statistic of 0.799 (the detailed method for calculating pre-
diction error and VIMP is presented in Section 2). Figure 3
gives the correlation between ensemble survival function
and nonparametric Nelson-Aalen estimator, which is an
alternative estimator for Kaplan-Meier. From the figure we
can see that the ensemble survival function is very close to the
curve with Nelson-Aalen estimator (𝑟 = 0.999, 𝑝 < 0.001).
In other words, the estimated survival function using RSF
basically conforms to the real survival curve.

3.4. Risk Model Predicting 1-Year Mortality with CPH. As
presented in Section 2.3, we also use traditional CPH for
comparison to demonstrate the effectiveness of the proposed
RSF model. After multivariable CPH analysis with all 40

predictors, the following 23 risk factors presented in Table 3
were found to be independent significant predictors for
mortality, during which the first 6 important predictors with
highest absolute BC coefficient were decreasing K, decreasing
BMI, cardiac arrest, class III agents, increasing age, and BUN.
The predictive accuracy of the model was reasonable, with
a c-statistic of 0.733 using 10-fold cross validation. These
variables are a bit different from RSF based model as the RSF
identified the nonlinear effect of the continuous variables on
the mortality, which will be discussed in Section 4.

4. Discussion

4.1. Complex Patterns and Interactions Identified Using RSF.
Figure 4 shows the marginal effect of a given continuous
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Table 3: Cox proportional hazard model with comprehensive risk factors.

Predictors Coefficient 𝑃 value HR 95.0% CI
Lower Upper

Demographics
log age .633 <0.001 1.883 1.637 2.167
log BMI −.979 <0.001 .376 .313 .451

Clinical risk factors
Cardiac arrest .890 <0.001 2.435 2.164 2.741
Slow arrhythmias −.420 <0.001 0.657 0.572 0.755
CHF .119 0.002 1.126 1.042 1.216
Myocardial infraction .168 0.001 1.182 1.069 1.307
Stroke .340 <0.001 1.405 1.266 1.560
Renal failure .243 <0.001 1.275 1.132 1.437

Laboratory risk factors
logK −1.146 <0.001 .318 .256 .395
logWBC .266 <0.001 1.305 1.210 1.408
log RBC −.443 0.001 .642 .494 .834
log BUN .562 <0.001 1.754 1.605 1.916
log glucose .187 0.002 1.205 1.071 1.356
logCKPK −.106 <0.001 .900 .872 .928
logAST .379 <0.001 1.460 1.357 1.572
logALT −.255 <0.001 .775 .722 .832
log PT −.447 <0.001 .640 .523 .782
log INR .334 <0.001 1.397 1.228 1.590
log BR .107 <0.001 1.113 1.062 1.165

Medications
Class I agents 0.376 0.002 1.456 1.147 1.849
Class II agents −0.316 <0.001 0.729 0.670 0.793
Class III agents −0.864 <0.001 0.421 0.352 0.505
Class V agents −0.203 <0.001 0.816 0.754 0.883

HR: hazard ratio; CI: confidence level; log∗ indicates log of variables.

variable on the 1-year mortality from RSF analysis. From the
figure we can see that the association between the continuous
variables like BMI, BR, AST, SCR, and NA and 1-year mor-
tality is nonlinear. Figure 5 displays how the RSF model
shows interaction among the 3 most important continuous
variables including BUN, AST, and BMI and 1-year predicted
mortality. Patients with the highest BUN and AST have the
largest mortality andmost have low BMI. One-year predicted
mortality increased sharply with the elevation of BUN, with
about 15% for those with a BUN below 20mg/dL and nearly
50% for those with a BUN above 58mg/dL.Themortality rate
dependsmore onAST thanBMI for patients with lower BUN,
while more on BMI for those with higher BUN. The above
mentioned interactions and nonlinear relationships were not
prespecified by the analyst but identified by the forest. That
is why the RSF has a better discrimination ability than CPH
with the error rate (1-c-statistic) of 19% (the details about
estimated error rate according to different grown trees can be
seen from Figure 6).

From the above analysis we can see that RSF has the
advantage of automatically identifying the nonlinear effect
and complex interactions among multiple variables, using

plots such as those shown in Figures 4 and 5. Therefore,
RSF can improve the accuracy greatly compared to standard
methodologies (c-statistic of 0.81 versus 0.733 for comprehen-
sive model and 0.799 versus 0.718 for simplified model using
10-fold cross validation), especially for a model with many
continuous variables that have nonlinear effects on the pre-
dictive result. However, RSF is limited in identifying predic-
tors with small number of population, that is, class III agents,
due to its insensibility of noise.Therefore, amore comprehen-
sive survival model will be developed in the future.

4.2. Comprehensive Risk Model versus Simplified Model. The
comprehensive risk model, which is built with demographics
and clinical and laboratory risk factors and antiarrhythmic
agents, has advantage in discrimination ability with c-statistic
of 0.81 using RSF and 0.733 using CPH. However, too many
variables would influence the efficiency and result of the
fitting process usingmathematicalmodels and thus lead to an
unstable performance for the predictionmodel.Therefore, an
optimized model that can balance the discrimination ability
and cost is very important for its availability. The proposed
simplifiedmodel can be used to derive a prognostic score and
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Figure 4: Ensemble mortality against given continuous variables. Mortality is presented in terms of total death number. Points colored with
blue correspond to events, while black ones correspond to censored observations. log∗ indicates log of index.

to estimate the risk of death with good accuracy (c-statistic of
0.799 with 10-fold cross validation) using only 14 risk factors
and thus has great potential to be an optimized risk model in
a real-life cohort of ICU patients with cardiac arrhythmias.

4.3. Risk Factors for Mortality in Patients with Cardiac
Arrhythmias. RSF identified cardiac arrest, BUN, BMI, AST,
age, SCR, BR, K, WBC, ALT, NA, CKPK, class II agents, and
glucose as the 14 predictive factors of survival in the cohort of
10,488 ICUpatients with cardiac arrhythmias.These variables
are a bit different from what was found in traditional Cox
proportional hazard model analysis, by which SCR and NA
are not significant predictors. In fact, both predictors exact
nonlinear effects on mortality from the RSF analysis.

For predictors including BR, AST, SCR, and NA, both
smaller and larger values for the variables would induce high
mortality and the same with other continuous predictors
such as ALT, K, and CKPK. It can be easily understood that

there is a normal range for every laboratory test, too high
and too low mean different kinds of abnormal status. For
example, normal serumNA levels are between approximately
135 and 145mEq/L. A serum level of less than 135mEq/L
is generally defined as hyponatremia while it is defined as
hypernatremia for more than 145mEq/L. It is demonstrated
[25] that the lower the NA level, the higher the risk for the
mortality. Values above 180mEq/L are demonstrated to be
associated with a high mortality rate, particularly in adults
[26]. In addition, we found that the mortality would increase
sharply with the elevation of BUN. It was also demonstrated
that elevation BUN is independent predictive for long-term
mortality [27] and subsequent mortality in patients with
acute coronary syndromes [28].

Predictor BMI exacts complex impact on cardiac arrhyth-
mias mortality. From its marginal effect on mortality pre-
sented in Figure 4, we can find that mortality decreases in a
tiny amplitude with an elevation of BMI at lower BMI, and
then with a sharp increase while close to an approximate
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Figure 5: RSF-estimated 1-year mortality as a function of BUN, AST, and BMI. Smoothed curves are computed based on the estimated
mortality for each patient.

point of 25 kg/m2, after which mortality begins to sharply
decrease. It was also demonstrated [29] that, compared to
normal weight (BMI 18–24.9), underweight (BMI < 18)
was associated with increased risk of death while overweight
(BMI 25–29.9) leads to significantly decreased risk. Inter-
estingly, this pattern is highly dependent on BUN levels
from their interaction analysis (as presented in Figure 5).
For BUN values smaller than 20mg/dL, significantly healthy
renal function, the inflection point pattern is much straighter
(subplots on the extreme top side) and becomes sharper and
sharper with the elevation of BUN level (subplots from top
to bottom). These results validate and add strength to the
findings by Ishwaran et al. [16] using a more important renal
function index BUN rather than creatinine clearance that the
relationship of low BMIwith highmortality depends on renal
function, and this phenomenon disappeared while the renal
function improved. In other words, high mortality rate in
patients with low BMI may not due to underweight, but due
to the weight loss accompanied with renal disease.

During five arrhythmias types, cardiac arrest is identified
as the most important predictor leading to mortality with
bothmethods. It is well known that unexpected cardiac arrest
can lead to deathwithinminutes: this is called sudden cardiac
death (SCD). It was also demonstrated in [30] that sudden
cardiac arrest exacts a significant mortality with a survival

rate of only 2%. However, ventricular fibrillation, which is
considered as one of the most emergency arrhythmias and
responsible for nearly 50% of all causes of out-of-hospital
cardiac arrests, is not identified as a predictive variable in our
models, perhaps because moderate ventricular fibrillation
is reversible if treated in time for ICU patients. It is also
demonstrated [31] that if patients with in hospital VF were
defibrillated early the survival could be very high.

During five classes of antiarrhythmic agents, class II
agents are identified as the most prevalent medications in
arrhythmias patients (nearly 75%) and most effective on
prolonging survival times. Even though class I agents are not
identified as predictive in RSF analysis, they would reduce
survival rate in a certain degree from CPH based model.This
finding validates the results reported by Echt et al. [32], in
which class I agents were found to increase mortality instead
of lowering it after myocardial infarction. That is why class I
agents are least used medications (approximately 2% in the
database).

5. Conclusion

In this paper, we developed a prognosticmodel that combines
demographics and clinical and laboratory risk factors and
antiarrhythmic agents for predicting the mortality of ICU
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Figure 6: Estimated error rate with comprehensive RSF for different
grown trees.

patients with cardiac arrhythmias using random survival
forest. The RSF model showed a much better separation
of 1-year survivors and nonsurvivors with a c-statistic of
0.81 using 10-fold cross validation, compared with 0.733
using conventional CPH. In addition, a simplified model was
built based on the most important 14 risk factors and thus
presented to be more applicable in real-life cohort, showing
good separation with c-statistic of 0.799 with RSF and 0.718
with CPH. Moreover, several variables that exact nonlinear
effects on mortality and with interaction were automatically
identified with RSF.Therefore, RSF has been demonstrated to
be a potential effective approach for survival analysis.

The major limitation of our study is that we have not
validated our models in external cohorts; nevertheless, the
replicability of the result should be sufficient with 10-fold
cross validation method. In addition, due to incomplete data,
some potential predictors, such as triglyceride (TG) and
total cholesterol (TC), were not included in the proposed
model. More comprehensive model can be developed by
adding these potential predictors with potentially better dis-
crimination performance.

List of Abbreviations

CA: Cardiac arrest
VF: Ventricular fibrillation
AF: Atrial fibrillation
VT: Ventricular tachycardia
K: Potassium [mEq/L] in blood
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