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Abstract

Phosphoproteomic experiments routinely observe thousands of phosphorylation sites. To

understand the intracellular signaling processes that generated this data, one or more

causal protein kinases must be assigned to each phosphosite. However, limited knowledge

of kinase specificity typically restricts assignments to a small subset of a kinome. Starting

from a statistical model of a high-throughput, in vitro kinase-substrate assay, I have devel-

oped an approach to high-coverage, multi-label kinase-substrate assignment called IV-

KAPhE (“In vivo-Kinase Assignment for Phosphorylation Evidence”). Tested on human

data, IV-KAPhE outperforms other methods of similar scope. Such computational methods

generally predict a densely connected kinase-substrate network, with most sites targeted by

multiple kinases, pointing either to unaccounted-for biochemical constraints or significant

cross-talk and signaling redundancy. I show that such predictions can potentially identify

biased kinase-site misannotations within families of closely related kinase isozymes and

they provide a robust basis for kinase activity analysis.

Author Summary

Proteins can pass around information inside cells about changes in the environment. This

process, called intracellular signaling, helps to trigger appropriate cellular responses to

environmental changes. One of the main ways information is passed to proteins is

through chemical “tagging,” called phosphorylation, by enzymes called protein kinases. We

can measure the phosphorylation state of practically all proteins in a cell at any moment.

Starting from known cases of phosphorylation by a kinase, many computational methods

have been developed to predict if the kinase might tag a certain spot on another protein or

if an observed tag was attached by the kinase, with different models for each kinase. I have

developed a new method that instead uses a single model to assign one or more kinases to

each observed tag, built from the latest large-scale experimental data. This change in focus

and unbiased training data allows my method to be significantly more accurate than past

methods. I also explored useful applications for my method. For example, I used it to

show that much of our knowledge about which kinase is responsible for each tag is proba-

bly inaccurately biased towards the commonly studied ones.
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This is a PLOS Computational Biology Methods paper.

Introduction

Protein phosphorylation is the most common form of post-translational modification and it

plays a central role in intracellular signaling. Diverse protein kinases catalyze the binding of a

phosphate group to a substrate acceptor residue, typically serines (S), threonines (T) or tyro-

sines (Y) in eukaryotes. The active sites of kinases’ enzymatic domains exhibit phosphoaccep-

tor-residue specificity, which can be broadly classified in eukaryotes as serine/threonine (S/T)-

specific, tyrosine (Y)-specific, or so-called “dual-specificity” kinases. Kinase substrate-specific-

ity is further determined by the protein primary and secondary structural contexts around the

phosphoacceptor residue, as well as by allosteric structural mediation of docking [1, 2].

The sequence contexts around known phosphorylation sites (“phosphosites”) have been

widely used in computational approaches to predict new substrate sites of a protein kinase.

Numerous methods have been developed to achieve this, employing, for example, scoring

matrices [3–9], neural networks [10–12], support vector machines [13, 14], sequence cluster-

ing [15–17], kinase structure [18], or grammatical inference [19]. With the emergence of phos-

phoproteomics by liquid chromatography and tandem mass spectrometry (LC-MS/MS)

enabling the routine detection thousands of phosphorylation sites in a single experiment [20],

there is now little need to predict new phosphorylation sites in silico. The problem has instead

changed to one of kinase-phosphosite assignment. Accordingly, new methods have emerged,

based on models such as support vector machines [21, 22], multiple kernel learning [23],

Naïve Bayes [24], networks [25, 26], and knowledge graphs [27]. Classical scoring matrices are

often still used within these or related methods to model kinase substrate specificity [23, 25,

26, 28].

Two major challenges face modern kinase-substrate assignment methods. First, depen-

dence on literature-derived annotations for model training is subject to biases towards more

commonly studied protein kinases [29]. This strongly limits and biases the kinases for which

assignments can be made, whereas phosphoproteomic data requires unbiased, kinome-scale

assignment. Many phosphosite-prediction methods resolve this imbalance by making predic-

tions at the level of kinase families, however these predictions will still be biased towards the

features of the well-studied family members [29]. Given the increasing evidence of distinct

functional roles even among closely related kinase isozymes (see, e.g., refs. [30–33]), it is exi-

gent that phosphorylation events be resolved at the level of individual kinases. The second

challenge is that many sites can be phosphorylated by more than one kinase [34]. However, a

lack of complete, “all-versus-all” kinase-site training sets has prevented assignment methods

from having been constructed and evaluated in such a multi-label setting. As a result, the pre-

dictive performance for promiscuous or strongly specific kinases can dominate validation met-

rics calculated across all kinase assignments.

Here, I describe improvements in multi-label, kinase-phosphosite assignment over previous

methods for a large subset of the human kinome. I achieve this without sophisticated

machine-learning methods by focusing on the above considerations and building on the latest

proteome-scale, hypothesis-free data. The result is a nested model called IV-KAPhE which is

built on models of in vitro kinase specificity and in vivo functional association. First, I describe

the approach used to construct the model. Then I consider the hypotheses produced by it and

other computational methods about the topology of the human phosphorylation network and
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the utility of these methods in inferring protein kinase activity from quantitative phosphopro-

toemic data.

Materials and methods

In vitro protein kinase specificity models

For detailed, mathematical descriptions of specificity model construction, see Supplemental

Methods in S1 Text. They are described here in brief. All scoring-matrix models were built

from 15-residue sequence windows around the phosphoacceptor (+/-7 residues). To reduce

the influence of highly similar sequences, which likely reflect shared evolutionary history

between substrates rather than kinase specificity, substrate sequences were weighted before

counting [35]. Position-specific pseudocounts were added [36] and supplemented according

to missing tail residues if sites localized to the 5’ or 3’ tail of the substrate protein. Column

weights were calculated as the relative entropy versus background frequencies (position-fre-

quency matrix (PFM) and phosphoproteome-backed position-specific scoring matrices

(PSSMs): position-specific residue frequencies from the full set of observed sequence windows;

proteome-backed PSSMs: proteomic residue frequencies). PFM and PSSM scores were min-

max normalized by calculating the theoretical minimum and maximum scores produced by

the PSSM [8].

The multi-label Naïve Bayes model was built using four components: the PFM constructed

from a kinase’s substrates; the PFM of all the substrates not phosphorylated by the kinase;

and the prior probabilities of a site being phosphorylated by the kinase or by any other

kinase. The priors were empirically estimated as the fraction of substrates in the experiment

that were phosphorylated by the kinase or not, respectively. For determining the posterior

probability that a kinase K phosphorylates a site with sequence window S, given PFM scores sK
for K and s�K for all other kinases and prior probabilities P(K) and Pð�KÞ, the following was cal-

culated:

PðKjSÞ ¼
sKPðKÞ

sKPðKÞ þ s�KPð�KÞ

A kinase was assigned to a site if P(K|S)>0.5.

The “Naïve Bayes+” model further incorporated Bernoulli-distributed features into the

PFM-based likelihood function. Probability parameters of substrates being direct or

indirect interaction partners, of carrying domains enriched among a kinase’s substrates or

interaction partners, or of substrate sites being within a predicted protein domain were esti-

mated empirically from the training data. Domain enrichment was calculated among sub-

strates or interaction partners via Fisher’s hypergeometric test and p-values were adjusted for

false-discovery rate before being tested at a critical value of 0.05. To facilitate the scoring of

new human phosphosites, the Naïve Bayes+ model for human kinases, as generated and appli-

cable by the motif-kit software (see “Implementation”, below), as well as the domain enrich-

ment and kinase interaction data have been archived on Zenodo (doi: 10.5281/zenodo.

6325198).

Multi-label cross-validation. For multi-label performance evaluation, I performed 10

iterations of 10-fold cross-validation, restricting to kinases with models trained on at least 20

substrates. Both kinase substrate-domain enrichment and sequence specificity models were

recalculated from each fold’s training subset. Performance was evaluated using macro-
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averaged (averaged over the set of all kinases,K) precision, recall and F1 scores:

prec ¼

P
K

TPK
TPKþFPK

jKj

rec ¼

P
K

TPK
TPKþFNK

jKj

F1 ¼

P
K

2�prec�rec
precþrec

jKj

where TPK, FPK, and FNK are the true-positive, false-positive, and false-negative counts for

kinase K, respectively. If a score was undefined due to division by 0, it was set to 0.

Implementation. Kinase specificity model training and scoring were implemented in and

performed using a bespoke, free and open-source toolkit called motif-kit (https://www.gitlab.

com/brandoninvergo/motif-kit). Version 1.0, used here, is archived at Zenodo (doi: 10.5281/

zenodo.6325136). The code was written in ANSI C99 for POSIX systems and is dependent

only on the GNU Scientific Library (https://www.gnu.org/software/gsl) and the HDF5 library

(https://www.hdfgroup.org/solutions/hdf5/), with unit tests further depending on the Check

testing framework (https://libcheck.github.io/check/). All other methods (domain enrichment,

multi-label CV, etc.) were implemented using R (version 4.1.0).

IV-KAPhE model

Model construction. The IV-KAPhE model was built via the Random Forest method, as

implemented in the R package “ranger” (version 0.13.1; [37]). The models were built with 500

trees. The variable importance mode (parameter “importance”) was set to “impurity” (the Gini

index) and the splitting rule (parameter “splitrule”) was set to “gini”. The model was trained to

classify a given kinase-phosphosite pair as “true” (the kinase phosphorylates the site) or “false”

(it does not) and set to provide a probability for each class. Feature selection was performed

via variable-importance analysis, as implemented in ranger. The final list of features retained

for model construction were: Naïve Bayes+ posterior probability, GO BP and CC semantic

similarity, STRING coexpression and experimental scores, whether the substrate protein is

itself a kinase, the kinase type (S/T or Y), and the site class (S/T or Y). The model was also

tested using a Support Vector Machine instead of Random Forest, as implemented in the R

package “e1071” (version 1.7–9) using the default settings for classification.

Cross-validation. In vivo kinase-substrate relationships identified in the PhosphoSitePlus

database [34] were used as true positives in the training set for cross-validation. The same

kinases from the true positive set (including multiple occurrences) were randomly assigned to

other sites from the human phosphoproteome [38] to form a negative set. To this end, S/T

kinases were randomly assigned to S/T sites and Y kinases were assigned to Y sites. Addition-

ally, any S/T or Y kinases that were annotated as phosphorylating the opposite site type in the

true positive set were randomly assigned to a similar proportion of such sites in the negative

set. In all cases, the proportion of substrate kinases observed in the positive set was maintained

in the random negative set. Sites were filtered not to include sites found in the true positive

training set or the external testing set (see below). 10-fold cross validation was performed and

evaluated, restricted to kinases with Naive Bayes+ models trained on at least 20 substrates, via

multi-label precision, recall, and F1 as described above. Cross-validation was performed ensur-

ing that any kinase present in a fold had at least one positive and one negative site.
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External validation. IV-KAPhE was trained using the full PhosphoSitePlus and random

kinase-site pair training set as described above. An external evaluation set was prepared by

identifying kinase-substrate relationships inferred via the ProtMapper method [39] which

were not present in PhosphoSitePlus (in vivo or in vitro). These sites were accompanied by fur-

ther random negative kinase-site pairs as described above. Predictions made by the model on

this testing set were evaluated via multi-label precision, recall, and F1.

I furthermore evaluated the assignments for these kinase-site pairs made by phosphopro-

teome-backed PSSMs, Naïve Bayes+, and three other, previously published tools with similar

kinomic scope or model architecture: NetworKIN 3.0 [40], GPS 5.0 [17], and LinkPhinder

[27]. NetworKIN and GPS were run in-house with their default settings, whereas the Link-

Phinder scores produced by the authors were used. For further evaluation, the published strin-

gent LinkPhinder cutoff of 0.672 [27] and the nominal NetworKIN cutoff of 1.0 [40] were

used.

The test set was then re-evaluated with all methods, now allowing all-versus-all kinase-site

assignments, restricted to sites that had at least one true kinase assigned. The rate of novel

assignments was estimated via the macro-averaged false discovery rate (FDR) and compared

to the macro-averaged true positive rate (identical to recall):

FDR ¼

P
K

FPK
TPKþFPK

jKj

TPR ¼

P
K

TPK
TPKþFNK

jKj

“False positive” (FP) is used here by convention although it is a misnomer in the present

case, as we do not know that the assignments are false.

Kinase assignment distributions

IV-KAPhE and Naïve Bayes+ were applied to perform all-versus-all assignments for kinases

with specificity models built from at least 20 substrates against a union of the PhosphoSitePlus

human phosphosite set [34] and a high-confidence set of human phosphosites [38]. The num-

bers of kinases assigned to each phosphosite and the median number of kinases assigned to

sites on each substrate protein were analyzed via histograms. All literature-derived assign-

ments in PhosphoSitePlus and all assignments provided by the authors of LinkPhinder at a

cutoff of 0.672 were analyzed similarly.

Kinase activity analysis

Previously published quantitative phosphoproteomic measurements from a multi-inhibitor

experiment [41] were filtered to remove missing data and measurements taken under serine/

threonine-protein phosphatase 2A inhibition. If a phosphosite was observed on multiple pep-

tides in the data, the peptide with the greatest dynamic range between conditions was retained.

Protein kinases that are regulated downstream of the kinases targeted for inhibition were

retrieved from two sources: Omnipath, a meta-database of protein-protein regulatory relation-

ships [42], keeping only kinase-kinase regulatory relationships with a consensus sign (activat-

ing or inhibiting); and a set of computational predictions of signed kinase-kinase regulatory

relationships [28], with a stringent posterior-probability cutoff of 0.75. Multi-label kinase-sub-

strate assignment was then performed for all target kinases and each of their regulatory-sub-

strate kinases using IV-KAPhE, NetworKIN 3.0, and LinkPhinder at their nominal cutoffs as
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described above and using GPS 5.0 at its “medium” stringency setting. Furthermore, in vivo
kinase-substrate annotations were retrieved from PhosphoSitePlus for the sites.

For each kinase-substrate assignment source, kinase activities were inferred as follows. For

a given kinase and inhibition condition, the log2 fold-changes of any of the kinase’s assigned

substrates were tested for significant difference from the mean log2 fold-change for that condi-

tion via a two-sided Z-test. The final activity was inferred as � log10ðpÞsgnð�xÞ, where sgn is the

sign function, �x is the mean fold-change of the kinase’s assigned substrates, and p is the p-

value of the Z-test. For example, if the kinase’s assigned substrates have a significantly lower

distribution than the full sample, the inferred activity will take a large negative value.

Results

I developed IV-KAPhE over three stages. First, I sought the best sequence-based model to rep-

resent in vitro kinase sequence specificity. Next, I incorporated physical-interaction and struc-

tural factors that mediate phosphorylation under the in vitro, context-free conditions of the

training data. Finally, I nested the results of the in vitro model with features for predicting

kinase-substrate functional associations in a predictor of in vivo phosphorylation (Fig 1).

Naïve Bayes is more appropriate than PSSM models for building a multi-

label assignment method

To construct specificity models for a large fraction of the human kinome, I used results from a

recent phosphoproteomic, in vitro assay of kinase specificity [43]. In this experiment, protein

Fig 1. IV-KAPhE is a multi-label kinase-phosphosite assignment method that nests a multi-label model of in vitro assignment in a model of in
vivo functional association. Naïve Bayes+ consists of sub-models for each kinase, trained from kinase-specific, high-throughput in vitro kinase-

substrate relationships. These sub-models together comprise a final, multi-label Naïve Bayes model. IV-KAPhE is a monolithic, multi-kinase Random

Forest model trained from all literature-derived kinase-substrate annotations and random pairs as negative cases.

https://doi.org/10.1371/journal.pcbi.1010110.g001
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extracts from HeLa cells were first treated with a thermo-sensitive protein phosphatase and

then spiked with a recombinant protein kinase. The phosphorylated extracts were digested

and subjected to phosphoproteomic analysis by LC-MS/MS. This provided in vitro substrates

for 349 protein kinases, ranging from 1 to 1672 substrates per enzyme, with 322 kinases having

at least 20 substrates. As a benefit of using a single cell line, each kinase was exposed to approx-

imately the same set of potential substrates, detectable within the limits of random sampling

by shotgun proteomics.

With this data, I sought to identify the best-performing specificity model on which to build

a kinase-substrate assignment method. I first considered three scoring matrix-based specificity

models: the position-frequency matrix (PFM) alone, the position-specific scoring matrix

(PSSM) with log-likelihood ratios of the PFM to proteomic residue frequencies, and the log-

likelihood ratio PSSM backed by position-specific phosphoproteomic residue frequencies. I

hypothesized that the phosphoproteome-backed PSSM would be most appropriate for the

task. Next, I took advantage of the of the fact that the design of the experiment provides true-

negative kinase-site assignments to reformulate PFM-based specificity as a multi-label Naïve

Bayes model [44]. I expected that the additional prior probability information would further

strengthen assignments over PSSM models.

Breaking from convention (e.g. ref. [8]), for performing multi-label kinase-substrate assign-

ment I retained the central residue in scoring. This allowed me to assign S/T and Y kinases

simultaneously and to handle dual-specificity kinases cleanly. To strengthen the distinction

between assignment to S/T and Y kinases, I incorporated a position-weighting scheme into the

models to provide greater scoring weight to highly resolved positions. I opted to use relative

entropy for weighting as it provides better separation between well-defined and degenerate

positions than information content does (Fig A in S1 Text). To simplify multi-label assign-

ment, I aimed to use a single score cutoff for all kinases. Because each kinase’s PFM is unique,

the scores produced by PFMs or PSSMs will have different theoretical and empirical ranges for

each kinase (Fig B in S1 Text). As a result, an effective score cutoff for one kinase might be out-

side the theoretical range for another kinase. To overcome this, I min-max normalized the

PFM and PSSM scores to be between 0 and 1 [8].

I evaluated the models via 10-fold cross-validation. As the goal is to have good performance

across all kinases, I chose macro-averaged precision and recall (i.e. averaged across kinases) as

evaluation metrics. I avoided the Receiver Operator Characteristic (ROC) analysis commonly

used in single-label prediction because the strong imbalance between positive and negative

cases per kinase would de-emphasize false positives and inflate the area under the curve [45].

Using these metrics, I found that raw PFMs performed poorly, while PSSM-based methods

and Naïve Bayes showed overall similar performance (Fig 2a). Nevertheless, phosphopro-

teome-backed PSSMs out-performed proteome-backed ones, confirming that a phosphopro-

teome background is preferable for kinase-substrate assignment. They also performed slightly

better than Naïve Bayes, against my expectations.

The shapes of the precision-recall curves (Fig 2a) may appear strange compared to standard

single-label curves. They can be explained first by the strong imbalance between positive and

negative cases per kinase, producing very low precision at low cutoffs (i.e. at high recall). Sec-

ond, at more stringent cutoffs (low recall) a growing subset of kinases is no longer assigned to

any sites, in which case precision is undefined and set to 0 for each kinase so affected. Thus,

the “hump” in the macro-averaged precision-recall curves (Fig 2a) represents the point at

which further gains in precision from more stringent cutoffs are offset by not only lower aver-

age recall but also a reduction in effective kinome coverage.

Turning to the macro-averaged F1 score (macro-F1), which assesses the balance between

precision and recall, we see different relationships between macro-F1 and cutoff (Fig 2b).
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Notably, macro-F1 scores of scoring-matrix methods peak at specific cut-offs before dropping

precipitously, whereas Naïve Bayes gives a consistent score across much of the cutoff range.

This can be explained by observing the distributions of scores or probabilities produced by the

different methods (Fig 2c). While the scoring-matrix methods produce many intermediate

scores (particularly for S/T kinases), Naïve Bayes mostly assigns probabilities close to 0 or 1

(Fig 2c). Moreover, the Naïve Bayes model better rejects inappropriate phosphoacceptors (e.g.

Y phosphoacceptors for S/T kinases) in this way (Fig 2c). Thus, the PFM and PSSM-based

models are particularly sensitive to the chosen score cutoff.

Naïve Bayes has the convenient property of a well-defined probability cutoff for assignment

for all kinases (P> 0.5; see Supplemental Methods in S1 Text). No such definition exists for

the PSSM model. Given the PSSM models’ sensitivity to cutoff selection, I sought to determine

a robust selection method. As illustrated in Fig 2c, there is a sigmoidal relationship between

phosphoproteome-backed PSSM scores and Naïve Bayes posterior probabilities, which could

possibly be used to produce a PSSM score cutoff analogous to 0.5 posterior probability. Indeed,

the phosphoproteome-backed PSSM score can be approximated by a logit transformation of

the Naïve Bayes posterior probability (see Supplemental Methods in S1 Text). This approxima-

tion includes a dependency on the number of substrates used to fit a model, such that the

Fig 2. Naïve Bayes models of in vitro kinase-phosphosite assignment have important performance differences from PSSM-based methods. a)

PSSM methods and Naïve Bayes perform similarly in cross-validation of multi-label kinase-substrate assignment via macro-averaged precision versus

recall. The expanded Naïve Bayes+ model outperforms the other methods. Points indicate the scores at the cutoff that maximizes that macro-F1 score.

Black error bars showing 95% confidence intervals at these points are indiscernible in most cases, indicating highly robust performance across cross-

validation folds. b) The macro-averaged F1 scores behave differently with score/probability cutoff for scoring matrix-based models versus Naïve Bayes.

PSSM and PFM-based models require a strictly defined cutoff. Naïve Bayes+ again outperforms the others and retains the same flat relationship with

cutoff as basic Naïve Bayes. Points indicate the maximum value. Bands indicate the 95% confidence interval. Color assignments are the same as in (a). c)

Example score distributions for a S/T kinase (AKT1) and a Y kinase (FYN) from one round of cross-validation. For S/T kinases, Naïve Bayes

probabilities are largely distributed close to 0.0 and 1.0 while PSSM scores take more intermediate values, notably including scores for Y sites. Y kinases

show better separation for both methods. d) Left: Logistic curves relating phosphoproteome-backed PSSM scores to Naïve Bayes probabilities. Each

curve represents a fitted logistic function for each kinase. The color of the curve represents the number of kinase substrates used to fit each specificity

model. Right: The fitted logistic curve parameters versus number of substrates. S/T and Y kinases have negative relationships between inflection point

and numbers of substrates. e) Min-max normalization of PSSM scores does not produce a stable inflection point independent of the number of

substrates.

https://doi.org/10.1371/journal.pcbi.1010110.g002
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0.5-equivalent cutoff decreases with increasing number of substrates. In other words, because

of varying training-set sizes, the log-likelihood PSSM score at which the foreground evidence

effectively outweighs the background evidence also varies, whereas this is stabilized through

normalization against total probability in Naïve Bayes.

To verify this, for each kinase I fit a logistic curve to their PSSM scores versus Naïve Bayes

posterior probabilities calculated on a high-confidence set of human phosphosites [38] (Fig

2d). The fitted inflection point provides the PSSM score that is equivalent to a posterior proba-

bility of 0.5. As predicted, I observed a strong dependence between this inflection point and

the number of substrates used to fit the models, which differed with kinase type. I then checked

whether min-max normalization of the PSSM scores remedies the problem (Fig 2e). For S/T

kinases, the inflection points were generally around 0.75, which is close to the observed

macro-F1-maximizing cutoff of 0.803 (Fig 2b). However, both kinase types still had a decreas-

ing inflection point with increasing number of substrates.

Together, these results suggest first that a raw PFM (as used in, e.g., ref. [22]) is the weakest

model. PSSMs perform best with a position-specific phosphoproteome background, but they

require kinase-specific cutoffs, even after normalization, for multi-label assignment. The Naïve

Bayes model offers good performance and a stable and universal cutoff. It is thus a better foun-

dation for incorporating other features.

Physical-interaction and structural features improve in vitro Naïve Bayes

predictive performance

Kinases can be optimized to bind with their substrates by physical interactions outside the

enzymatic kinase domain’s active site, and structural features of the substrate might further

impact these interactions. These would remain relevant in the in vitro experimental environ-

ment and thus may be exploited to improve the model. Given the Naïve Bayes assumption of

feature independence, it is trivial to incorporate other features. Thus, I constructed a second

Naïve Bayes model (“Naïve Bayes+”) with added features based on: proteins physically inter-

acting, directly or indirectly, with the kinase; proteins carrying a domain that is enriched

among the kinase’s substrates or interactors; and the phosphosite being within a protein

domain. These features were modeled as Bernoulli-distributed, and each showed an overall

difference across the kinome in empirical probability among substrates versus non-substrates

(Fig 3). As with calculating residue frequencies in substrate sequences, these empirical proba-

bility estimations may be impacted by stochastic detection of low-abundance substrates by

LC-MS/MS, particularly for kinases with few substrates.

In cross-validation, the Naïve Bayes+ model produces superior macro-averaged precision

and recall than the other methods (Fig 2a). Its F1 score is similarly higher, while exhibiting the

same flat behavior as the sequence-only Naïve Bayes model (Fig 2b). Given this improvement

in performance I carried the Naïve Bayes+ model forward for nesting into the in vivo model.

IV-KAPhE produces accurate multi-label assignment of in vivo kinases to

phosphosites

I constructed an in vivo kinase-substrate assignment method using the Random Forest model

on five features for protein-protein functional association (Fig 1): the kinase-specific Naïve

Bayes+ posterior probability for the site; the semantic similarities between the Gene Ontology

(GO) “biological process” (BP) and “cellular component” (CC) annotations of kinase and sub-

strate; and coexpression and high-throughput experimental scores between kinase and sub-

strate from the STRING database [46, 47]. Other features from STRING were discarded either

by feature importance analysis (gene fusion, genome co-occurence, conserved neighborhood)
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Fig 3. Additional predictive features of in vitro kinase substrates can be discriminated in the training data. Distributions of empirical

probabilities are represented by the kernel density estimate of the kinases’ respective Bernoulli probability parameters. Each feature

trends towards higher probability in in vitro substrates than in other sites.

https://doi.org/10.1371/journal.pcbi.1010110.g003
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or to avoid potential circularity with the training set (database imports, text-mining, combined

score). I added three further features to strengthen possible discrepancies in performance (Fig

1): whether or not the substrate is itself a kinase, necessary because the functional association

scores are symmetrical and can therefore produce false positives if the enzymatic roles are, in

fact, reversed; whether the kinase is a S/T or Y kinase, to account for kinase-type differences in

Naïve Bayes+ probability distributions; and the phosphoacceptor type (S/T or Y), for similar

reasons. Because there are relatively few features and none of these require any special consid-

eration, other machine learning models could be substituted in for in vivo prediction. Here, I

chose Random Forest for its simplicity and for its facility in the analysis of feature importance.

For brevity, I will call this model “IV-KAPhE” (“In Vivo-Kinase Assignment for Phosphory-

lation Evidence”). For training IV-KAPhE, I took advantage of the fact that all kinase-specific

substrate specificity information was used when training the underlying Naïve Bayes+ model.

I thereby trained IV-KAPhE as a monolithic, non-kinase-specific model on the 7322 human in
vivo kinase-substrate relationships annotated in the PhosphoSitePlus database [34] and on an

equally sized set of random assignments of kinases to human phosphorylation sites [34, 38] as

negative cases. During training, feature importance analysis revealed the Naïve Bayes+ poste-

rior probability, the STRING “experimental” score, and GO BP semantic similarity to be the

most important (Fig 4a). The features accounting for substrate kinases, S/T versus Y kinases,

and S/T versus Y sites carried low importance but their omission worsened performance, par-

ticularly for Y kinases.

While IV-KAPhE was built as a multi-label method, the training set does not represent a

full, all-versus-all compendium of kinase-phosphosite assignments among the represented

kinases and sites. This prevents full evaluation of the method in a true multi-label setting. I

nevertheless evaluated it and the individual features using multi-label metrics as described

above. Assessing the quantitative features’ individual predictive performances via macro-preci-

sion and macro-recall on 10 folds of the training data, GO BP semantic similarity and the

STRING “experimental” score showed the highest performance (Fig 4b). Overall, the full

model showed strong performance in cross-validation, reaching an average precision of 0.713

and recall of 0.679 at its nominal probability cutoff of 0.5 and outperforming the individual

features (Fig 4c). The macro-F1 score at this cutoff, 0.679, was near-maximal (Fig 4c). Relaxing

the cutoff slightly would improve recall, and thus F1, without significant loss of precision. To

verify that the choice of machine learning model does not strongly impact performance, I

repeated the cross-validation analysis, substituting a Support Vector Machine for the Random

Forest model. Performance was overall quite similar (macro-precision: 0.676; macro-recall:

0.620; macro-F1: 0.626), confirming that the choice of in vivo model is indeed flexible.

I next evaluated IV-KAPhE’s performance on an external data set. To achieve this, I col-

lected kinase-substrate relationships identified using the ProtMapper method from databases

and text-mining [39]. I omitted any relationships present in the PhosphoSitePlus database,

from in vivo or in vitro experiments, to avoid validating on sites used in training IV-KAPhE or

other methods. I then matched these 6199 previously unseen relationships with an equal num-

ber of random kinase-site relationships.

I compared IV-KAPhE to the in vitro Naïve Bayes+ and phosphoproteome-backed PSSM

models, as well as to other previously published methods with similar or better kinome cover-

age (Fig C in S1 Text). To the best of my knowledge, the methods that meet that criterion are

GPS 5.0 [17] and LinkPhinder [27], both of which have greater coverage than IV-KAPhE. I

also compared it to NetworKIN 3.0 [12, 40], which has much lower coverage, but it shares a

similar in vitro/in vivo hierarchical structure as IV-KAPhE. It must be stressed that none of

these previously published methods were explicitly developed for multi-label assignment. Nev-

ertheless, in order to compare their performance to IV-KAPhE, they will herein be evaluated
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under a multi-label paradigm. Assignments from GPS were as selected by the software’s

default, “medium”-stringency behavior, because each kinase requires a different score cutoff.

For LinkPhinder and NetworKIN, I evaluated performance over a range of cutoffs, with a

focus on LinkPhinder’s published high-stringency cutoff of 0.672 [27] and NetworKIN’s nomi-

nal likelihood-ratio cutoff of 1.0 [40]. Each method covered a different, incomplete subset of

the kinases in the test set (Fig 4d), with GPS 5.0 having the greatest coverage. NetworKIN has a

significantly smaller coverage than the other methods. In order not to penalize models for cov-

erage, each one was evaluated only on the subset of kinases that it could assign.

Like the training set, this test set is likely incomplete and cannot be fully evaluated in an all-

versus-all multi-label sense. Therefore, only those relationships explicitly annotated in the test

set were evaluated. I first looked at per-kinase F1 score performance, which underlies the

macro-averaged metric (Fig 4e). From this view, it is clear that IV-KAPhE produces largely

Fig 4. IV-KAPhE performs well in cross-validation and significantly outperforms previously published methods on anexternal validation set. a)

Naïve Bayes+ posterior probability, GO BP semantic similarity, and STRING experimental score had the greatest importance when training the

Random Forest models. Error bars show standard error across cross-validation runs. b) Predictive performance of individual quantitative features, as

assessed by average macro-precision and macro-recall across 10 folds of the training data, reveals GO BP semantic similarity and STRING experimental

score as being the most predictive individual features. c) Cross-validation evaluated via macro-averaged precision, recall and F1 all reflect strong

performance by IV-KAPhE. d) IV-KAPhE’s coverage of the external test data set is similar to LinkPhinder’s but is lower than that of GPS 5.0. e) Kinase-

specific F1 scores reveal IV-KAPhE’s consistently strong performance across most kinases, with similar performance for S/T and Y kinases, compared

to other methods. f) IV-KAPhE outperforms the simpler PSSM-based and Naïve Bayes+ methods as well as other previously published methods in

kinase-substrate assignment of an external validation set. Points indicate the scores for simple assignments (GPS) or the scores at nominal cutoffs for

quantitative predictions (cutoffs—IV-KAPhE: 0.5, PSSM: 0.75, Naïve Bayes+: 0.5, LinkPhinder: 0.672 [27], NetworKIN 3.0: 1.0 [40]). Error bars show

the 95% confidence intervals at these points. g) IV-KAPhE has a higher macro-averaged F1 score than the other methods. Points and color assignments

are as in (e). Bands indicate the 95% confidence interval. h) IV-KAPhE similarly outperforms the other methods in Receiver Operating Characteristic

(ROC) curve analysis for this balanced test set. Points and color assignments are as in (e). Error bars show 95% confidence intervals. i) Focusing on

multi-label assignment for sites in the test set with known kinases, the macro-averaged false discovery rate (FDR; i.e. rate of novel assignments)

dominates the average true positive rate (TPR). The curves are similar for most methods. At its nominal cutoff, IV-KAPhE has the second-highest FDR,

but it is matched by the highest TPR.

https://doi.org/10.1371/journal.pcbi.1010110.g004
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consistent, high F1 performance across both S/T and Y kinases compared to the other meth-

ods. NetworKIN, GPS, and LinkPhinder all exhibit highly varied performance, with GPS nota-

bly showing weaker performance for Y kinases. PSSMs and Naïve Bayes+ likewise show varied

performance and weak Y-kinase performance. Note that kinases with few test-case sites tend

to cluster near 0 and 1 due to lack of resolution in calculating precision and recall.

In macro-averaged precision and recall, LinkPhinder and GPS 5.0 performed only as well

as the simpler, in vitro PSSM and Naïve Bayes+ models (Fig 4f). NetworKIN and IV-KAPhE

together showed the best precision, but IV-KAPhE provided it with superior recall and aver-

aged across a much larger portion of the kinome (Fig 4f). Returning to the macro-F1 score, we

similarly see that IV-KAPhE better balances precision and recall than the other methods (Fig

4g). As this test set is balanced for each kinase between positive and negative cases, a ROC

analysis is feasible (Fig 4h). Comparing the macro-averaged false-positive and true-positive

rates provides further evidence that IV-KAPhE (AUC = 0.833) out-performs the other meth-

ods (AUC: LinkPhinder = 0.705; NetworKIN 3.0 = 0.673; Naive Bayes+ = 0.599;

PSSM = 0.572; as a range of cutoffs were not tested for GPS 5.0, no AUC could be calculated).

I next evaluated how many novel assignments are generated by the methods when perform-

ing all-versus-all kinase-site assignment. Considering only the kinases assignable from the test

set and only the test-set sites for which at least one true kinase had been assigned, I compared

the macro-averaged false discovery rate (FDR) and true positive rate (TPR) across the different

methods. Here “false discovery rate” is a misnomer, as we do not know whether these assign-

ments are true or false. For all models, FDR dominates the TPR: while the fraction of known

cases correctly assigned may be high, the fraction of assignments that are novel is much higher

(Fig 4i). IV-KAPhE’s high FDR is nevertheless matched by a higher TPR than the other mod-

els. Thus, although IV-KAPhE also produces many novel assignments, we have a greater

expectation of precision in its predictions

Computational assignments hypothesize widespread signaling cross-talk

and redundancy

The topology of the human phosphorylation network is largely unresolved and biased towards

commonly studied kinases [29, 34]. One open question is to what degree sites are phosphory-

lated by few kinases, as illustrated in canonical signaling pathway maps, versus multiple

kinases through signaling noise, redundancy, or cross-talk between pathways. By applying a

near kinome-scale kinase-site assignment model to a set of phosphosites representative of the

phosphoproteome, we can produce hypotheses for such questions. Accordingly, I used Naïve

Bayes+ and IV-KAPhE to generate all-versus-all kinase-substrate assignments for a set of

271432 unique human phosphosites (P> 0.5 assignments are archived at doi:10.5281/zenodo.

6325198), derived from the union of the entire PhosphoSitePlus human phosphosite set [34]

and a high-confidence human phosphoproteome [38]. I compared these to literature-derived

assignments from PhosphoSitePlus and to LinkPhinder’s assignments for human phosphosites

in PhosphoSitePlus (high-stringency cutoff).

Most sites with a causal kinase annotated in PhosphoSitePlus have a single kinase annotated

to them and very few have more than four annotated kinases (Fig 5a). Thus, from the litera-

ture, we would suppose that multiple kinases rarely phosphorylate the same site. However this

resource contains little data for understudied kinases such as isozymes of more commonly

studied ones, which tend to have similar sequence specificities [29, 48].

In contrast, Naïve Bayes+ predicts that most S/T sites are phosphorylated by multiple

kinases, but generally fewer than 10 (Fig 5a). However, it also predicts that a subset of S/T sites

can be phosphorylated by around 20 different kinases. Conversely, the method assigns most
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tyrosine kinases to each Y site, pointing to a clear technical shortcoming of the in vitro model:

cellular context plays the major role in determining Y kinase specificity. LinkPhinder and

IV-KAPhE, on the other hand, both produce long-tailed distributions, with some sites having

over 100 kinases assigned to them (Fig 5a). Reassuringly, the multi-modal distribution of

Naïve Bayes+ is smoothed out by the biological context incorporated into IV-KAPhE, and it

assigns fewer kinases to Y sites than Naïve Bayes+.

We can similarly ask whether specific proteins act as signaling hubs between pathways,

with multiple kinases phosphorylating each of their phosphosites. To answer this, I compared

the median number of kinases assigned to sites for each substrate protein (Fig 5b). Again, liter-

ature-based assignments in PhosphoSitePlus suggest that most proteins are phosphorylated by

a single kinase at each site. All three computational methods, on the other hand, propose the

hypothesis that many proteins can be phosphorylated by multiple kinases at each of their sites

(Fig 5b), i.e. that functional hubs on the protein-protein functional association network

encounter many kinases, each with potentially similar, degenerate sequence specificity to the

others.

One possible technical explanation of this for IV-KAPhE is that hub proteins’ strong func-

tional association scores may override low Naïve Bayes+ probabilities via some branches in the

Random Forest model. This could arise from low, false-negative Naïve Bayes+ probabilities in

the training set. As a result, IV-KAPhE would produce false positives for proteins occupying

central positions in the network. For sites on such proteins, a post-hoc, stringent filter could be

applied to select only assigned kinases with high Naïve Bayes+ scores.

Fig 5. Phosphoproteome-wide kinase assignments suggest more widespread multi-kinase phosphorylation than existing literature annotations

do. a) Histograms of the number of kinases associated with sites in the phosphoproteome reveal different views of the phosphorylation network.

Literature annotations in PhosphoSitePlus suggest most sites are regulated by one or two kinases. In vitro Naïve Bayes+ predicts some S/T sites are

“hubs” and all Y sites can be phosphorylated by most Y kinases. LinkPhinder and IV-KAPhE, in contrast, predict a long tail of hub sites. b) Histograms

of the median number of kinases assigned per site for all proteins likewise show different predictions for hub proteins. Literature annotations suggest

most proteins are phosphorylated by one kinase at each site. The computational methods all hypothesize multiple kinases per site, with some substrate

proteins being very promiscuous at all their sites.

https://doi.org/10.1371/journal.pcbi.1010110.g005
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IV-KAPhE predictions identify possible misannotations of kinase isozyme

activity

The composition of the human kinome is the result of extensive duplication events and is thus

defined by families of kinases with highly similar sequence specificities [48]. Among closely

related kinases, frequently treated as isozymes (and as which I will refer to them for brevity),

often only one or two receive significant research attention. This leads to an imbalance in

kinase-substrate annotations among them [29]. Taking advantage of IV-KAPhE’s broad

kinome coverage, which is less biased in composition than literature annotations, I investi-

gated patterns of substrate assignment among closely related isozymes.

First, I considered ribosomal protein S6 kinase alpha (S6K-α) isozymes, among which iso-

zymes 1 and 3 are the most commonly studied [29]. Using the full phosphoproteome assign-

ments described in the previous section, I collected IV-KAPhE assignments of S6K-α isozymes

for any site annotated in PhosphoSitePlus as being phosphorylated, in vitro or in vivo, by at

least one of them (S1 Table; Fig 6a). The bias towards annotations for S6K-α-1 and -3 is plainly

visible. There are a number of sites that IV-KAPhE predicts as being putative substrates of all

six isozymes, pointing to multi-kinase phosphorylation, as well as some that are not well pre-

dicted for any isozyme.

More interestingly, there are sites for which an isozyme has stronger probability of phos-

phorylating the substrate than the annotated isozyme(s), supporting the argument that multi-

label assignment should be carried out for kinases themselves rather than for kinase families or

higher levels of classification. For example, site S103 on serum response factor (SRF; Uniprot:

P11831 / SRF_HUMAN) is annotated as a substrate of isozyme 5, whereas isozyme 1 has the

strongest evidence (Fig 6a). This annotation was derived from an in vitro study, in which the

isozyme used was not specified [49]. Two sites on Rho GTPase-activating protein 31 (ARH-
GAP31; Uniprot: Q2M1Z3 / RHG31_HUMAN), S1106 and S1178, are annotated as substrates

of isozyme 1, whereas IV-KAPhE gives a stronger probability to isozyme 2 (Fig 6a). In this

case, a S6K-α-1 gene construct was used to induce phosphorylation under controlled condi-

tions, while siRNAs targeting isozymes 1 and 3 were used to validate endogenous phosphoryla-

tion [50]. Furthermore, site S1178 was not, in fact, tested, but rather merely identified as a

putative site by S6K-α sequence-motif analysis [50]. Finally, site T929 on protein KIBRA

(WWC1; Uniprot: Q8IX03 / KIBRA_HUMAN) is annotated to isozymes 1 and 3, however

IV-KAPhE assigns low probabilities to both of these, instead favoring isozyme 5 (Fig 6a). Here,

the annotations are based on an in vitro analysis using recombinant isozymes 1 and 3 [51]. By

incorporating in vivo information, IV-KAPhE proposes the more likely causal isozyme. I note

that in many of these cases, IV-KAPhE assigns multiple kinases to the sites, albeit at varying

degrees of probability, so the original assignments may be correct but incomplete.

I then carried out a similar analysis for calcium/calmodulin-dependent protein kinase type

II (CaMK-II) subunits, which can form homo- or heteromultimeric holoenzymes, potentially

complicating kinase assignment. As with S6K-α, some sites are assigned with similar probabili-

ties to multiple subunits, while others point to possible misannotations (S2 Table; Fig 6b). For

example, sites S252, S257, S282, and S285 on transcription factor C-ets-1 (ETS1; Uniprot:

P14921 / ETS1_HUMAN) are all annotated to the most commonly studied subunit, α, whereas

IV-KAPhE indicates that the evidence supports the least commonly studied subunit, β [29], as

the causal protein kinase. In the associated study, phosphorylation was tested in vitro using the

α subunit, while it was tested in vivo through expression of a β-γ construct [52]. Interestingly,

while PhosphoSitePlus only features the in vitro assignment to the α subunit, the ProtMapper

corpus includes an assignment to the β subunit. As another example, site S2808 on ryanodine

receptor 2 (RYR2; Uniprot: Q92736 / RYR2_HUMAN) is annotated to subunit α, whereas
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Fig 6. IV-KAPhE can identify instances where literature-derived kinase-phosphosite assignments are probably assigned in error to commonly

studied isozyme, instead of a lesser-studied one. a) IV-KAPhE assignments of ribosomal protein S6 kinase alpha isozymes for all sites annotated in

PhosphoSitePlus as being phosphorylated by at least one of the isozymes. Red colors indicate assignments predicted as likely by IV-KAPhE. Highlighted

sites, discussed in the text, are examples that IV-KAPhE predicts are more likely to be phosphorylated by a different isozyme than the one annotated. b)

IV-KAPhE assignments of calcium/calmodulin-dependent protein kinase type II subunits to annotated sites, as described in (a).

https://doi.org/10.1371/journal.pcbi.1010110.g006
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IV-KAPhE most strongly assigns it to the δ subunit (Fig 6b). In this case, the subunit or sub-

units used in the original, in vitro experiment are not specified [53]. Finally, in a similar case,

sites S165 and T154 on RING finger and CHY zinc finger domain-containing protein 1

(RCHY1; Uniprot: Q96PM5 / ZN363_HUMAN) are annotated to subunit α, whereas

IV-KAPhE assigns a very low probability to this subunit, strongly preferring subunit δ. This

annotation was derived from the in vitro use of a CaMK-II inhibitor (Autocamtide-2 Related

Inhibitory Peptide II, for which subunit specificity has not been described) and a recombinant

rat kinase, the subunit of which was not specified [54].

IV-KAPhE better enables high-coverage kinase activity analysis

A primary goal in performing a phosphoproteomic experiment is to deduce the signaling

events that generated the data. Given quantitative phosphoproteomic measurements and a list

of known substrates, the relative activity of a kinase can be inferred by a variety of methods,

such as a Z-test, gene set enrichment analysis, or multiple linear regression models [55, 56].

Typically, literature-derived kinase-substrate relationships are used, because false-positive sub-

strate assignments from in silico methods introduce large variance into the pool of measure-

ments of the substrates [56]. However, doing so inherently limits the numbers of kinases for

which relative activity can be inferred.

To test whether IV-KAPhE permits more accurate inference of kinase activity over past

kinase-substrate prediction or assignment methods, I performed a kinase-activity analysis on a

quantitative phosphoproteomics data set in which 20 different protein kinase inhibitors were

applied to MCF7 cells [41]. For each condition, we expect the protein kinases targeted by the

chemical inhibitor (Table A in S1 Text) to exhibit decreased activity. Furthermore, any protein

kinases that are enzymatically activated by a target kinase should also exhibit decreased activ-

ity, while kinases whose activity is negatively regulated by a target kinase should show

increased activity. These secondary expectations are tempered by the possibility of compensa-

tory regulatory activity by other protein kinases. To account for these secondary inhibition

effects, I identified all kinases that are likely to be regulated by each target kinase by integrating

a literature-derived, signed kinase regulatory network from the Omnipath service [42] with a

computationally predicted, signed kinase-kinase regulatory network [28].

For each putatively affected kinase under each condition, I calculated Z-score-based kinase

activity scores [56], based on kinase-phosphosite assignments from each of the in silico meth-

ods assessed above (Fig 7a). Similarly, I calculated kinase activities using in vivo literature-

derived annotations from PhosphoSitePlus, which provides the gold-standard in kinase activ-

ity inference [56] (Fig 7a). Surprisingly, PhosphoSitePlus annotations enabled very few kinases

to be inferred as having altered activity, however notably these were generally targets of inhibi-

tion. LinkPhinder similarly enabled few inferences of altered activity. NetworKIN 3.0, GPS 5.0,

and IV-KAPhE all produced substantially more inferences, however these also included infer-

ences of unexpected activities (e.g. up-regulation of a target kinase). Such errors could be

attributable to, for example, false-positive substrate assignments, false-positive regulatory rela-

tionships, technical noise in phosphosite quantification, or compensatory phosphorylation of

true-positive targets by other kinases.

Focusing on kinases that are expected to be down-regulated, ideal activity inferences would

be strictly negative. By pooling these kinases from all of the conditions (noting that some

kinases may appear multiple times) and observing the distribution of inferred activities, we

can compare the general performance of each of the methods (Fig 7b). In pairwise compari-

sons, IV-KAPhE infers significantly lower activities than all of the other methods (one-sided

Wilcoxon signed-rank test on matched kinase pairs, with Benjamini-Hochberg p-value
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correction for false discovery rate; IV-KAPhE vs. Networkin 3.0: n = 175, V = 4768,

p = 6.3 × 10−6; vs. GPS 5.0: n = 262, V = 12272, p = 2.7 × 10−5; vs. LinkPhinder: n = 273,

V = 13474, p = 3.1 × 10−5; vs. PhosphoSitePlus: n = 122, V = 1717, p = 1.0 × 10−7). The mean

difference in inferred activities for matched pairs between IV-KAPhE and the other assign-

ment sources ranged from -0.614 (LinkPhinder) to -0.943 (PhosphoSitePlus).

The kinase activity score used here is based on the log10-transformed p-value of the Z-test.

These results indicate that the scores derived from IV-KAPhE assignments correspond to p-

Fig 7. IV-KAPhE enables more robust and consistent kinase-activity inference. a) Target kinases and their downstream substrate kinases in a multi-

inhibitor quantitative phosphoproteomics experiment [41] are expected to have altered enzymatic activities. Assignments derived from NetworKIN 3.0,

GPS 5.0, and IV-KAPhE make stronger inferences than those from LinkPhinder or in vivo literature-derived annotations from PhosphoSitePlus,

however these methods also erroneously predict increased activity in some target kinases and downstream substrate kinases that they enzymatically

activate. Each column represents a different kinase inhibitor condition (see Table A in S1 Text), in which green dots are direct targets of the inhibitor,

orange triangles are kinases that are enzymatically activated by a target kinase, and violet squares are kinases that are enzymatically inhibited by a target

kinase. Gray, dashed lines indicate activity levels of -2.5 and 2.5, corresponding to Z-test p-values of 10−2.5. b) IV-KAPhE provides more consistent

inference of negative activity in target kinases and substrate kinases that they enzymatically activate than other computational methods as well as in vivo
literature-derived annotations from PhosphoSitePlus. Point colors and shapes, as well as the gray dashed lines, are as described for panel (a).

https://doi.org/10.1371/journal.pcbi.1010110.g007
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values that are, on average, up to an order of magnitude smaller than those produced from the

other assignment sources. Taking appropriate precautions concerning the possibilities of false-

positive assignments, then, the use of IV-KAPhE kinase-substrate assignments can provide

more confident activity inferences, on average, than even in vivo literature-derived annotations

and it does so with larger kinome coverage than literature-derived sources.

Discussion

With the widespread availability of phosphoproteomics, methods are needed for confidently

assigning protein kinases to observed phosphosites, accounting for the possibility of multiple

causal kinases. Although many kinase-substrate prediction or assignment methods have been

produced in the past, to the best of my knowledge no method has been specifically developed

for multi-label assignment of kinases to phosphosites to meet this need. Indeed, evaluating

past, performant methods in a multi-label setting, for which they were not designed, herein

revealed a tendency for low average performance across their full sets of covered kinases. By

being built around hypothesis-free phosphoproteomic data and avoiding, where possible,

functional annotations biased towards commonly studied kinases [29], IV-KAPhE exhibits

stronger average performance across the kinome, making it more suitable than past methods

for the modern task of multi-label assignment of kinases to phosphoproteomic data.

Kinase-substrate annotations are not available for most species to the same level as humans

or model species. Thus, kinase-substrate assignment methods that depend on such annotations

cannot be applied to those species. The IV-KAPhE method presented here requires a high-

throughput, phosphoproteomic kinase-substrate assay; high-throughput physical interaction

data; Gene Ontology annotations, which are often have good coverage by orthology; and

STRING scores, which are available for many species. This makes it a suitable method for

kinase-site assignment in non-model species. While the first two requirements are, indeed,

non-trivial and expensive, they are less onerous and time-consuming than low-throughput

assays of individual kinase-substrates at a kinomic scale. Furthermore, the generality of the

training data for the in vivo part of IV-KAPhE means that it may be possible to use kinase-sub-

strate annotations from humans or model species as functional-association training data for

non-model species, a possibility that remains to be explored.

Even stringently assessed, the human phosphoproteome consists of over 100,000 different

sites on at least 12,000 different proteins [38], of which only a fraction have literature-derived

kinase assignments. These assignments are furthermore biased towards well-studied protein

kinases [29]. Thus the functional roles of many human protein kinases, including closely

related isozymes of more commonly studied kinases, remain unknown. Applying IV-KAPhE

predictions revealed the perils of these biases. On one hand, researchers use commonly studied

isozymes for in vitro or artificial in vivo analysis, whereas the endogenous causal kinase may be

a different isozyme. On the other hand, when isozymes are not adequately specified in litera-

ture, annotators may inappropriately default to assigning the most commonly studied isozyme

to a site. As a result, the network mapping kinases to each human phosphosite remains not

only largely unresolved, but its topology cannot be accurately extrapolated from existing litera-

ture-derived annotations.

Due to poor sequence conservation, many phosphosites are expected to be “off-target” and

without function [38, 57, 58]. Nevertheless, the methods presented here confidently assign

multiple kinases to most sites. They collectively posit, based on the best available data, that this

off-target noise is not due to low-probability events on non-optimized substrate sequences, as

suggested by signaling dynamics [59]. They thereby propose that the kinase-substrate network

is densely connected. Incorporating further biochemical constraints into future models may
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reduce this apparent density and reject the computational hypothesis. Otherwise, the results

will equally suggest that on-target, functional phosphorylation also can generally be catalyzed

by multiple kinases, raising the question of how kinase functional specialization is maintained

across the human kinome.

Supporting Information

S1 Table. IV-KAPhE assignments of S6K-α isoforms for any site annotated in PhosphoSi-

tePlus as being phosphorylated by at least one of these isoforms in vivo or in vitro.

(XLSX)

S2 Table. IV-KAPhE assignments of CaMK-II subunits for any site annotated in Phospho-

SitePlus as being phosphorylated by at least one of these subunits in vivo or in vitro.

(XLSX)

S1 Text. Supplemental methods, figures and tables. S1 Text contains the following: Supple-

mental Methods—Additional details describing data sources, computational methods, and

mathematical derivations of specificity models; Fig A—Using relative entropy as a PFM or

PSSM column weight provides greater discrimination of columns than using information con-

tent; Fig B—Differing theoretical and empirical score ranges in scoring matrix-based models

hinders the selection of a universal score cut-off; Fig C—A Venn diagram showing total cover-

age of the human kinome supported by four kinase-substrate prediction or assignment meth-

ods; and Table A—Protein kinases targeted by the chemical inhibitors used in the quantitative

phosphoproteomic experiment of Wilkes et al.[41].

(PDF)
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