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Abstract

Profile Hidden Markov Model (Profile-HMM) is an efficient statistical approach to represent

protein families. Currently, several databases maintain valuable protein sequence informa-

tion as profile-HMMs. There is an increasing interest to improve the efficiency of searching

Profile-HMM databases to detect sequence-profile or profile-profile homology. However,

most efforts to enhance searching efficiency have been focusing on improving the alignment

algorithms. Although the performance of these algorithms is fairly acceptable, the growing

size of these databases, as well as the increasing demand for using batch query searching

approach, are strong motivations that call for further enhancement of information retrieval

from profile-HMM databases. This work presents a heuristic method to accelerate the cur-

rent profile-HMM homology searching approaches. The method works by cluster-based

remodeling of the database to reduce the search space, rather than focusing on the align-

ment algorithms. Using different clustering techniques, 4284 TIGRFAMs profiles were clus-

tered based on their similarities. A representative for each cluster was assigned. To

enhance sensitivity, we proposed an extended step that allows overlapping among clusters.

A validation benchmark of 6000 randomly selected protein sequences was used to query

the clustered profiles. To evaluate the efficiency of our approach, speed and recall values

were measured and compared with the sequential search approach. Using hierarchical, k-

means, and connected component clustering techniques followed by the extended overlap-

ping step, we obtained an average reduction in time of 41%, and an average recall of 96%.

Our results demonstrate that representation of profile-HMMs using a clustering-based

approach can significantly accelerate data retrieval from profile-HMM databases.

Introduction

With the exponential growth of biological sequence data, there has been an increasing interest

in classifying records that share similarities in sequences, functions and structures together

into families [1]. The representation of the protein, DNA, or RNA sequences into families has

proven very useful to gain insight into the biological functions, molecular mechanisms, and

evolutionary relationships of these biological molecules. Furthermore, detection of remote

homology is more sensitive when a sequence query is searched against a family database than a
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sequence database [2]. Several approaches, such as regular expression, position weight matrix,

and profiles, have been used to represent families of related biological sequences [3]. Currently,

Profile Hidden Markov Model (profile-HMM) is one of the most sensitive approaches that has

been used to represent similar biological strings as families [4]. The hallmark of profile-HMM

is its ability to statistically represent the subtle conserved features of a given family of

sequences.

Among the different biological data, protein sequences have received the most attention.

Protein families are commonly represented and analyzed using profile-HMM. Currently,

there are several protein family databases that utilize profile-HMM representation including

Pfam, TIGRFAM, SUPERFAMILY, and CATH/Gene3D [5–8]. As more and more high-

throughput sequence data are produced from a wide range of organisms, the contents of these

databases are increasing enormously. For example, Pfam database which was launched in 1996

with 100 families that were built from 10431 sequences has in its 30th release 16306 family pro-

files that were built from 12845974 sequences [5].

The advantage of creating profile-HMMs that represent homologous proteins, domains,

and motifs, is the ability to perform a much more sensitive database search than the conven-

tional pairwise sequence searching methods such as BLAST [9] and FASTA [10]. This superior

feature of profile-HMMs has motivated several research groups to develop algorithms to solve

sequence-profile and profile-profile comparison problems. SAM [11, 12], Prof_Sim [13],

COMPASS [14, 15], HHsearch [2], PRC [16], HMMER [17], and AlignHUSH [18], are among

these algorithms. The search is typically carried using pairwise sequence-profile or profile-pro-

file alignment methods. Where, each query is always searched in a pairwise alignment manner

(sequential search), i.e. the query is compared with every single profile-HMM in the target

database.

The accuracy value of these methods has been enhanced by incorporating structural, physi-

cochemical and evolutionary informative features that can help in better aligning the function-

ally related residues [19]. For example, HHpred [20] and the freely available HHsearch, which

were developed by the group of Johannes Söing, annotate the profile-HMMs with predicted

secondary structure features in order to enhance the homology detection sensitivity [20].

Despite improved sensitivity over the conventional pairwise sequence alignment, the major

limitation of exploiting profile-HMM in homology search is the speed factor. Several research

groups have attempted to solve this problem. In 2005, Johannes Söding increased the speed in

the HH-SUITE [2] by proposing some simplifications to the alignment algorithm that

excluded specific states and limited the transition between specific pair states. In 2011, Sean R.

Eddy presented an acceleration heuristic for profile-HMMs for the HMMER3 tool by propos-

ing “multiple segment Viterbi” algorithm which led to a significant increase in the searching

speed of HMMER3 compared to the previous version HMMER2 [17].

The proposed solutions mainly focused on improving the speed of the pairwise alignment

algorithm while maintaining the sequential search. In this work, we propose an additional

speed enhancement by reducing the search scope through clustering the profile-HMM data-

base. The approach of clustering records of biological databases to improve searching effi-

ciency has been applied for sequence databases [21–23]. However, to the best of our

knowledge, our work is the first attempt to cluster Profile-HMM data to accelerate information

retrieval, especially in the case of batch querying.

The proposed technique works by initially clustering the profile-HMMs into a certain num-

ber of clusters. The distance between the profiles is measured through HHsearch homology

score [2]. Then a representative is assigned to each cluster. For retrieval, a query profile-HMM

is compared with the set of representatives. The cluster corresponding to the representative

most similar to the query is searched for the target profiles. The proposed enhancement can be
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combined with different searching algorithms to increase speed and save several minutes to

hours for large batch queries, with an acceptable cost on recall value.

1 Materials and Methods

The profile-HMMs of the TIGRFAMs database [6] were used to demonstrate the proof-of-

concept of our proposed approach. We used TIGRFAMs release 13.0 with 4284 families. The

4284 profiles represent a total of 55503 protein sequences. For each protein family, TIGRFAMs

has three components. The first component is the set of protein sequences that belongs to the

family. These proteins are stored as multiple sequence alignments (MSA) and are usually

referred to as seed sequences. The second component is the profile-HMM for the MSA of the

first component. The third component is the associated information designed to support the

automated functional identification of proteins by sequence homology.

HHsearch tool [2] was used for building profile-HMMs from the input MSA using hhmake
script. To create profile-HMM databases for the representatives of each cluster data set, we

used hhblitsdb.pl script. The script hhsearch was used to search and retrieve matches from the

created profile-HMMs databases for a given input query.

Protein sequence data from the UniRef50 data set [24] were used for parameter tuning and

validation. UniRef50 is one of the protein cluster data sets that are available through Uniprot

database [25]. The seed sequences of each UniRef50 cluster have at least 50% sequence identity

and 80% overlap with the longest sequence in the cluster. For parameter tuning purposes we

randomly selected 100 sequences from the UniRef50 data set. However, for final validation, we

randomly selected 6000 sequences.

Implementation was carried out using MATLAB [26] in addition to shell scripting on Cen-

tOS Linux operating system. Shell scripting was used in order to effectively utilize the number

of cores in the server in a multi-threaded manner. The server has 32 cores (2.2 GHz) with

128G as a total RAM size.

The testing phase was carried out using a single core computer in order to study the perfor-

mance of the proposed approach when running it on low computational power servers.

2 Algorithms

In this section, we present two approaches for building the retrieval system based on the both

‘crisp’ and ‘overlap’ clustering.

2.1 Crisp clustering approach

This approach consists of four steps. A detailed explanation of each step is discussed below:

Retrieval of protein family information. In this step we retrieve all the sequence seeds

that are used to build the profiles in TIGRFAMs database. We use these seeds to create a Pro-

file-HMMs using hhmake script in HH-SUITE [2]. The reason to create profiles using

HH-SUITE instead of using the TIGRFAMs is to increase the homology detection sensitivity

as recommended by Söding [2] in the HH-SUITE manual.

Build a similarity matrix. Assume Λ = [λ1, λ2, . . ., λN] is a database of N profile-HMMs.

An iterative process is used to compare each profile λi against all profiles in Λ. The local align-

ment option of HHsearch was used as it can produce more similarity results and hence

increases the chance of generating clusters of profiles. This comparison process produces an

output with N scores. The scores Each represents the profile-profile comparison score between

λi and each profile in Λ. These scores are identified based on a measure that was developed by

Söding, which was called probability. This measure is calculated not only based on the resulted

E value of the search, but it also takes into account the secondary structure similarity.
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According to Söding, using the probability measure is more sensitive to identify homology.

The probability can range from 0 to 100% and when it is larger than 95%, the homology is

nearly certain [2]. We adopted this score as the similarity score throughout this paper.

These scores are used to produce an all-against-all similarity matrix S. The matrix S has N ×
N elements, where the element sij = score(λi, λj) represents the similarity score between query

λi and template λj. It is important to notice that score(λi, λj) 6¼ score(λj, λi), i 6¼ j, because the

score depends on the length of the query. As S is an a symmetrical matrix, we decided to use

the approach in [27] by only storing the maximum score of sij and sji.
Clustering. At this point, the matrix S is used as input for the clustering process. S is con-

sidered as a data set of N samples, each sample has N dimensions.

Three different clustering algorithms, k-means, hierarchical, and connected component

were used.

Assignment of representative profile. A representative γi for the cluster ci is selected

using two alternatives. The first method (which we denote as MSA-representative) builds the

representative by retrieving all profile seeds in ci and creating their multiple sequence align-

ment (MSA) before creating a profile-HMM based on this MSA. The second method (which

we denote as heuristic-representative) is to select a profile λi from cj as a representative for

cluster j using a heuristic function f. This function finds the profile in the cluster that has the

highest homology to all other profiles as follows:

Given a cluster of size T. The similarities among its profiles are in S0. Where S0 is a subset of

S. The function f(λi) returns a value that represents the likeliness of having λi, as heuristic-rep-

resentative.

f ðliÞ ¼
XT

j¼1

S0ði; jÞ ð1Þ

The heuristic-representative is calculated by selecting the profile with the maximum simi-

larity summation among all profiles in the cluster (i.e. argmax(f(λi))).
Fig 1 shows the diagram of the proposed technique. The system first aligns the input query

λq to Γ, which is a data set of the Representative profiles to obtain the best match. Then, the

system performs a search inside the cluster from which the best matching profile originated in

order to find similar profiles. The final output is a list of similar profiles in the database that

matches the input query using local alignment with a similarity score greater than a threshold

ϕ.

2.2 Overlapping clustering approach

In order to enhance the sensitivity of searching a further step was introduced to the four steps

mentioned above. The enhancement was achieved by proposing an extended step that allows

overlapping among clusters. The overlapping was made by assigning a representative for each

cluster as in Section 2.1, then re-assigning the profiles in the database to clusters as follows:

Suppose that C = [c1, c2, . . ., ck] are the k clusters that are produced after clustering Λ with

any of the three clustering algorithms, and Γ = [γ1, γ2, . . ., γk] are the k representatives for clus-

ters in C.

Then, each profile λj is assigned to cluster ci in C as Eq (2) shows.

ci  ci [ lj () scoreðgi; ljÞ � W; j ¼ 1; 2; . . . ;N ð2Þ

where ϑ is a self-regulated threshold that is calculated as in Eq (3). This threshold is computed

as the mean value of similarity vector between λj and profiles in Γ. The self-regulated threshold
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guarantees that each profile is assigned to at least one cluster.

W ¼
1

K

XK

i¼1

scoreðgi; ljÞ ð3Þ

The above is one heuristic way to select the threshold for the overlapping. Nevertheless, this

opens other ideas that can be researched in the future.

Although sequential techniques are suppose to find the most similar profiles, they are slow

since they perform N comparison operations for a given search in a database of N profiles. On

the other hand, indexing speeds up the search time but may cause the query profile to be mis-

matched with the correct cluster.

Three scoring stages exist in our system. The first one is when comparing the query with

the representatives in Γ, which costs K comparison operations. In the second stage, for the best

Fig 1. Block diagram of the retrieval technique: The dashed arrows represent an example for searching for the

sequence Si (or its corresponding profile Pi). Si is matched with the representative γ1. γ1 belongs to a cluster that has three

profiles: λ1, λ2 and λ10. Finally the matched outputs are λ1, λ2.

doi:10.1371/journal.pone.0166358.g001
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representative match γi, the technique starts a sequential search inside ci cluster to find the

matches for the input query. In the final stage, a process of sequential searching is performed

within singleton clusters [28] (clusters having one profile). For an singletons, the technique will

perform an additionalM comparisons. The total number of comparisons needed for retrieving

a query is denoted by NC as shown in Eq (4).

NC ¼ K þ sizeðciÞ þM ð4Þ

where ci is the cluster of the most similar profile to the query.

In Eq (4), the ideal case will be achieved if all clusters have the same size andM = 0. On the

other hand, the worst case is when the clustering algorithm produces only one cluster which

eventually exceeds the sequential search due to the indexing overhead. In this work, we tune

the parameters of the clustering approaches empirically to have a balance between the number

of clusters K and the size of each cluster as shown in section 3.1. It is important to note that

our proposed overlapping extension step guarantees that anM = 0 case is achieved.

2.3 Evaluation criteria

The evaluation of the proposed retrieval technique was performed based on two criteria. The

first one is the reduction in time (RT), which is the ratio of the time to accomplish retrieving a

query from S in comparison to the sequential search time, subtracted from 1 as shown in

Eq (5).

RT ¼ 1 �

PT
i¼1

aðsiÞ
PT

i¼1
a0ðsiÞ

ð5Þ

where S = [s1, s2, . . ., sT] is a query set of size T, α is the search time using the proposed tech-

nique and α0 is the search time using sequential technique. The second criterion is Recall,
which is the ratio of the number of relevant matches retrieved by the proposed technique to

the total numbers of relevant matches,

Recall ¼
jb
0
ðsiÞ
T

bðsiÞj
jb
0
ðsiÞj

ð6Þ

where β is the set of matches using the proposed technique and β0 is the set of matches using

the sequential technique.

In information retrieval contexts, Recall is usually accompanied with Precision, which

detects the number of irrelevant matches.

In the case of information retrieval from Profile-HMM Databases, only highly similar

matches are considered as homologous matches. For example, using local alignment in the

sequential approach in [2], a similarity scores that are above or equal to 95% are considered as

homologous matches. We follow this notion in the current research and we assume that the

sequential retrieval results are all relevant. The set of retrieved matches in the our proposed

method will always be a subset of the matches in the sequential technique. Consequently, Pre-

cision is not taken into consideration in this research.

To generalize the concept for calculating Recall for each experiment, we formulate Eq (7),

which reflects the ratio between the total number of matches found by the retrieval technique
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to the total number of matches found using the sequential search.

Recall ¼
PT

i¼1
bðsiÞ

PT
i¼1

b
0
ðsiÞ

ð7Þ

The reduction in time and recall ratio are measured during the retrieval process of any

input query. We have not taken into account the time for establishing the clusters nor the time

for establishing the representatives in our experiments. This is because the establishment pro-

cess is done only once. It is still worth mentioning that the establishment process is time con-

suming. For example, in the case of k-mean clustering, more than 300 hours were required to

build the MSA-representative when k = 160.

3 Results and Discussion

Experiments were carried out to study the following: The performance of the three clustering

algorithms; approaches for assigning representative, and the effect of introducing overlapping.

3.1 Parameter tuning

In order to select the best values for the clustering parameters number of clusters (K), cutoff the
hierarchical tree (z), and edge weight (ψ), we used an independent data set of protein sequences.

These sequences were randomly retrieved from UinRef50 in order to minimize any possible

bias towards data from our profile-HMM TIGRFAM database. In the experimental details sec-

tion, we provided detailed results of different experiments that aimed at tuning clustering

parameters. The selected values of the three parameters are shown in Table 1. It is important

to underscore that the obtained parameters are specific to TIGRFAM release 13, which was

used for validating our approach. Therefore, a different database would require re-tuning

these parameters.

3.2 Assignment of representatives

During the tuning of the parameters of each clustering approach, we assigned representatives

for each cluster using heuristic-representative approach. In this part of the experiment, we

studied the other alternative of selecting the representative which is MSA-representative.

Six different comparisons were performed to cover all combinations of having three cluster-

ing algorithms and the two methods for choosing the representatives. We used the same

parameter values as in Table 1

Figs 2 and 3 show the evaluation for each clustering algorithm using the two methods of

assigning representatives.

In the case of k-means and connected component algorithms, better recall values were

reached when a heuristic-representative was used compared to MSA-representative. There

was no significant difference in recall value between heuristic-representative and MSA-repre-

sentative when using the hierarchical clustering algorithm. These results are consistent with

Table 1. Parameter values after tuning.

Clustering approach Parameter Best value

k-means k 160

hierarchical ζ 0.9

connected component ψ 95%

doi:10.1371/journal.pone.0166358.t001
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the cluster distributions for each approach in Figs 4–6. The maximum cluster size in the hier-

archical algorithm was 57, while it equals 1818 and 942 for k-means and connected compo-

nent, respectively.

As for reduction in time, both ways of selecting the representative lead to a similar reduc-

tion in time. So, the method of selecting the representative has a greater effect on accuracy

than on time reduction.

Fig 2. Recall comparisons for different assigning representative methods.

doi:10.1371/journal.pone.0166358.g002

Fig 3. Reduction in time comparison for different assigning representative methods.

doi:10.1371/journal.pone.0166358.g003
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3.3 Application of overlapping

In crisp clustering techniques, each item is assigned to only one of the existing clusters. It is

possible to have items shared between more than one cluster by introducing overlapping. This

is suitable in our case because we employ local alignment, where one or more local segments

from the same profile can be similar to different profiles segments.

Fig 4. Hierarchical clustering: Clusters distribution for cutoff (ζ) = 0.9.

doi:10.1371/journal.pone.0166358.g004

Fig 5. k-means clustering: Cluster distribution for k = 160.

doi:10.1371/journal.pone.0166358.g005
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However, the profile similarity is not transitive through the scoring process that was used.

This means if score(λa, λb)� ϕ, and score(λb, λc)� ϕ under a given threshold ϕ, it does not nec-

essarily mean that score(λa, λc)� ϕ.

If we use crisp clustering, λa, λcmay be assigned to two different clusters and λb is assigned

to one of them. However, λb should be assigned to both clusters at the same time because it is

similar to both of them. This is handled by the overlapping technique.

Figs 7–9 show how the clusters were distributed after applying overlapping. The figures

show that the overlapping has led to a normal distribution where we have small frequencies

when considering the very large and the very small clusters compared with the other clusters

in the same experiment.

Figs 10 and 11 illustrate the score measures after applying overlapping to all selected cluster-

ing algorithms. Again, this technique is tested with the best experiments for each clustering

algorithm, which are used in Section 3.2.

Fig 10 shows that all clustering algorithms achieve better recall after applying the overlap-

ping. It is worth noting that the hierarchical clustering algorithm was enhanced by 12.5%

degrees and achieves 100% recall for the input test data, while k-means achieved 99.45% recall

with an enhancement of approximately 6%. Lastly, connected component achieved an addi-

tional 2% enhancement compared to the crisp clustering technique.

In Fig 11, we can see that the hierarchical and the connected component algorithms with

overlapping has little impact on the results in terms of reduction in time. In the case of the k-
means algorithm, the reduction in time is better without overlapping to high extent. This

major change in reduction in time can be explained by comparing Figs 8 and 5. In Fig 5, k-
mean has clustered the profiles without creating any singletons. However, in Fig 8, where over-

lapping is introduced to k-means, the size of clusters has increased in general due to having the

same profiles assigned to many clusters. This caused an overhead in the computation time.

Fig 6. Connected Component clustering: Clusters distribution for threshold (ψ) = 95%.

doi:10.1371/journal.pone.0166358.g006
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3.4 Extended evaluation with larger data-set

The previous experiments were conducted for tuning the system parameters. In this section,

we carried out a set of experiments with the best-obtained parameters. A larger dataset of 6000

UniRef50 sequence was involved. This dataset was selected randomly from all the UniRef50

data set. We study the recall and reduction in time under different query sizes ranging from

1000 to 6000 sequences.

Fig 8. k-means clustering: Clusters distribution for k = 160 with overlapping technique.

doi:10.1371/journal.pone.0166358.g008

Fig 7. Hierarchical clustering: Clusters distribution for cutoff (ζ) = 0.9 with overlapping technique.

doi:10.1371/journal.pone.0166358.g007
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Table 2 shows the recall for the three different clustering algorithms using different query

sizes. We can see that hierarchical clustering has the best average recall value among the three

clustering algorithms. Since a larger dataset is involved here, the results are more reliable than

the results in the tuning phase. Still, each algorithm occupied its relatively recall order among

the others.

Table 3 shows the reduction in time for each algorithm. A higher variety of sequences with

widely different sequence lengths were involved in the experiment. When comparing the

reduction in time among the three clustering approach, we can see that the values are very

Fig 9. Connected Component clustering: Clusters distribution of threshold (ψ) = 95% with overlapping technique.

doi:10.1371/journal.pone.0166358.g009

Fig 10. Recall value comparisons for different clustering algorithms using the overlapping technique.

doi:10.1371/journal.pone.0166358.g010
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Table 2. Recall values for different test batch sizes.

Query size Hierarchical k-means Connected Component

1000 98.94% 96.34% 97.08%

2000 98.04% 94.96% 95.33%

3000 98.16% 96.11% 91.70%

4000 99.03% 96.93% 94.82%

5000 99.01% 96.91% 91.98%

6000 98.82% 96.75% 92.09%

average 98.67% 96.33% 93.83%

doi:10.1371/journal.pone.0166358.t002

Table 3. Reduction in time for different test batch sizes.

Query size Hierarchical k-means Connected Component

1000 41.16% 39.56% 41.38%

2000 41.06% 40.46% 42.33%

3000 40.48% 40.10% 41.96%

4000 41.04% 41.13% 42.32%

5000 40.97% 40.92% 42.11%

6000 40.70% 40.59% 41.75%

average 40.90% 40.46% 41.98%

doi:10.1371/journal.pone.0166358.t003

Fig 11. Reduction in time comparison for different clustering algorithms using the overlapping technique.

doi:10.1371/journal.pone.0166358.g011
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close to each others. This is because the three clustering approaches have highly similar cluster

distribution after applying the overlapping to them as seen in Figs 7–9.

3.5 Time Reduction

The proposed approach aims to minimize the retrieval time in profile-profile approach. An

experiment to handle a batch query of 1000 sequences took 15.3 hours using the sequential

search while it required 9.13 hours with our proposed approach.

4 Conclusion

This work proposed a novel information retrieval approach to accelerate the search in profile-

HMM databases for homology detection. Unlike the existing techniques, we shift our focus

from improving the searching algorithm to reducing the searching scope by representing the

database in the form of clusters. From the many existing clustering approaches, we selected

three commonly used ones in order to prove the main concept behind this study. These

approaches are: k-means [29], hierarchical [30], and connected component [31].

These approaches are known as crisp clustering approaches [32]. This means that each pro-

file in the dataset is assigned to only one cluster. To enhance the retrieval process, we intro-

duced an extension step to the clustering process that allows overlapping among the clusters.

The overlapping step has enhanced the recall of the system. This was clear in the hierarchical

clustering algorithm which produced the best recall over the two other approaches.

When applying connected component and hierarchical clustering, we noticed that many

profiles are singletons. which increased the search time. This paper introduced an overlapping

technique to solve the search overhead caused by the singletons and to enhance the recall in

data retrieval. It is important to emphasize that overlapping among clusters should not be

taken into consideration when studying the biological similarities among profiles.

It is important to point that the proposed technique is highly expandable when new profile-

HMMs are included in the database. This can be performed by applying the overlapping step

to each new profile, and update the related clusters without the need to re-cluster the whole

database. Finally, the proposed system can be used to accelerate any other alignment tool other

than HHsearch.

5 Experimental Details

5.1 Setup Time

The establishment of the matrix S as well as creating the database of clusters were performed

in a multithread manner (32 threads) to obtain it at high speed, while the other steps were car-

ried out using a single core computer in order to study the performance of the proposed

approach when running it on low computational power server.

Table 4 demonstrate the time for setting up each testing experiment in section 3.4. This

table covers three steps which are: clustering the profiles, applying the overlapping technique

Table 4. Execution time in minutes for setting up the testing framework.

Clustring Overlapping Building DB

Connected Component 0.50 224.70 235.75

Hierarchical 2.80 539.95 422.66

k-means 27.05 84.95 96.00

doi:10.1371/journal.pone.0166358.t004
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and building the clusters databases. In building the clusters database, the listed time is the

overall turnaround time not the summation of thread’s time.

5.2 Parameter Tuning for hierarchical clustering

For hierarchical clustering experiments, we used the agglomerative hierarchical clustering

with the single – linkmethod found in Matlab. We studied different values of z and select 0.5,

0.9, and 1.1. These values produced the corresponding cluster size 2839, 2131, and 2007,

respectively. z values either under 0.5 or over 1.1 has no major changes on the number of

clusters.

The resulting clusters which are taken from the leaf nodes of the hierarchy based on the cut-

off value, are distributed as in Figs 12, 4 and 13. The x-axis displays the size of clusters that are

produced by this clustering algorithm, while the y-axis shows clusters frequency for each size.

In Fig 12, this algorithm produced 1944 clusters that hold only one profile, while 18 clusters

hold 5 profiles and so on. From these figures, we can see that the case of singleton clusters

appears in this clustering algorithm. When increasing z, the number of singletons decreases

and, consequently, the size of clusters increases.

If we ignored the singletons, we would have 895, 818, and 752 clusters as a final output for

each value 0.5, 0.9, and 1.1, respectively. After preparing all the clusters, the methods for

choosing the representatives using a heuristic function were used for testing the technique.

The measurement scores for different z values appear in Figs 14 and 15. The measures show

that a medium value of z gives the best recall value of 87.43%, while the reduction time is

39.26%. The best reduction time obtained by minimum z with a score value of 41.85% and

recall value of 86.88%.

5.3 Parameter Tuning for k-means clustering experiments

A set of experiments was performed to tune the k values (the number of clusters). The squared

Euclidean distance was used to calculate the centroid for each cluster. Each centroid cannot be

Fig 12. Hierarchical clustering: Clusters distribution for cutoff (ζ) = 0.5.

doi:10.1371/journal.pone.0166358.g012
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considered as a new profile since the values of this centroid represent average values of the fea-

tures of the similarity matrix.

k-means algorithm initializes the centroid seeds randomly and this can lead to poor cluster-

ing. One way to avoid this problem is to have the clustering process repeated many times and

obtain the best clustering pattern. However, to avoid repeating the clustering many times, we

relied on k-means++ algorithm [33] under MatLab. This algorithm uses a heuristic process for

spreading out the initial centroid seeds.

Fig 13. Hierarchical clustering: Clusters distribution for cutoff (ζ) = 1.1.

doi:10.1371/journal.pone.0166358.g013

Fig 14. Hierarchical clustering: Recall value measure for different cutoff values (ζ).

doi:10.1371/journal.pone.0166358.g014
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We carried out a set of experiments with different values of k equal to [100, 200, 300, 400,

500, 600]. The cluster distribution for these experiments is shown in Figs 16–21 respectively.

From these experiments, singletons disappeared when k equals 100 and 200, while a very little

number of them exists when k is greater than or equals 300.

When the number of clusters increases, the number of small clusters also increases, bearing

in mind that there is always one relatively large cluster. The size of clusters is inversely propor-

tional to the number of clusters. Finally, we stopped the experiments when we reach k = 600

Fig 15. Hierarchical clustering: Reduction time measure for different cutoff values (ζ).

doi:10.1371/journal.pone.0166358.g015

Fig 16. k-means clustering: Cluster distribution for k = 100.

doi:10.1371/journal.pone.0166358.g016
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because empty clusters start to appear as seen in Fig 21. After preparing all the clusters, the rep-

resentatives were chosen based on the heuristic-representative approach. The recall and reduc-

tion in time of these six experiments are displayed in Figs 22 and 23.

The best scores were achieved when k = 100, with recall value being 91.80%, and the reduc-

tion in time being 83.25%. As the number of clusters increased, both recall and reduction in

time were negatively affected. It is logical for there to be a decline in the reduction of time mea-

surement as the number of clusters increases, since this increase also causes an increase in the

Fig 17. k-means clustering: Cluster distribution for k = 200.

doi:10.1371/journal.pone.0166358.g017

Fig 18. k-means clustering: Cluster distribution for k = 300.

doi:10.1371/journal.pone.0166358.g018
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number of representatives, which would necessitate more comparisons for each query. In

addition, having more clusters usually leads to higher possibility for the query to miss the tar-

get cluster i.e. (decline in the recall value)

Since the best results were achieved when the value of k is at the boundary, another set of

experiments was run to cover a closer interval for the best peak point. These results appear in

Figs 24 and 25, and shows that the k = 100 region was considered a good local maximum inter-

val, with the best recall value in that region being when k = 110 with a score of 92.34%. Out of

Fig 19. k-means clustering: Cluster distribution for k = 400.

doi:10.1371/journal.pone.0166358.g019

Fig 20. k-means clustering: Cluster distribution for k = 500.

doi:10.1371/journal.pone.0166358.g020

Accelerating Information Retrieval form Profile Hidden Markov Model Databases

PLOS ONE | DOI:10.1371/journal.pone.0166358 November 22, 2016 19 / 26



all k values, the best recall value was achieved when k = 160 with a score of 93.44%, and a

reduction in time of 83.53% and 82.75% for k equals 110 and 160, respectively.

Another point worth noting is that as K decreases the reduction in time measurement is

negatively affected. The number of representatives is small, which requires a fewer number of

comparisons to be made between the query and representatives. However, the size of the clus-

ters increases, which increases the number of comparisons required for each query. A cluster

distribution when k = 160 is displayed in Fig 5.

Fig 22. k-means clustering: Recall value measure for different k value.

doi:10.1371/journal.pone.0166358.g022

Fig 21. k-means clustering: Cluster distribution for k = 600.

doi:10.1371/journal.pone.0166358.g021
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5.4 Parameter Tuning for connected component clustering

In connected component clustering algorithm, the profiles are represented as vertices in an

undirected graph, while the similarity between any two profiles in this graph is presented as a

weighted edge from S. Here, clustering is done by dividing the graph to sub-graphs by remov-

ing all the edges that have a weight less than a given threshold ψ. In this section, we applied

connected component clustering. Three values for ψ were used as a threshold; these values are

Fig 23. k-means clustering: Reduction time measure for different k values.

doi:10.1371/journal.pone.0166358.g023

Fig 24. k-means clustering: Recall value measure for different k value.

doi:10.1371/journal.pone.0166358.g024
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99%, 95% and 90%. The reason for using these three values is to observe how the technique

will behave when a threshold goes from the maximum value possible to a value that is lower

than the default similarity score which is 95% (see Section 2.3).

The cluster distribution for these experiments is shown in Figs 26, 6 and 27 respectively.

From these experiments, The decrease in threshold will leads to decrease the number of clus-

ters, a number of singletons and increase the clusters size. This is logic since relaxing threshold

value means fewer edges need to be removed.

Fig 25. k-means clustering: Reduction time measure for different k values.

doi:10.1371/journal.pone.0166358.g025

Fig 26. Connected component clustering: Clusters distribution for threshold (ψ) = 90%.

doi:10.1371/journal.pone.0166358.g026

Accelerating Information Retrieval form Profile Hidden Markov Model Databases

PLOS ONE | DOI:10.1371/journal.pone.0166358 November 22, 2016 22 / 26



Fig 27. Connected component clustering: Clusters distribution for threshold (ψ) = 99%.

doi:10.1371/journal.pone.0166358.g027

Fig 28. Connected component clustering: Recall value measure for different thresholds (ψ).

doi:10.1371/journal.pone.0166358.g028
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When ignoring singletons, the results become as follows: 548 clusters when ψ = 99%, 434

clusters when ψ = 95% and finally 379 clusters when ψ = 90% as a final output.

The score measurements for all ψ testes values are shown in Figs 28 and 29. The best recall

value appears when ψ equal to 95% and 99% with value 89.61%, while the reduction time

scores better when the threshold is 95% with value 44.38%.

Supporting Information

S1 File. Support materials for executing the experiments. A compressed (.zip) file that con-

tains all the needed scripts for executing any experiment of this work is provided. The similar-

ity matrix is also included. The README file contains the needed details to run these scripts.
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28. Steinbach M, Ertöz L, Kumar V. The Challenges of Clustering High Dimensional Data. In: Wille L, editor.

New Directions in Statistical Physics. Springer Berlin Heidelberg; 2004. p. 273–309. Available from:

http://dx.doi.org/10.1007/978-3-662-08968-2_16

29. MacQueen J. Some methods for classification and analysis of multivariate observations. In: Proceed-

ings of the fifth Berkeley symposium on mathematical statistics and probability. vol. 1. California, USA;

1967. p. 14.

30. Sibson R. SLINK: an optimally efficient algorithm for the single-link cluster method. The Computer Jour-

nal. 1973; 16(1):30–34. doi: 10.1093/comjnl/16.1.30

31. Hopcroft J, Tarjan R. Algorithm 447: efficient algorithms for graph manipulation. Communications of the

ACM. 1973; 16(6):372–378. doi: 10.1145/362248.362272

32. Halkidi M, Batistakis Y, Vazirgiannis M. On Clustering Validation Techniques. J Intell Inf Syst. 2001

Dec; 17(2-3):107–145. Available from: http://dx.doi.org/10.1023/A:1012801612483

33. Vassilvitskii S, Arthur D. k-means++: The advantages of careful seeding. In: Proceedings of the eigh-

teenth annual ACM-SIAM symposium on Discrete algorithms; 2006. p. 1027–1035.

Accelerating Information Retrieval form Profile Hidden Markov Model Databases

PLOS ONE | DOI:10.1371/journal.pone.0166358 November 22, 2016 26 / 26

http://dx.doi.org/10.1186/1471-2105-15-252
http://dx.doi.org/10.1186/1471-2105-15-252
http://www.ncbi.nlm.nih.gov/pubmed/25062980
http://nar.oxfordjournals.org/content/33/suppl_2/W244.abstract
http://nar.oxfordjournals.org/content/33/suppl_2/W244.abstract
http://dx.doi.org/10.1093/nar/gki408
http://www.ncbi.nlm.nih.gov/pubmed/15980461
http://dx.doi.org/10.1093/bioinformatics/btl158
http://www.ncbi.nlm.nih.gov/pubmed/16731699
http://dx.doi.org/10.1093/bioinformatics/17.3.282
http://www.ncbi.nlm.nih.gov/pubmed/11294794
http://dx.doi.org/10.1093/bioinformatics/16.5.451
http://www.ncbi.nlm.nih.gov/pubmed/10871267
http://dx.doi.org/10.1093/bioinformatics/btm098
http://dx.doi.org/10.1093/bioinformatics/btm098
http://www.ncbi.nlm.nih.gov/pubmed/17379688
http://nar.oxfordjournals.org/content/43/D1/D204.abstract
http://dx.doi.org/10.1093/nar/gku989
http://dx.doi.org/10.1093/nar/gku989
http://www.ncbi.nlm.nih.gov/pubmed/25348405
http://dx.doi.org/10.1186/1471-2105-11-120
http://dx.doi.org/10.1186/1471-2105-11-120
http://www.ncbi.nlm.nih.gov/pubmed/20214776
http://dx.doi.org/10.1007/978-3-662-08968-2_16
http://dx.doi.org/10.1093/comjnl/16.1.30
http://dx.doi.org/10.1145/362248.362272
http://dx.doi.org/10.1023/A:1012801612483

