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INTRODUCTION

As we enter 2020, it is worth looking back at the development and progression of the computational
toxicology discipline, how it has evolved and what some opportunities might be going forward.
Computational toxicology stands poised to broadly and directly inform chemical safety assessment,
and as such, the demands of computational toxicology are growing due to international regulatory
needs. Critical to increasing scientific confidence in the use of computational toxicology approaches
in applied toxicology decision-making will be: (1) transparency and reproducibility in the
underlying data and data analysis approaches utilized; (2) accessibility of information to evaluate
the fitness of the computational toxicology approach for a particular problem; and (3) sharing of
ideas and approaches internationally. Herein the progress in applied computational toxicology is
considered, with a call for additional research to continue this rapid advancement.

EARLY COMPUTATIONAL TOXICOLOGY: APPLICATION OF

QUANTITATIVE STRUCTURE ACTIVITY RELATIONSHIPS

[(Q)SARs]

A quarter of century ago, the field of computational toxicology might simply have been
summarized as the intersection of three scientific domains: toxicology, chemistry, and statistics,
packaged in predictive models such as SAR and QSAR models, collectively referred to as
(Quantitative) Structure Activity Relationships [(Q)SARs]. (Q)SARs are theoretical models that
can be used to predict in a quantitative (e.g., potency) or qualitative manner (e.g., active/inactive)
the physicochemical, biological [e.g., an (eco)toxicological endpoint] and environmental fate
properties of compounds from the knowledge of their chemical structure (Worth et al., 2005). A
SAR is a (qualitative) association between a chemical substructure and the potential of a chemical
containing the substructure to exhibit a certain biological effect. The classic example of a SAR
was the supramolecule published by Ashby and Tennant (1988) which related chemical structure
moieties to genotoxic carcinogenicity. Typical toxicity endpoints under study were those with a
greater preponderance of data such as the Ames test for bacterial mutagenicity (see Benigni and
Bossa, 2019 for a recent review), or the fathead minnow fish acute lethality test (Adhikari and
Mishra, 2018). Physicochemical properties such water solubility, octanol-water partition coefficient
(LogKow) were also modeled. The algorithms underpinning these predictive models (QSAR)
tended not to be overly complex mainly because the data volume was usually limited, “big” data was
confined to a few hundred data points and typically far less. The algorithms used to develop QSARs
relied upon conventional statistical approaches such as linear regression or logistic regression,
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in part because the data volume did not merit more complex
models, and in part since the models being developed relied
on a limited set of descriptors that could be readily computed
and interpreted relative to the property being modeled. Indeed,
many fish toxicity models and Ames models relied upon LogKow
as the main determining factor. Computing descriptors for
chemicals was mainly dependent on commercial software within
specific QSAR modeling platforms, e.g., TSAR from Oxford
Molecular, Biovia’s QSAR Workbench (https://www.3dsbiovia.
com/products/collaborative-science/biovia-qsar-workbench/).
The types of QSAR models for toxicity were often “local,” i.e.,
based on defined mechanisms or chemical classes. The exception
tended to be for physicochemical parameters where models
were categorized as “global,” i.e., heterogenous training datasets
comprising a diversity in chemical structure.

The underlying principle within this framework was that
the toxicity (property) being predicted was a function of
chemical structure. The notion of similarity where similar
chemicals were expected to cause similar toxicities also formed
the complementary basis around the concept of read-across
(Patlewicz et al., 2018) as well as Thresholds for Toxicological
Concern (TTC) approaches (Kroes et al., 2004).

The application of these models was also limited, usually in
providing preliminary indications of activity rather than in lieu
of additional empirical data. The toxicity would be characterized
by a single summary endpoint e.g., point of departure such as
a No Adverse Effect Level (Concentration) [NOAEL(C)] and
usually a single value for a given substance. The concept of
reproducibility of the test method was not a major consideration,
since studies tended not be repeated due to cost, animal use, and
time constraints.

EVOLVING REGULATORY LANDSCAPE

FOR (Q)SARs IN APPLICATION

In the late 1990s, there started to be a need to make predictions
for a broader coverage of chemicals beyond the smaller datasets
that underpinned the mechanistic chemical class type QSAR
models to date. The shift was partly driven by interest in
improvements to quantitative descriptions of chemical structure
for toxicity prediction, and the availability of computing power.

Decision contexts were also changing and provided an
additional impetus for new model development. Two main
drivers were influencing this change: the need for non-animal
alternatives, largely prompted the EU Cosmetics Regulation
(European Commission, 2009) and the EU Chemicals legislation
known as REACH (European Commission, 2006). REACH in
particular had a profound effect in the development, evaluation,
and application of QSARs, primarily since the decision context
was to use QSAR predictions as supporting information in the
construct of an Integrated Approaches to Testing andAssessment
(IATA) (Tollefsen et al., 2014) and/or in lieu of new experimental
testing. In the run up to REACH coming into force, there was a
concerted effort to characterize a framework to facilitate the use
of (Q)SARs for regulatory purposes (Cronin et al., 2003a,b). This
culminated in the formulation of the OECD QSAR principles for

validation namely: a defined endpoint, unambiguous algorithm,
appropriate measures of predictivity (e.g., external validation),
goodness of fit (e.g., cross-validation), an applicability domain
and mechanistic interpretation if possible (OECD, 2004, 2007;
Patlewicz et al., 2016). The QSAR Validation principles largely
provided the impetus to develop new approaches to characterize
the applicability domain of models (Netzeva et al., 2005;
Nikolova-Jeliazkova and Jaworska, 2005) as well as consider
integration of models e.g., consensus models (e.g., Votano
et al., 2004). In the development of Frontiers in Toxicology:
Computational Toxicology and Informatics, a focus on the
validation principles and their applicability to (Q)SARs and
beyond is a component of advancing the scientific confidence in
using these approaches in applied decision-making.

BROADENING COMPUTATIONAL

TOXICOLOGY TO A STRATEGIC IN SILICO

AND IN VITRO APPROACH AS

SUPPORTED BY INFORMATICS

At the same time, the NRC report was published (NRC, 2007)
which outlined the change in how toxicity testing could be
undertaken. Subsequent reports on computational methodology
for exposure (NRC, 2012) and risk assessment (NRC, 2017) have
broadened the call. TheNRC reports, together with the synergism
of increased computing resources, increased access to laboratory
automation for toxicology, and development of methodologies
that efficiently generated large volumes of data, generated
a disruptive change in the field and an expansion of what
computational toxicology represented. Instead of summarizing
toxicity on the basis of traditional toxicity tests, a shift was
proposed to predict genotoxic vs. non-genotoxic substances,
and then to have in vitro bioactivity and predicted exposure
define a bioactivity:exposure ratio, which would inform the
need for models of greater biological complexity (Thomas
et al., 2013, 2019). This shift is dependent on high throughput
and high content screening methods (HTS/HCS), including
high throughput transcriptomics (HTTr) and high throughput
phenotypic profiling (HTTP) of cellular morphology (Harrill
et al., 2019; Thomas et al., 2019; Nyffeler et al., 2020).

The data needed for a rapid, high-throughput safety
assessment requires application of a range of computational
approaches for data analysis, data storage, and in silico predictive
modeling. These challenges are directly identified in the title
of this journal as the necessary “informatics” component of
realizing computational toxicology for safety assessment. How
to meet these informatic challenges is the subject of ongoing
research as the volume and variety of data require tools for
large scale data processing, databasing and informatics for single-
dimension and multi-dimensional datasets, visualization for
heterogeneous information, demonstrating reproducibility, and
quality control, and perhaps most challenging, for interpretation
and communication in the appropriate format and context for
chemical safety assessment.Many aspects of the vision articulated
by the initial NRC report have been realized in preliminary
form by the ToxCast (Kavlock et al., 2012) and Tox21 research
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programs (Tice et al., 2013; Thomas et al., 2018) which have
generated publicly available HTS data on thousands of chemicals.
In addition to the data generated, data processing pipelines have
been developed (Hsieh et al., 2015; Filer et al., 2017) and many
different models continue to be derived using the data, including
those designed to understand mode-of-action (e.g., Shah et al.,
2011; Judson et al., 2015; Kleinstreuer et al., 2016; Saili et al.,
2019;) as well as models that use HTS data as descriptors or
training information for (Q)SARs (e.g., Liu et al., 2015; Mansouri
et al., 2016). The informatic needs of data driven predictive
modeling, and how to standardize and openly transmit these
models, is a clear need in the field. Recent progress in advancing
computational toxicology and the associated challenges were
discussed in Ciallela and Zhu (2019). Noteworthy examples of
recent data driven models include those for acute oral toxicity
(Russo et al., 2019) and liver toxicity (Zhao et al., 2020).

The databasing and informatic challenges for computational
toxicology also have a legacy component: to bolster scientific
confidence and for fit-for-purpose evaluations, the use of in
vivo animal study data and any available in vivo human data
have been important in the early application of computational
toxicology as replacements or alternatives to existing approaches
(Kleinstreuer et al., 2016, uterotrophic database; Hoffmann et al.,
2018, LLNA database; Watford et al., 2019b; ToxRefDBv2). To
enable quantitative comparisons of dose in animals or humans,
internal exposures as modeled using HT toxicokinetic data and
modeling (Wetmore et al., 2012; Pearce et al., 2017; Wambaugh
et al., 2018) have been developed to support in vitro to in vivo
extrapolation (IVIVE). Examples of how IVIVE has enabled
greater utilization of HTS data for safety assessment are discussed
in more detail in Thomas et al. (2019), Paul Friedman et al.
(2020).

CURRENT STATE OF COMPUTATIONAL

TOXICOLOGY AND INFORMATICS

The Rising Need of Informatics and Data

Engineering
The validation principles of QSARs are perhaps still relevant
today but in providing a framework to make explicit the
provenance of the data, how it has been processed, the
assumptions made, and the transparency and reproducibility of
any models derived (Patlewicz et al., 2015). The three pillars
of statistics, toxicology, and chemistry have since extended,
in part due to the demand to make rapid decisions (Judson
et al., 2010), with greater transparency. Perhaps the term “Data
Science” now better captures the skill sets and needs encompassed
in computational toxicology. Thus, computational toxicology
considers the disciplines of toxicology, chemistry, and statistics,
but also a number of front-end data science techniques relying on
programming skills to facilitate data acquisition, data processing,
storage and retrieval, data manipulation and interpretation, and
beyond traditional statistics, other machine learning and deep
learning techniques. The wealth of open source tools has also
facilitated the change in the skills and approaches now applied.
Commercial bespoke tools are being somewhat superseded

by open source libraries developed on top of programming
languages such as R and python. A skill set that so far has not
been a strong focus as yet is that of data engineer, the backend
of data science: models developed need to be deployed, and for
reproducible models, a different set of considerations regarding
versioning of models, their underlying inputs, and algorithms
e.g., docker containers.

Evaluating Fit-For-Purpose Utility
The variety and volume of data now being generated and
analyzed has also raised challenging questions for the “legacy”
or existing in vivo data available: the level of curation, study
reproducibility, and how these data may be used to benchmark
new approach methodologies are all of high interest (Pham et al.,
2019) Using in vivo study data to benchmark the performance
of or directly train new approach methodologies for human or
ecological health assessment should include some evaluation of
how variable the in vivo study data may have been. Fit-for-
purpose evaluations require not only acquisition of and curation
of reference data and meaningful assessments of variability and
uncertainty, but also efforts to increase data interoperability
(Watford et al., 2019a). That requires ontologies in data storage
and domain knowledge, as well as standards that permit sharing
and exchange of data and models. Another consideration is the
fact that these new data stream technologies are evergreen and in
constant state of evolution and improvement. Evaluation of the
fitness of these information needs to be flexible to deal with the
changes in the methods of a specific technology and increased
understanding of method performance using a large number of
substances (Judson et al., 2018; Ciallela and Zhu, 2019).

The concept of an “applicability domain” is central in an
evaluation of fit-for-purpose use of computational toxicology
approaches, taking on an extended meaning as we want to
understand the relevance of the model and when it can be
applied and the extent to which it can be used to forecast
other substances and to what extent there is confidence for
that to occur. The uncertainties associated with the prediction
need to be clearly specified and linked back to the decision
context and purpose intended. The appropriate measures of
fit and predictivity remain important considerations. What are
the steps and procedures that were applied during the model
building phases, including selection of approach, cross validation,
performance metrics, and hyperparameter optimization. Before
final model evaluation and application to new data (prediction),
consideration of how to deploy a model should include a plan for
ensuring reproducibility.

And Now: A Call for Research and Action

Using the QSAR Validation Principles as a

Guide
Clearly the landscape of computational toxicology has
significantly evolved in the last two decades and much
progress has already been made. Notable examples include data
challenges that have been organized by NCATS (e.g., Huang and
Xia, 2017) and NICEATM (e.g. Kleinstreuer et al., 2018). Most
progress has been realized for individual discrete substances
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but major areas of effort that remain to be tackled include: (1)
the challenge of big data itself e.g., how to fit for large datasets
(Ciallela and Zhu, 2019) (2) difficult substances to test in existing
HTS systems, e.g., volatiles, insoluble in solvents; (3) mixtures–to
date progress has been made on developing individual models
but less focus on ensemble models; (4) wide implementation of
cloud resources for data accessibility and data processing; (5)
metabolism and degradation aspects in inferring effects of parent
chemicals; (6) the use of unbalanced datasets in model training
and development; (7) predicting dose response in conjunction
with effects rather than extracting a summary metric from a
study (Moran et al., 2019); (8) mining and extraction of insights
from unstructured literature data; (9) standardized application
of epidemiology; and likely a myriad of other challenges yet to
be identified.

In many respects the (Q)SAR validation principles from
2004 remain relevant. The defined endpoint of a model or new
approach methodology, the purpose and the goal of the model,

and its basis need to be specified, albeit characterized differently

tomeet the requirements of 2020 and beyond. “The unambiguous
nature of the algorithm” reads now as a call for increased
reproducibility of the methodology and the approach. Are the
assumptions of the modeling approach and the underlying data
clearly specified? What are the data processing steps taken?
How has the data been generated, summarized, and stored?
These and other considerations should feature prominently in
Computational Toxicology and Informatics.
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