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Simple Summary: Prognosis for glioblastoma patients remains poor despite the current standard
of care treatments. More recent investigations have focused on immunotherapy, which utilizes a
patient’s immune system to target cancer cells. Though proven to be successful in non-central nervous
system cancers, immunotherapies have yielded disappointing results for glioblastoma thus far. A
variety of factors play into the efficacy of immunotherapy for glioblastoma and have become new
areas of interest. Here we review both historical and emerging immunotherapeutic approaches, as
well as the molecular factors that have been shown to impact the efficacy of immunotherapies.

Abstract: Outcomes for glioblastoma (GBM) patients undergoing standard of care treatment remain
poor. Here we discuss the portfolio of previously investigated immunotherapies for glioblastoma, in-
cluding vaccine therapy and checkpoint inhibitors, as well as novel emerging therapeutic approaches.
In addition, we explore the factors that potentially influence response to immunotherapy, which
should be considered in future research aimed at improving immunotherapy efficacy.

Keywords: immunotherapy; glioblastoma; immune system

1. Introduction

Glioblastoma is a primary brain tumor for which there is a substantial unmet need
with respect to therapeutic options. Contemporary standard treatment for newly diag-
nosed disease involves maximum feasible surgical resection, radiation therapy, systemic
therapy with the DNA-alkylating agent temozolomide, and regional therapy with alter-
nating electrical fields [1]. For progressive disease, optimal management is less clear [2].
Immunotherapeutic approaches, including vaccines, immune checkpoint inhibitors, or
cell-based therapies, have proven remarkably successful in a host of non-central nervous
system (CNS) malignancies [3]. Unfortunately, such gains in durable survival have yet to be
observed across unselected patient populations with glioblastoma in the phase 3 trials thus
far conducted [4–6]. A number of factors, both known and unknown, contribute to the lack
of benefit from immunotherapy observed thus far. In this review, we will examine recent
clinical investigations that may shed light on these resistance mechanisms. Additionally,
we will identify future approaches that may prove of value in utilizing immunotherapies
to treat glioblastoma.

2. Established Immunotherapeutic Approaches: Enhancing T-Cell Activities

Glioblastomas have been shown to promote immunosuppression intratumorally as
well as systemically [7,8]. Decreased systemic immune activity is associated with tumor
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progression and shorter survival times [9–12]. These findings suggest that immunother-
apeutic approaches to enhance immune activity and/or minimize immunosuppression
may prove beneficial in treating patients with these tumors. Two of the most extensively
studied approaches are vaccine therapies and immune checkpoint inhibitors, as detailed
below. Chimeric antigen receptor (CAR) T-cell therapy, which involves the administration
of genetically modifying cytotoxic T lymphocytes expressing chimeric antigen receptors
for tumor antigens, is reviewed separately [13].

2.1. Vaccine Therapies

Vaccine-based immunotherapy is designed to induce a specific immune response
against tumor antigens. Vaccines can be categorized into “off-the-shelf” peptide vaccines
targeting pre-specified epitopes or vaccines based on autologous patient tumor tissue [14].
Summaries of both completed and ongoing peptide and autologous vaccine therapies are
listed in Table 1.

Table 1. Completed and ongoing peptide vaccine clinical trials for GBM.

Completed Trials

Vaccine
Type/Target Study Title Phase Size Intervention Details Primary Endpoint Reference

EGFRvIII

Phase III Study of Rindopepimut/GM-CSF in
Patients With Newly Diagnosed Glioblastoma

(ACT IV)
3 745 Rindopepimut + TMZ

vs. TMZ

OS = 20.1 (95% CI 18.5–22.1)
vs. 20.0 mo (95% CI

18.1–21.9)
NCT01480479

A Study of Rindopepimut/GM-CSF in Patients
with Relapsed EGFRvIII Positive Glioblastoma

(ReACT)
2 73

Rindopepimut +
bevacizumab vs.

Bevacizumab

PFS at 6 mo = 28% vs. 16%
(HR = 0.72, 95% CI 0.42–1.21) NCT01498328

WT1

Phase II clinical trial of Wilms tumor 1 peptide
vaccination for patients with recurrent

glioblastoma multiforme
2 21 WT1 peptide mPFS = 20 weeks

6 mo PFS rate = 33.3% N/A

A phase I study of the WT2725 dosing emulsion
in patients with advanced malignancies 1 62 WT1 peptide

(WT2725)

Maximum tolerated dose.
* Response rate in

GBM = 20%
* OS12 in GBM = 33%

NCT01621542

IMT-03 Clinical Trial for Newly Diagnosed
Malignant Glioma with WT1-W10 Vaccination 1/2 27 WT peptide (W10) PFS = 12.7 mo

OS = 21.9 mo N/A

IDH1

Targeting IDH1R132H in WHO Grade III-IV
IDH1R132H-mutated Gliomas by a Peptide
Vaccine—a Phase I Safety, Tolerability and

Immunogenicity Multicenter Trial (NOA-16)

1 33 IDH1 peptide vaccine
Safety and immunogenicity.
93.3% with vaccine-induced

immune response
NCT02454634

CMV

Vaccine Therapy in Treating Patients with
Newly Diagnosed Glioblastoma Multiforme

(ATTAC)
1/2 12 pp65-DC vaccine + Td

preconditioning

Safety and feasability
* OS = 20.6–47.3 mo vs.
13.8–41.3 mo (p = 0.013)

NCT00639639

Long-term Survival in Glioblastoma with
Cytomegalovirus pp65-Targeted Vaccination

(ATTC-GM)
1 11 pp65 DC vaccine +

GM-CSF

Safety and feasibility
* mPFS = 25.3 mo vs. 8 mo

(p = 0.0001), * mOS = 41.1 vs.
19.2 mo (p = 0.0001)

NCT00639639

Evaluation of Overcoming Limited Migration
and Enhancing Cytomegalovirus-specific

Dendritic Cell Vaccines with Adjuvant TEtanus
Pre-conditioning in Patients With
Newly-diagnosed Glioblastoma

(ELEVATE)

2 43

pp65 DC vaccine +
TMZ vs. Pp65 DC
vaccine + TMZ +
preconditioning

3-year OS = 34% (95% CI
19–63%) vs. 6% (95% CI

1–42%)
NCT02366728

Multipeptide
Vaccines

Efficacy finding cohort of a cancer peptide
vaccine, TAS0313, in treating recurrent

glioblastoma
1/2 9 TAS0313

Safety and efficacy.
ORR = 11.1% (95%

CI = 0.3–48.2%)

JapicCTI-
183824

A Randomized, Double-blind, Controlled Phase
IIb Study of the Safety and Efficacy of ICT-107 in

Newly Diagnosed Patients with Glioblastoma
Multiforme (GBM) Following Resection and

Chemoradiation

2 124 ICT-107 vs. placebo

OS = 17 vs. 15 mo (HR = 0.87,
p = 0.58).

* PFS = 11.2 vs. 9.0 mo
(HR = 0.57, p = 0.011)

NCT01280552

Neoantigens

A Phase I Study of a Personalized NeoAntigen
Cancer Vaccine With Radiotherapy Plus

Pembrolizumab/MK-3475 Among Newly
Diagnosed Glioblastoma Patients

1/1b 8
NeoVax + RT vs.
Neovax + RT +

Pembrolizumab
Safety and tolerability NCT02287428
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Table 1. Cont.

Ongoing Trials

Vaccine
Type/Target Study Title Phase Size Intervention details Primary endpoint Reference

Survivin

A Phase II Study of the Safety and Efficacy of
SVN53-67/M57-KLH (SurVaxM) in
Survivin-Positive Newly Diagnosed

Glioblastoma

2 66 SurVaxM + TMZ PFS at 6 mo NCT02455557

Phase II Study of Pembrolizumab Plus SurVaxM
for Glioblastoma at First Recurrence 2 40 SurVaxM +

pembrolizumab PFS at 6 mo NCT04013672

TERT
Anticancer Therapeutic Vaccination Using

Telomerase-derived Universal Cancer Peptides
in Glioblastoma (UCPVax-Glio)

1/2 56 UCPVax vs. UCPVax +
TMZ Anti-TERT T-cell response NCT04280848

Multipeptide
Vaccines

First-in-Human, Phase 1b/2a Trial of a
Multipeptide Therapeutic Vaccine in Patients

with Progressive Glioblastoma (ROSALIE)
1/2 52

EO2041 + nivolumab
vs. EO2041 +
nivolumab +
bevacizumab

Safety and tolerability NCT04116658

EGFRvIII = epidermal growth factor receptor variant III; GM-CSF = granulocyte-macrophage colony-stimulating
factor; TMZ = temozolomide; RT = radiotherapy; WT1 = Wilms tumor 1; IDH1 = isocitrate dehydrogenase
1; CMV = cytomegalovirus; Td = tetanus toxoid; DC = dendritic cell; TERT = telomerase reverse transcrip-
tase; OS = overall survival; mOS = median overall survival; PFS = progression-free survival; mPFS = me-
dian progression-free survival; HR = hazard ratio; CI = confidence interval; ORR = overall response rate.
* Secondary endpoints.

2.1.1. Peptide Vaccines

EGFRvIII: The epidermal growth factor receptor (EGFR) deletion mutation, EGFRvIII,
is expressed in about ~33% of GBM and promotes tumorigenesis through various mech-
anisms [15–23]. Signaling pathways induced by EGFRvIII activation are illustrated in
Figure 1. The most notable peptide vaccine is rindopepimut, previously known as CDX-
110, which targets EGFRvIII. This vaccine was studied in several clinical trials [24–26]. In
the phase 3 ACT IV trial (NCT01480479), the addition of rindopepimut to standard radiation
and temozolomide treatment in EGFRvIII-positive glioblastoma patients did not improve
survival as compared to radiation and temozolomide alone (20.1 months vs. 20 months,
HR 1.01) [27]. Furthermore, there was no significant difference in progression-free survival,
tumor response, or quality of life measures in the rindopepimut group compared to the
control group [27]. Interestingly, the randomized phase 2 ReACT trial (NCT01498328)
demonstrated that the addition of rindopepimut to standard bevacizumab in relapsed,
EGFRvIII-positive glioblastoma patients trended toward improved progression-free sur-
vival (PFS) at 6 months. While multiple endpoints were positive (overall survival (OS),
overall response rate, and median duration of response), the study was overall limited by a
small sample size (n = 73 patients) [6].
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It should be noted that almost 60% of the patients in the ACT IV trial who were treated
with rindopepimut and studied at tumor recurrence (21 of 37 patients evaluated of the
745 patients enrolled) subsequently lost EGFRvIII expression [27]. Loss of EGFRvIII has
been described in additional studies [25,26,28]. However, EGFRvIII loss is not limited to
those treated with rindopepimut and can still occur in nearly 50% of patients with EGFRvIII
expressing glioblastoma as part of the natural evolution of glioblastoma [29].

EGFRvIII (epidermal growth factor receptor variant III) activates multiple signaling
pathways for tumorigenesis, including MAPK, mTOR, and STAT pathways.

IDH1: Isocitrate dehydrogenase (IDH) 1 mutations are a defining characteristic of
the histologically similar tumor, the astrocytoma IDH mutated WHO grade 4, which was
previously characterized as a glioblastoma [30,31]. These tumors were previously included
in many trials for glioblastoma. Recent attempts have been made to create a peptide
vaccine targeting the IDH1 R132H neoantigen. One recent phase 1 clinical trial studied the
efficacy of the IDH1 R132H mutant peptide vaccine (NOA-16) in IDH1 mutated grade III–IV
gliomas, which led to both mutation-specific T cell and humoral immune responses [32]
(NCT02454634).

WT1: A number of other antigen peptide-based vaccines are also being explored in
GBM. Wilms tumor 1 (WT1) was previously identified as a tumor-associated antigen (TAA)
in high-grade glioblastoma [33]. Subsequent clinical trials were performed in humans,
demonstrating the safety and tolerability of the WT1 peptide vaccine [34]. The resulting
data demonstrated the induction of WT1-specific IgG antibodies as well as the identification
of a potential biomarker [35,36]. This is still an actively researched approach [37,38].

CMV: Efforts in developing a cytomegalovirus (CMV) peptide vaccine began after one
study found CMV immune reactivity in 100% of GBM patients, albeit with some inconsis-
tent results [39–42]. The vaccine is aimed at pp6537, which is a major structural protein of
CMV. Two strategies for targeting CMV have been evaluated in GBM: a pp65-pulsed den-
dritic cell (DC) platform [43] and a CMV-specific T-cell expansion approach [44,45]. These
approaches have been shown to be safe, and early small studies have revealed promising
results. Two recent sequential clinical trials (ATTAC and its expanded cohort trial ATTAC-GM,
NCT00639639) using CMV pp65 DC vaccines in newly diagnosed GBM patients consistently
demonstrated an improved OS, with the latter trial demonstrating mPFS of 25.3 mo and OS
of 41.1 mo [45,46]. A third larger confirmatory trial, ELEVATE (NCT02366728), involving
43 patients who received the CMV DC vaccine after pretreatment with tetanus diptheria
toxoid (Td), demonstrated a 3-year OS of 34% [46,47]. Though these results are encouraging,
larger confirmatory studies are needed.

Survivin: Survivin is part of the inhibitor of apoptosis (IAP) family of proteins and
functions to regulate cell division and programmed cell death [48]. There have also been
ongoing efforts using a survivin peptide mimic (SurVaxM) in GBM [49]. This vaccine is
currently being evaluated in one phase 2 trial for newly diagnosed GBM (NCT02455557). It
is also being studied in combination with pembrolizumab in recurrent GBM in a separate
trial (NCT04013672) [50,51]. While the vaccine is well tolerated, efficacy is unknown.

TERT: TERT (telomerase reverse transcriptase) mutations occur in many GBM pa-
tients [52,53]. As a result, a recent vaccine strategy was developed to target the telomerase
reverse transcriptase (TERT) protein [53]. The TERT peptide-based vaccine (UCPVax-Glio)
was recently developed by Invectys in France and is currently being studied in both phase
1 and 2 trials (NCT04280848).

Multipeptide vaccines: Considering the very real possibility of antigen escape using a
single peptide targeting vaccine, the latest class of peptide vaccines were engineered toward
multiple tumor antigens simultaneously. An ongoing phase 1/2 study found TAS0313, a
vaccine comprised of 12 Cytotoxic T-cell epitopes against 8 TAAs (derived from EGFR, KUA,
LCK, MRP3, PTHRP, SART2, SART3, and WHSC2), to be safe and potentially efficacious [54].
In another recent phase 2 study, administration of the ICT-107 vaccine, comprised of 6 TAA
(MAGE-1, HER-2, AIM-2, TRP-2, gp100, and IL13Rα2) pulsed into DC, led to a notable
increase in PFS in GBM patients [55]. A third vaccine called EO2401, which targets three
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bacterial peptides that mimic tumor antigens (termed Oncomimics), is being explored in the
context of nivolumab for progressive GBM (NCT04116658) [56]. Interim results are expected
soon. While no conventional peptide vaccine platform has led to any change in the standard
of care (SOC) of GBM, the results of these studies are eagerly anticipated.

Neoantigens: Cancer neoantigens are T-cell epitopes that exclusively arise from tumor-
specific somatic DNA mutations and are subsequently highly immunogenic given the lack
of expression in normal tissues [57]. Neoantigen vaccines have been studied previously
in patients with melanoma [58–60] but have only recently been studied in the GBM pop-
ulation. A recent phase 1/1b trial (NCT02287428) demonstrated that administration of
a personalized neoantigen vaccine (NeoVax) in new GBM patients induced circulating
neoantigen-specific T-cell responses and resulted in intratumoral T-cell infiltration, a subset
of which were neoantigen-specific [61]. Of note, T-cell response was limited to patients
who did not receive concomitant steroid treatment with dexamethasone. Additionally,
despite one patient having a large number of unique CD4+ and CD8+ T-cell clonotypes, the
actual number of clonotypes identical to those from the relapsed tumor was significantly
lower [61].

2.1.2. Autologous Vaccines

A summary of clinical trials investigating autologous vaccines for glioblastoma is
listed in Table 2. There have been several studies evaluating autologous vaccines in the
context of dendritic cells (DCs) [62,63]. DCs are key players in immunosurveillance and
immune regulation that present phagocytosed antigens to naïve T cells. DCVax-L is the
most well-studied DC vaccine and is comprised of autologous DCs pulsed with autologous
tumor lysate. The phase 3 DCVax trial (NCT00045968) investigated the impact of DCVax-L
in addition to SOC (surgical resection and chemoradiotherapy) for newly diagnosed GBM
patients. Due to the cross-over study design, nearly 90% of the patients in this study
received DCVax-L, making an interpretation of the survival outcome challenging. In the
overall intent to treat the patient population (investigational arm + control arm), the mOS
was estimated to be 23.1 months. This study has benchmarked these findings to historical
controls but has not yet evaluated its primary endpoint of PFS [62]. A recent phase 1 trial
focused on an autologous DC vaccine pulsed with GBM stem-like cell line lysate, which
was shown to be tolerable (NCT02010606). Further results are pending [63].

Table 2. Autologous vaccine clinical trials for GBM.

Autologous
Vaccine Study Title Phase Size Intervention Primary Endpoint Reference

Dendritic
cells

A Phase III Clinical Trial Evaluating DCVax®-L,
Autologous Dendritic Cells Pulsed With Tumor

Lysate Antigen For The Treatment Of
Glioblastoma Multiforme (GBM)

3 331 TMZ + DCVax-L vs.
TMZ + placebo

mOS = 23.1 mo (95% CI
21.2–25.4) NCT00045968

Phase 1 Study of a Dendritic Cell Vaccine for
Patients with Either Newly Diagnosed or

Recurrent Glioblastoma
1 36 DC vaccine + GBM

stem-like cell lysate

Safety and tolerability
* mPFS = 8.75 mo in new GBM,

3.23 mo in recurrent GBM
* mOS = 20.36 mo in new GBM,

11.97 mo in recurrent GBM

NCT02010606

HSP

Phase I/II Trial of Heat Shock Protein Peptide
Complex-96 (HSPPC-96) Vaccine for Patients

With Recurrent High Grade Glioma
1/2 41 HSPPC-96 vaccine

OS at 6 mo = 90.2% (95% CI
75.9–96.8%)

mOS = 42.6 weeks (95%
CI = 34.7–50.5)

NCT00293423

A Phase II Randomized Trial Comparing the
Efficacy of Heat Shock Protein Peptide

Complex-96 (HSPPC-96) Vaccine Given with
Bevacizumab versus Bevacizumab Alone in the

Treatment of Surgically Resectable Recurrent
Glioblastoma

2 90
HSPPC-96 vaccine +

bevacicumab vs.
Bevacizumab alone

OS = 7.5 vs. 10.7 mo (HR = 2.06) NCT01814813

TMZ = temozolomide; DC = dendritic cell; GBM = glioblastoma multiforme; HSP = heat shock protein; mOS = me-
dian overall survival; mPFS = median progression-free survival; CI = confidence interval. * Secondary endpoints.



Cancers 2022, 14, 4023 6 of 30

Heat shock protein (HSP) vaccines are designed to promote a specific antitumor
inflammatory response [64]. HSPs operate as intracellular chaperones and can deliver
tumor antigens to antigen-presenting cells (APCs), including DCs, to facilitate T cell-
mediated cytotoxic death [64]. The most well-studied HSP vaccine is the autologous
HSPPC-96 (Prophage) vaccine, which is comprised of patient-specific tumor antigens
conjugated to HSP gp-96. A single-arm, phase 2 trial enrolled 41 recurrent GBM patients
treated with the HSPPC-96 vaccine (NCT00293423). Results revealed an mOS of 42.6 weeks
and mPFS of 19.1 weeks [65]. Notably, these outcomes were only compared to historical
controls. A subsequent multi-arm phase 2 clinical trial investigated both HSPPC-96 and
bevacizumab, though it was then closed to accrual early after interim analysis demonstrated
no improvement in OS [66].

Of note, several of these clinical trials utilized historical controls as the active com-
parator. Many have deemed the use of historical controls as suboptimal due to potential
differences in patient, disease, and therapeutic characteristics that subsequently confound
results. Furthermore, historical controls face different survival trends when matched to
contemporary patients, likely as a result of evolving therapeutic options [67–69]. Moving
forward, the reliability of historical controls should continue to be kept in mind when
designing clinical trials.

Other personalized vaccines, such as CeGaT, are commercially available. To the
authors’ knowledge, there have been no peer-reviewed preclinical or clinical studies of
CeGaT for glioblastoma.

2.2. PD-1 and PD-L1 Blockade

Immune checkpoints regulate the immune system as “gatekeepers” of immune re-
sponses to maintain self-tolerance [70]. These immune checkpoints can be stimulated and
utilized by tumors, including glioblastomas, to evade the immune system. One of the most
well-studied immune checkpoints and therapeutic targets is the PD-1/PD-L1 axis. Glioblas-
toma tumor cells express programmed death ligand 1 (PD-L1), which binds to PD-1 on
T cells (see Figure 2). This induces T-cell apoptosis or anergy and allows tumor cells to
evade the immune response [70,71]. Higher expression of PD-L1 is associated with a higher
grade and worse outcome [70]. Immune checkpoint inhibitors that block the interaction
of PD-1 with PD-L1 can potentially reinstate a T-cell antitumor immune response [71,72].
Here we review major trials studying PD-1 and PD-L1 inhibitors in glioblastoma (Table 3).
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grammed death ligand 1; OS = overall survival; mOS = median overall survival; PFS = progression-
free survival; HR = hazard ratio; CI = confidence interval. 

Figure 2. PD-1 and PD-L1 expression. PD-1 (programmed death-1) and PD-L1 (programmed death
ligand 1) are expressed in T cell and cancer cells, respectively. Examples of PD-1 blockers include
nivolumab, pembrolizumab, and cemiplimab. Examples of PD-L1 blockers include atezolizumab,
durvalumab, and avelumab.
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Table 3. Immune checkpoint inhibitor clinical trials for GBM.

Study Title Phase Size Intervention
Details Primary Endpoint Reference

Newly diagnosed
GBM

An Investigational Immuno-therapy Study of
Nivolumab Compared to Temozolomide, Each

Given With Radiation Therapy, for
Newly-diagnosed Patients With Glioblastoma

(GBM, a Malignant Brain Cancer)
(Checkmate 498)

3 560 Nivolumab + RT vs.
TMZ + RT

OS (endpoint not met)
mOS = 13.4 vs. 14.9 mo

(HR = 1.31, 95%
CI = 1.09–1.58,

p = 0.0037)

NCT02617589

An Investigational Immuno-therapy Study of
Temozolomide Plus Radiation Therapy With
Nivolumab or Placebo, for Newly Diagnosed

Patients With Glioblastoma (GBM, a Malignant
Brain Cancer)

(Checkmate 548)

3 716
Nivolumab + RT +
TMZ vs. Placebo +

RT + TMZ

PFS = 10.6 vs. 10.3 mo
(HR = 1.06)

mOS = 28.9 vs. 32.1 mo
(HR = 1.10)

NCT02667587

Phase I/II Study to Evaluate the Safety and
Clinical Efficacy of Atezolizumab (aPDL1) in

Combination With Temozolomide and
Radiation in Patients With Newly Diagnosed

Glioblastoma (GBM)

1/2 60

Atezolizumab + RT
+ TMZ vs. adjuvant

atezolizumab +
TMZ

MTD, mOS = 17.1 mo NCT03174197

Recurrent GBM

A Study of the Effectiveness and Safety of
Nivolumab Compared to Bevacizumab and of

Nivolumab With or Without Ipilimumab in
Glioblastoma Patients

(Checkmate 143)

3 369 Nivolumab vs.
Bevacizumab

mOS = 9.8 vs. 10.0 mo
(HR = 1.04, 95%
CI = 0.83–1.30)

NCT02017717

Study of Pembrolizumab (MK-3475) in
Participants With Advanced Solid Tumors

(MK-3475-028/KEYNOTE-28)
1 26 Pembrolizumab mOS = 13.1 mo NCT02054806

Pembrolizumab +/− Bevacizumab for
Recurrent GBM 2 80

Pembrolizumab +
bevacizumab vs.
Pembrolizumab

PFS at 6 mo = 26.0%
(95% CI 16.3–41.5) vs.
6.7% (95% CI 1.7–25.4)

NCT02337491

A Study of Atezolizumab (an Engineered
Anti-Programmed Death-Ligand 1 [PDL1]

Antibody) to Evaluate Safety, Tolerability and
Pharmacokinetics in Participants With Locally

Advanced or Metastatic Solid Tumors

1 16 Atezolizumab Safety profile,
mOS = 4.2 mo NCT01375842

GBM = glioblastoma multiforme; RT = radiation therapy; TMZ = temozolomide; PDL1 = programmed death
ligand 1; OS = overall survival; mOS = median overall survival; PFS = progression-free survival; HR = hazard
ratio; CI = confidence interval.

Nivolumab is a human immunoglobulin G4 monoclonal antibody that targets PD-1.
After it was approved for several solid tumors, it was studied in several trials for patients
with GBM. The phase 3 trial CheckMate 143 demonstrated no improvement in mOS for
recurrent GBM patients treated with nivolumab vs. bevacizumab (9.8 vs. 10.0 months,
HR 1.04, p = 0.76) [73]. Subsequently, two large phase 3 trials investigated the role of
nivolumab in newly diagnosed GBM. In the CheckMate 548 trial, the addition of nivolumab
to radiotherapy and temozolomide did not improve OS (mOS 28.9 vs. 32.1 months in
nivolumab vs. placebo group, respectively, HR 1.10) or PFS (10.6 months vs. 10.3 months,
HR 1.1) in newly diagnosed GBM patients with methylated/indeterminate MGMT pro-
motor [4]. The companion phase 3 CheckMate 498 trial was designed to compare OS
for new unmethylated MGMT glioblastoma patients treated with either nivolumab + RT
vs. temozolomide + RT. Notably, this trial also did not meet its primary endpoint of pro-
longed survival (mOS = 13.4 months vs. 14.9 months, HR 1.31, p = 0.0037), and results
favored the control arm [5]. The use of dual checkpoint blockade, PD-1, and CTLA-4,
is currently undergoing investigation in the NRG Oncology cooperative group in a ran-
domized phase 2/3 trial BN007 (NCT04396860), which has completed the phase 2 accrual.
Intracerebral administration of CTLA-4 and PD-1 inhibitors ipilimumab and nivolumab,
respectively, in addition to intravenous nivolumab, has also been shown to be safe in
a phase 1 trial, with further results pending [74]. One can question from a mechanistic
perspective, however, the need for direct intracranial administration.

Pembrolizumab, another anti-PD-1 antibody, has been extensively studied in glioblas-
toma patients but has also shown to be ineffective at improving mOS. In the KEYNOTE-
028 study, results from the phase 1 trial in recurrent PD-L1 positive glioblastoma patients
revealed a response rate of 8%. Interpretation of the results is limited due to the small sample
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(n = 26) as well as the lack of an active comparator [75]. Pembrolizumab was then studied
in conjunction with bevacizumab, with the rationale being the latter drug’s possible role in
promoting immunotherapy by inhibiting VEGF [76–79]. In this phase 2 trial, patients were ran-
domized to receive either pembrolizumab + bevacizumab vs. pembrolizumab monotherapy
to assess PFS at 6 months. Pembrolizumab failed to improve both PFS and OS [80].

Investigations focused on PD-L1 targeting in glioma have been more limited in scope.
Atezolizumab, an anti-PD-L1 antibody, was studied in a phase 1 trial. The overall response
was 6%, with some long-term survivors [81]. The N2M2/NOA-20 phase 1/2 trial includes
an arm investigating atezolizumab in conjunction with asinercept (APG101), a CD95-Fc
fusion protein intended to block apoptosis of activated T cells [82]. Preliminary results
of another atezolizumab trial (NCT03174197) suggest that survival outcomes may be
associated with differences in the microbiomes of patients [83]. These results have been
presented only in abstract form thus far.

These results with checkpoint blockade are not terribly surprising given a number
of considerations. First and foremost, glioblastoma patients are lymphopenic, with the
T cells sequestered in the bone marrow [8]. Even upon gaining access to the glioblas-
toma tumor microenvironment (TME), the T cells are exhausted and are unlikely to be
reinvigorated with immune checkpoint blockade or other types of immune suppression
modulation [84,85]. This is coupled with the immunosuppressive “cold” tumor microenvi-
ronment as detailed in the following few sections, overall resulting in low immunogenicity.
Additionally, PD-L1 is not frequently expressed in glioblastoma, and even those that do
express PD-L1 do not necessarily fare better. In fact, PD-L1 expression was shown to be cor-
related with an increased risk of death [86]. Furthermore, there are many other redundant
mechanisms of immune suppression that do not involve the PD-1/PD-L1 axis, rendering
checkpoint inhibitors targeting this specific axis ineffective [85–87]. Lastly, limited drug
availability due to the blood–brain barrier may impair the response of glioblastoma to
checkpoint inhibitor therapy.

Despite all of this, there are several studies that have demonstrated the potential
benefit of neoadjuvant anti-PD1 immunotherapy in patients with glioblastoma. One study
demonstrated that neoadjuvant pembrolizumab, in addition to adjuvant therapy following
surgery, had prolonged OS compared to patients who received post-surgical therapy alone
and also had increased T-cell expression and PD-L1 induction in the tumor microenviron-
ment [88]. Another phase II trial demonstrated that neoadjuvant followed by adjuvant
nivolumab led to immunomodulatory effects with improved immune cell infiltration and
TCR diversity [89]. One should keep in mind that the studies demonstrating this benefit
have all been relatively small in size. However, proof of principle exists. Neoadjuvant
anti-PD1 immunotherapy has also shown promising results in other solid tumors, partic-
ularly in melanoma [90]. High rates of both radiographic and pathologic response with
the neoadjuvant addition of nivolumab to anti-CTLA-4 inhibition (ipilimumab) in patients
with melanoma have been demonstrated [91].

2.3. Targeting Regulatory T Cells and the Associated Immune Suppression Axis

The immunosuppressive tumor environment in GBM provides resistance to the anti-
GBM immune response. Regulatory T cells (Tregs; CD4+ FoxP3+ CD25+) are regulatory
T cells that promote and maintain the immunosuppressive tumor microenvironment [92]
and can be activated by the immunosuppressive mediator, indoleamine 2,3 dioxygenase 1
(IDO1) [93]. GBM-cell IDO1 promotes tumorigenesis and increases immunosuppressive
Treg recruitment while simultaneously decreasing cytotoxic CD8+ T-cell frequency, as
shown in Figure 3 [94]. IDO1 expression is correlated with increasing tumor grade, as well
as the expression of other immunosuppressive mediators such as PD-L1 [95]. Furthermore,
glioma patients with upregulated intratumoral IDO1 expression have shorter OS when
compared to those with intermediate and downregulated IDO expression (44.3 vs. 34 vs.
24.9 months) [95]. Interestingly, animal studies demonstrate that the genetic ablation of
IDO1 by glioma cells results in decreased Treg recruitment [95] and significantly improved
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survival rates (150 days vs. 26.5 days in IDO1-competent GBM mice, p < 0.002) [95],
pharmacological IDO1 enzyme inhibitors fail to recapitulate the same effect [96]. However,
when IDO1 enzyme inhibition is used in combination with concurrent radiation and PD-
1 mAbs, there is a synergistic improvement in the mOS [96]. This combination therapy
also increased the CD8+ T cell: Treg ratio and provided long-lasting tumor control in
30–40% of mice with GBM [96]. Newer research has demonstrated that advanced age itself
not only worsens the prognosis for GBM patients but can also suppress the efficacy of
immunotherapies [96,97]. A phase 1 trial evaluating the combination of IDO1 inhibition
with BMS-986205, PD-1 blockade with nivolumab, and concurrent radiotherapy with vs.
without TMZ is currently underway [98].
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IDO1 (indoleamine 2,3 dioxygenase 1) promotes the immunosuppressive tumor mi-
croenvironment through multiple mechanisms, including activation of MDSCs (myeloid-
derived suppressor cells), Tregs (regulatory T cells), and M2 tumor-associated macrophages,
while decreasing recruitment of NK (natural killer) cells and cytotoxic CD8+ T cells.

Another Treg targeting therapy is agonistic antibody treatment against glucocorticoid-
induced TNFR-related protein (GITR). Agonism of the GITR receptor has shown pre-
clinical efficacy in a number of GBM models by either depleting or reprogramming
Tregs [99–101]. This is currently being tested in the context of stereotactic radiotherapy and
anti-PD1 administration in recurrent GBM (NCT04225039). Of note, Tregs are not a domi-
nant mechanism of immune suppression in GBM, and many tumors lack any appreciable
infiltration of this population [102].
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2.4. T-Cell Activators

While checkpoint inhibitors and Treg targeted therapies are certainly the most widely
examined immunotherapeutic, a newer class of T-cell activators is being explored in clinical
studies of GBM. One phase 1/1b study uses an agonistic antibody against the T-cell co-
activator 41BB (PF-05082566) in conjunction with CCR4 blockade for GBM and other solid
tumors [103,104]. OX-40 ligand (OX-40L) is another T-cell activator being explored. In an
ongoing phase 1 trial (NCT03714334), the oncolytic adenovirus DNX-2240, which encodes
for OX-40L, will be administered to recurrent GBM patients. A third T-cell co-activator
being targeted is the CD40/CD40L axis. An Fc-engineered CD40 agonist antibody (2141-
V11) will be administered in combination with the EGFRvIII immunotoxin (D2C7-IT) in
recurrent GBM patients in one phase I study (NCT04547777) [105]. All of these trials are
still in their infancy, with results expected over the next few years.

In summation, while targeting or enhancing T-cell activity is the largest avenue of
immunotherapy clinical research in GBM, the inherent resistance of these tumors to im-
munotherapy may provide another hurdle to their successful use in patients. A summary of
ongoing clinical trials investigating regulatory T cells and T-cell activators for glioblastoma
is listed in Table 4.

Table 4. Treg and T-cell activator clinical trials for GBM.

Target Study Title Phase Size Intervention Primary
Outcome Reference

TReg Targeting

IDO1

A Phase 1/2a Study of
BMS-986205 Administered in Combination
With Nivolumab (Anti-PD-1 Monoclonal
Antibody) and in Combination With Both

Nivolumab and Ipilimumab
(Anti-CTLA-4 Monoclonal Antibody) in

Advanced Malignant Tumors

1 30
IDO1 inhibitor (BMS

986205) + RT + nivolumab
with vs. without TMZ

MTD NCT04047706

GITR

A Phase II Study of the Anti-GITR Agonist
INCAGN1876 and the PD-1 Inhibitor
INCMGA00012 in Combination With

Stereotactic Radiosurgery in Recurrent
Glioblastoma

2 32

Anti-GITR agonist
(INCAGN1876) +

PD1 inhibitor
(INCMGA00012) + SRS

with vs. without surgery

Objective
radiographic

response
NCT04225039

T-Cell Activating

41BB

A Phase 1b study of utomilumab
(PF-05082566) in combination with

mogamulizumab in patients with advanced
solid tumors

1/1b 24
Utomilumab

(PF-05082566) +
CCR4 mAb

MTD NCT02444793

OX-40L
Phase I Trial of DNX-2440 Oncolytic

Adenovirus in Patients With Recurrent
Glioblastoma

1 24 DNX-2440 virus MTD NCT03714334

CD40L

A Phase 1 Trial of D2C7-IT in Combination
With an Fc-engineered

Anti-CD40 Monoclonal Antibody (2141-V11)
Administered Intratumorally Via

Convection-Enhanced Delivery for Adult
Patients With Recurrent Malignant Glioma

1 8
CD40 agonist antibody
(2141-V11) + EGFRvIII

immunotoxin (D2C7-IT)
MTD NCT04547777

Treg = regulatory T cell; IDO1 = indoleamine 2,3 dioxygenase 1; CTLA-4 = cytotoxic T-lymphocyte-associated
protein 4; RT = radiation therapy; TMZ = temozolomide; GITR = clucocorticoid-induced TNFR-related protein; PD-
1 = programmed death-1; SRS = stereotactic radiosurgery; CCR4 = C-C chemokine receptor type 4; CD40L = cluster of
differentiation 40 ligand; EGFRvIII = epidermal growth factor receptor variant III; MTD = maximum tolerated dose.

3. Clinical Factors That Prevent Immunotherapeutic Efficacy in GBM

There are numerous GBM-intrinsic factors and SOC treatment-associated factors
that influence the efficacy of immunotherapy. Temozolomide (TMZ), an SOC alkylat-
ing chemotherapy, induces leukopenia, and specifically, lymphopenia [106]. The risk
increases with steroid usage and concomitant use of radiation [1]. Treatment-associated
lymphopenia can persist for up to one year and subsequently dampen the effect of sub-
sequent immunotherapies [107]. Furthermore, the dose of alkylating therapy or route of
administration may play a critical role in immunotherapeutic outcomes [108,109].

Surgical management also impacts the response to immunotherapy. The reduced
number of glioblastoma tumor cells that remain after gross total resection may result in
fewer tumor antigens and, consequently, a less robust immune response. Furthermore,
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SOC treatments also have the potential to select aggressive tumor cell lines after targeting
the less resistant cells, which can negatively impact the response to immunotherapies.
Additionally, dexamethasone, a commonly used drug for treating symptomatic vasogenic
edema, impairs proinflammatory CD8+ T-cell responses in GBM patients, thus contributing
to a weakened immune response. Treatments such as surgery or radiation have also been
shown to activate a host of immunosuppressive feedback loops [110] that may lead to a
more pronounced degree of immunosuppression than can be observed prior to therapeutic
intervention [1].

Intratumoral heterogeneity remains one of the most difficult impediments for glioblas-
toma therapies to overcome. Using single-cell RNA sequencing, it has been demonstrated
that a single primary glioblastoma consists of a heterogeneous milieu of cells from a variety
of different subgroups [111]. This intratumoral variability exists on both a temporal and
spatial level, the latter of which highlights the risk of sampling error with a single regional
biopsy [112] and has implications for both biomarker identification as well as therapeu-
tic response. While treatment may be highly successful in eradicating one subclone, it
may be unable to address the various other cellular subpopulations and, furthermore,
may select subpopulations that become resistant to subsequent therapy [113–116]. Intratu-
moral heterogeneity highlights the potential need for multimodal, combinatorial therapies
for glioblastoma.

In contrast, some aspects of SOC treatment may be beneficial with respect to im-
munotherapeutic approaches. For example, radiotherapy promotes effector T-cell mobiliza-
tion into tumors and can help suppress the proliferation of immunosuppressive regulatory
T cells. Furthermore, tumor cell death from radiotherapy can increase the exposure to a
larger amount of immunostimulatory antigens to promote an immune response [1,117–119].

Of note, due to the location and nature of the disease, it is not feasible to obtain tumor
tissue samples from all timepoints of interest. In turn, our understanding of the temporal
immunologic picture of the tumor and its microenvironment is incomplete [120].

4. Predictive Biomarkers of Immunotherapeutic Efficacy

Numerous potential predictive biomarkers for response to immunotherapies in GBM
have been investigated. These include: PD-L1 expression, tumor mutational burden (TMB),
PTEN and MAPK pathway mutations, as well as the replication stress response (RSR).
These are summarized in Table 5. A limitation to these biomarker analyses, alluded to
above, is a lack of understanding of the optimal timepoints in the disease course for these
to be assessed for validation. It is likely that different biomarkers, if valid, will have distinct
predictability at specific disease course timepoints.

4.1. PD-L1 Expression

PD-L1 expression has been shown to impact the response to immunotherapies in
several solid cancers such as melanoma and non-small-cell lung cancer, where PD-L1 ex-
pression on these tumor cells (i.e., presence of target) was shown to be associated with
objective treatment response to PD-1 inhibition [121,122]. Expression of PD-L1 in GBM is
heterogeneous, and higher expression is correlated with significantly shorter survival [91].
However, the expression of PD-L1 does not appear to be strongly predictive of response
to immunotherapy in GBM patients. In addition, there is a lack of association between
PD-1/PD-L1 expression and the tumor mutational burden of glioblastoma tumors [123].

4.2. Tumor Mutational Burden

Tumor mutational burden (TMB) refers to the total number of mutations within the
genome of a tumor cell [123]. Increased TMB can be associated with increased prevalence of
immunogenic epitopes of tumor cell surfaces, which, in theory, could improve response to
immunotherapy [123,124]. However, not all mutations, including those for genes encoding
intracellular proteins, are immunogenic, and the TMB may be heterogeneous between
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tumor cells. Finally, there may be aspects intrinsic to the tumor microenvironment, which
may supersede the importance of the TMB and immunogenic epitope expression.

Increased TMB has been previously shown to be associated with an improved response
to PD-1 blockade in several cancer types [124]. However, recent studies demonstrated that
high TMB in glioblastoma is not broadly predictive of response to immune checkpoint
blockade and that samples taken from tumors responsive to anti-PD1 therapy do not
have a higher rate of somatic mutations [125,126]. In one study, hypermutated glioma
patients treated with PD-1 blockade had similar PFS and OS times compared to patients
with non-hypermutated gliomas [127]. Additionally, patients with hypermutated gliomas
treated with PD-1 blockade have shorter mOS compared to historical controls treated with
other systemic agents [127]. Taken together, these results are suggestive that, in contrast
to other cancers, GBM TMB plays a minimal role in response to immunotherapy and, in
fact, may negatively impact the response. It appears that an elevated neoantigen load may
need to be accompanied by increased immune infiltration for this type of approach to be
effective [128]. Of note, there are case reports of germline mutations in DNA repair enzymes
in brain tumor patients that were associated with favorable responses to immune checkpoint
inhibition, presumably due to an increased TMB [129,130]. However, the elevation of TMB
from germline mutations does not necessarily equate to a more homogeneous presence of
specific mutations. These results are not generalizable to all glioblastoma patients, as the
overwhelming majority of patients with brain tumors due not harbor germline DNA repair
enzyme mutations.

4.3. PTEN Mutations

PTEN, a negative regulator of the PI3K/Akt pathway, has long been known to be
a key contributor to the immunosuppressive microenvironment of GBM [131]. PTEN
mutations in GBM also appear to be associated with a reduced response to anti-PD-1 therapy.
PTEN mutations have been shown to occur more frequently in non-responders to PD-
1 blockade as opposed to responders [126]. Furthermore, PTEN mutations may help to
promote an immunosuppressive microenvironment by increasing tumor cell clustering
that impedes immune cell infiltration, as well as increased expression of CD44, a cell
surface adhesion receptor that facilitates cell interactions with the extracellular matrix.
This results in increased tumor cell migration [126]. This corroborates findings from prior
melanoma studies demonstrating that a loss of PTEN expression results in increased
immunosuppressive cytokine expression, decreased T-cell infiltration, and subsequent
decreased T cell-mediated cell death [132].

It should be noted that a large majority of glioblastomas exhibit chromosome 10q
deletion, which is where the PTEN gene is located [133,134]. Thus, loss of PTEN expression
and function as a result of chromosome 10q deletion, as opposed to PTEN mutation, likely
contributes to the lack of therapeutic response in many glioblastomas.

4.4. MAPK Pathway Aberrancies

On the other hand, MAPK pathway mutations (including BRAF and PTPN11) in GBM
are associated with an improved response to PD-1 blockade, defined in one study as either
stable or shrinking GBM volume on imaging or a minimal amount of tumor cells in tissue
samples [126]. In this study, GBM patients who were responsive to anti-PD-1 therapy had a
significantly higher rate of BRAF and PTPN11 mutations compared to non-responders [126].
These mutations are known to drive MAPK/ERK pathway signaling, which results in an
end product of ERK1/2 phosphorylation (p-ERK) [135]. Though BRAF/PTPN11 mutations
were highly enriched in the responder patients to PD-1 blockade, only 30% of these patients
had such mutations. Recently, we showed that phosphorylation of ERK1/2 (pERK), a
downstream effector of MAPK, is present and elevated in all responders to PD1 blockade
and in those that had prolonged survival following this form of immunotherapy [136].
Yet, not all patients with elevated pERK had long-term survival following this form of
immunotherapy. The correlation between pERK with survival following PD-1 blockade
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was observed in two independent patient cohorts [136]. Responder patients that had
elevated pERK included those without BRAF/PTPN11 mutations. In addition, increased
p-ERK resulted in a higher number of myeloid cells and microglia expressing MHC-II in
the tumor microenvironment, suggesting a proinflammatory effect [136]. It is uncertain if
this may apply to other immunotherapeutic approaches. Interestingly, preclinical glioma
models have shown that gliomagenesis in the absence of CD8 T cells leads to an increase in
pERK in the tumors [137]. This may suggest that tumor-targeting immune infiltrates may
facilitate the over-activity of immunosuppressive negative feedback loops.

4.5. Replication Stress Response

A new focus of the investigation has been the replication stress response (RSR), which
is used by cells to slow DNA replication when replication stress, such as DNA lesions
or limited nucleotides, occurs and requires repair [138]. Utilizing murine breast cancer
models, one study demonstrated that gene expression of RSR defects (RSRDs) not only led
to the accumulation of immunostimulatory cytosolic single-stranded DNA and promoted
dendritic and T-cell infiltration but also was predictive of immune checkpoint blockade
(ICB) response. The RSRD score was shown to be generalizable across tumor subtypes and
was found to be a predictive and specific biomarker for clinical response to ICB in GBM
patients [139].

Table 5. Studies investigating factors affecting checkpoint inhibitor response in glioblastoma.

Predicted Response to
Checkpoint Blockade Target Authors Primary Results PMID

No effect PD-L1 expression Hodges et al. There is no association between tumor mutational load and
PD-1/PD-L1 expression (p = 0.7699, p = 0.8237) 28371827 [123]

No effect/negative response Tumor mutational
burden

McGrail et al.
Gliomas with high TMB had a low ORR (15.3%, 95% CI

92–23.4). ICB-treated glioma patients had worse OS vs. those
treated with other modalities (p = 0.23 × 10−5)

33736924 [125]

Touat et al.

Patients with hypermutated gliomas treated with
PD-1 blockade had similar PFS and OS vs. those with

non-hypermutated gliomas (1.38 vs. 1.87 mo, 8.7 vs. 9.96 mo).
Patients with hypermutated gliomas had shorter mOS with

PD-1 blockade vs. other treatments (8.07 vs. 16.10 mo, p = 0.02)

32322066 [127]

Negative response PTEN mutations Zhao et al. PTEN mutations occur more frequently in non-responders to
PD-1 blockade vs. responders (p = 0.0063, OR = 8.5) 30742119 [126]

Improved response

MAPK pathway
mutations

Zhao et al. MAPK pathway alterations (PTPN11, BRAF) are enriched in
responders to PD-1 inhibitors (Fisher p = 0.019, OR = 12.8) 30742119 [126]

Arrieta et al. ERK1/2 activation in recurrent GBM predicts OS after
PD1 blockade (HR = 0.18, 95% CI 0.06–0.56) 35121903 [120]

Replication stress
response defects (RSRD) McGrail et al.

RSR defects lead to immunostimulatory cytosolic ssDNA and
improved ICB response (p = 0.00019 in breast cancer model,

p < 0.1 × 10−6 in GBM cohort)
34705519 [139]

MAPK = mitogen-activated protein kinase; RSRD = replication stress response defects; PD-1 = programmed death
1; PD-L1 = programmed death ligand 1; TMB = tumor mutational burden; GBM = glioblastoma; PTEN = phos-
phatase and tensin homolog; OS = overall survival; PFS = progression-free survival; HR = hazard ratio; OR = odds
ratio; ORR = overall response rate; ICB = immune checkpoint blockade.

5. Making Things Hot: Promoting T-Cell Infiltration into GBM

Glioblastomas are immunologically “cold” tumors that promote an overall immuno-
suppressive tumor microenvironment with few lymphocyte infiltrates and impaired anti-
gen presentation [140]. These changes help explain why glioblastomas respond poorly to
checkpoint inhibitors. In addition, when infiltrates occur, as suggested above, they may
overactivate innate immunosuppressive systems at times. Several studies are now aimed
at converting “cold” glioblastomas into ones that are “hot.” We have summarized some of
these studies in Table 6.
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Table 6. Clinical trials aimed at enhancing immunotheraeutic response in GBM.

Primary
Mechanism Study Title Phase Size Intervention Primary Outcome Reference

STING agonism
Intratumoral Delivery of STING Agonist
Results in Clinical Responses in Canine

Glioblastoma
Preclincial 6 STING agonist

IACS-8779

MTD and
radiographic

response
N/A

STAT3 inhibition
A first-in-human Phase I trial of the oral

p-STAT3 inhibitor WP1066 in patients with
recurrent malignant glioma

1 8 p-STAT3 inhibitor
WP1066

MTD.
* mOS = 25 mo. NCT02977780

IL-12 therapy

An Open-Label, Multi-Center Trial of
INO-5401 and INO-9012 Delivered by

Electroporation (EP) in Combination With
REGN2810 in Subjects With

Newly-Diagnosed Glioblastoma (GBM)

1/2 52

INO-9012
(IL-12 plasmid) and

INO-5401 +
cemiplimab + TMZ

+ radiation

Safety (ongoing) NCT03491683

A Phase I Study of Ad-RTS-hIL-12, an
Inducible Adenoviral Vector Engineered to

Express hIL-12 in the Presence of the
Activator Ligand Veledimex in Subjects With

Recurrent or Progressive Glioblastoma or
Grade III Malignant Glioma

1 31 Veledimex +
Ad-RTS-hIL-12

Safety and
tolerability.

* mOS = 12.7 mo
NCT02026271

BBB disruption

A Study to Evaluate the Safety of Transient
Opening of the Blood-Brain Barrier by Low

Intensity Pulsed Ultrasound With the
SonoCloud Implantable Device in Patients

With Recurrent Glioblastoma Before
Chemotherapy Administration

1/2 21 SonoCloud +
carboplatin

Safety.
* mPFS = 4.11 mo,
mOS = 12.94 mo

NCT02253212

A Study to Evaluate the Safety and Feasibility
of Blood-Brain Barrier Disruption Using

Transcranial MRI-Guided Focused
Ultrasound With Intravenous Ultrasound
Contrast Agents in the Treatment of Brain

Tumours With Doxorubicin

1 5 ExABlate Safety NCT02343991

A Study to Evaluate the Safety and the
Efficacy of Transient Opening of the

Blood-brain Barrier (BBB) by Low Intensity
Pulsed Ultrasound With the

SonoCloud-9 Implantable Device in Recurrent
Glioblastoma Patients Eligible for Surgery

and for Carboplatin Chemotherapy

1/2a 33 Sonocloud-9 device
+ carboplatin

MTD and BBB
opening (ongoing) NCT03744026

Phase 1/2 Trial of Blood-brain Barrier
Opening With an Implantable Ultrasound
Device SonoCloud-9 and Treatment With

Albumin-bound Paclitaxel in Patients With
Recurrent Glioblastoma

1/2 17
Sonocloud-9 device

+ paclitaxel +
carboplatin

Maximum tolerated
dose and 1-year

survival rate
(ongoing)

NCT04528680

STING = stimulator of interferon genes; STAT3 = signal transducers and activators of transcription 3;
IL-12 = interleukin-12; BBB = blood–brain barrier; GBM = glioblastoma multiforme; TMZ = temozolomide;
MTD = maximum tolerated dose; mOS = median overall survival; mPFS = median progression-free survival.
* = secondary endpoint.

5.1. Oncolytic Viral Therapies

Oncolytic viral therapy uses viruses to selectively target tumor cells and subsequently
induce tumor lysis, promote antigen presentation, recruit tumor-infiltrating lymphocytes,
and activate the innate immune response [141–143]. A total of over 15 DNA and RNA
virus species are currently being studied in glioma, including adenovirus, parvovirus,
enterovirus, and herpes simplex virus-1 (HSV-1), among others [144]. Recently, after being
studied in a phase II trial, one genetically engineered oncolytic virus based on HSV-1
(G47D) (Delytact/Teserpaturev) was conditionally approved for the treatment of malignant
glioma in Japan. Additional details on current research involving oncolytic viral therapy
are well summarized separately [144,145].

5.2. STING Agonism

STING (stimulator of interferon genes) agonists, through IFN-b and cytokine produc-
tion, promote T-cell infiltration into the tumor microenvironment and thus have been of key
interest in recent studies aimed at improving immunotherapeutic responses to checkpoint
inhibitors [146–149]. A recent study demonstrated that intratumoral administration of a
STING agonist (IACS-8779) in canines with glioblastoma was feasible, safe, and resulted in
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a dose-dependent radiographic response [150]. These promising results warrant further
investigation in additional translational studies.

5.3. STAT3 Signaling

Signal transducers and activators of transcription 3 (STAT3) is an intracellular cell
signaling molecule that is highly expressed and constitutively activated in a variety of
malignancies, including GBM [151]. STAT3 activation promotes the production of factors
such as IL-10, IL-23, and TGF-b, which results in the accumulation of immunosuppressive
cells such as regulatory T (Treg) cells, M2 tumor-associated macrophages (TAMs), and
myeloid-derived suppressor cells (MDSC), as well as the inhibition of dendritic cell develop-
ment, ultimately promoting the immunosuppressive tumor microenvironment [151,152] as
shown in Figure 4. As a result, STAT3 has become an emerging target for immunotherapy.
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Several drugs targeting STAT3 activation, either through upstream kinase inhibition via
JAK1/2 targeting (sorafenib, AG490, SAR317461) or through blocking of STAT3 phosphoryla-
tion (oleanolic acid, embelin), have been developed. Preclinical studies have demonstrated
that these drugs decrease the proliferation, migration, and angiogenesis of glioblastoma
cells and promote cytokine release for an improved immune response [153–155]. One study
demonstrated that the STAT3 inhibitor WP1066 induced immunostimulatory cytokine release
to promote T-cell effector function in murine models while also decreasing tumor-mediated
immunosuppressive mechanisms of Treg and M2 macrophage accumulation [155]. WP1066 is
now being evaluated in clinical trials, including for pediatric patients (NCT04334863), and
has been shown to be well tolerated in human subjects in doses of 8 mg/kg, which ex-
ceeds the amount needed for conducting phase II studies in combination with radiation
therapy [156]. The combination of radiation and STAT3 blockade with WP1066 in preclin-
ical models markedly influenced the TME by inducing DC and T-cell infiltration within
the tumor [157]. Ultimately, these results highlight how STAT3 antagonism can alter the
immunosuppressive tumor microenvironment and subsequently improve the antitumor
immune response.

STAT3 (signal transducers and activators of transcription 3) promotes the immuno-
suppressive tumor microenvironment through multiple mechanisms, including increased
secretion of IL-10 and IL-23 (interleukin-10 and interlekin-23), MDSCs (myeloid-derived
suppressor cells), and M2 tumor-associated macrophages, as well as inhibiting the develop-
ment of dendritic cells. Recently studied methods of targeting STAT3 activation include
inhibiting JAK1/2, as well as blocking the STAT3 phosphorylation.
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5.4. Cytokine Therapies

Interleukin-12 (IL-12) has also been an important immune-activating cytokine under
investigation as a form of immunotherapy for glioblastomas. Preclinical and clinical studies
have shown that IL-12-based gene therapy can lead to safe and effective expression of this
potent cytokine in gliomas and in the peri-tumoral brain [158–161]. IL-12 is known to help
mediate both natural and adaptive immunity, increasing the production of interferon-y
(IFN-y) as well as CD8+ T-cell production [161–166]. Previous studies investigating IL-
12 therapy were limited due to toxicity and tolerability. However, recent studies have
turned toward using a viral vector gene therapy with a ligand-inducible expression switch
to help control IL-12 production in the local environment. Veledimex (VDX) is an activator
ligand designed to promote the production of IL-12. A phase 1 trial demonstrated that
VDX administration resulted in a dose-dependent increase in both IL-12 and IFN-y serum
concentrations in patients with high-grade gliomas. Additionally, tissue analysis after treat-
ment demonstrated a 17-fold increase in CD3+ T cells, as well as increases in CD8+ T cells,
PD-1 expressing immune cells, and PD-L1 expressing cells. Preliminary analyses demon-
strated a positive association between VDX dose and OS (p = 0.0004). These results indicate
that IL-12 therapy helps transform an immunologically “cold” tumor microenvironment
into a proinflammatory “hot” environment with an increased influx of immune cells [159].
IL-12 is incorporated in another multifaceted approach using synthetic DNA plasmids
currently undergoing investigation in newly diagnosed glioblastoma (NCT03491683) [167].

5.5. Disrupting the Blood–Brain Barrier to Enhance Immunotherapy

Drug delivery into the CNS is notoriously difficult due to the protective blood–brain
barrier (BBB), which provides another explanation for why so many investigated therapies
for recurrent GBM have failed.

BBB disruption can occur with radiation therapy. Prior studies have demonstrated
that low dose radiation up to 20–30 Gray can alter the integrity of the BBB and improve
the permeability to certain therapeutic drugs [168]. One group demonstrated that CSF con-
centrations of methotrexate increased three-fold after irradiation therapy [169]. However,
studies have now shifted more toward using ultrasound as a method of disrupting the BBB.

The combination of pulsed ultrasound and intravenous microbubble injection has
been shown to be a safe, minimally invasive, well-tolerated, and reversible method of
disrupting the BBB [170]. Two major strategies have been implemented to deliver US-
based BBB disruption: an extracranial device that delivers focused ultrasound called the
ExAblate system and an implantable ultrasound device called the SonoCloud. Both have
been studied in multiple preclinical and clinical trials [170–173]. A newer version of the
SonoCloud, called the SonoCloud-9, is comprised of nine transducers on an implantable
grid and is designed to cover a larger resection area. It is currently being studied in a
multicenter phase 1/2a clinical trial [174].

Several studies have investigated the impact of US-mediated BBB disruption on drug
delivery to the CNS. Due to its poor CNS penetration despite robust in vitro anti-glioma
effects, the microtubule-stabilizing agent paclitaxel was recently of particular interest. The
combination of US-based BBB disruption followed by an albumin-bound formulation of
paclitaxel (Abraxane) not only led to a significant 3–5-fold increase in paclitaxel concentra-
tion at multiple time points compared to non-sonicated controls but also improved mOS
compared to Abraxane only (35 vs. 31 days, 0.0036) [175]. US-based BBB disruption, there-
fore, can both enhance CNS penetration of PTX and improve survival [176]. Additionally,
paclitaxel has been recently identified as an inducer of immunogenic cell death, a form of
cell death that directly promotes antitumor immunity [176], and as a result, BBB-mediated
delivery of paclitaxel may enhance immunotherapies for GBM [177].

Animal model studies have examined the impact of low-intensity pulsed ultrasound
(LIPU) on various drug efficacies. In mice, the addition of LIPU to anti-PD 1 therapy
resulted in a longer mOS compared to anti-PD 1 therapy alone (58 vs. 39 days, respectively),
though it did not reach significance [178]. Mice treated with both LIPU and CAR T-cell
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therapy had significantly increased CNS CAR T-cell delivery and longer mOS compared
to CAR T-cell therapy alone. Furthermore, the addition of LIPU to an APC-based therapy
demonstrated a significantly increased deposition of CXCL10-secreting APCs in the tumor
microenvironment, as well as enhanced survival (p < 0.05) [178].

6. Harnessing the Innate Immune System for GBM Immunotherapy

The innate immune system, which constitutes our first line of defense, mediates broad
responses against pathogens while also activating adaptive immunity for more specific
targeting. Research has now shifted additional attention to methods of modulating the
innate immune system for the treatment of glioblastoma. Recent glioblastoma clinical trials
focused on the innate immune system are listed in Table 7.

Table 7. Immunotherapy clinical trials aimed at the innate immune system for GBM.

Target Study Title Phase Size Intervention Primary Outcome Reference

MDSC

Targeting Myeloid Derived Suppressor Cells in
Recurrent Glioblastoma: Phase 0/1 Trial of Low

Dose Capecitabine + Bevacizumab in Patients With
Recurrent Glioblastoma

0/1 4 Capecitabine +
bevacizumab

MDSC reduction
ranging between

20% and 79% from
baseline

NCT02669173

A Phase I/II, Open-label, Multi-center Study of the
Safety and Efficacy of BLZ945 as Single Agent and in
Combination With PDR001 in Adults Patients With

Advanced Solid Tumors

1/2 146

CSF1R inhibitor
(BLZ945) with vs.

without
PD1 blockade

(PDR001)

MTD, 6 mo PFS NCT02829723

A Phase 2 Study of Orally Administered PLX3397 in
Patients With Recurrent Glioblastoma 2 38 CSF1R inhibitor

(PLX3397) 6 mo PFS = 8.6% NCT01349036

Niacin (ongoing)

A Phase I-II Study of Niacin in Patients With Newly
Diagnosed Glioblastoma Receiving Concurrent
Radiotherapy and Temozolomide Followed by

Monthly Temozolomide

1/2 59 Niacin + RT + TMZ MTD, 6mo PFS NCT04677049

Gamma delta cells
(ongoing)

A Phase I Study of Drug Resistant Immunotherapy
(DRI) With Activated, Gene Modified γδ T Cells in

Patients With Newly Diagnosed Glioblastoma
Multiforme Receiving Maintenance Temozolomide

Chemotherapy

1 12 Gene-modified
gamma delta T cells MTD NCT04165941

MDSC = myeloid-derived suppressor cells; PD1 = programmed death 1; CSF1R = colony-stimulating factor
1 receptor; RT = radiation therapy; TMZ = temozolomide; PFS = progression-free survival; MTD = maximum
tolerated dose.

6.1. Tumor-Infiltrating Myeloid Cells

Tumor-infiltrating myeloid cells are the most abundant cellular infiltrates in GBM [179,180],
which can sometimes comprise up to 50% of the tumor mass [179]. These heterogeneous groups
of cells are interchangeably given names such as: myeloid-derived suppressor cells (MDSC),
monocyte-derived macrophages (MDM), tumor-associated macrophages (TAM), and tumor-
associated myeloid cells (TAMC). They have become an incredibly attractive target for GBM
immunotherapy due to their central role in promoting immunosuppression in GBM [181–183].
MDSCs can be subdivided into monocytic stem cells (mMDSC) versus granulocytic stem cells
(gMDSC), which have distinct sex-dependent roles in GBM pathogenesis. Recent research
has shown that mMDSCs accumulate intratumorally and promote GBM progression in males,
whereas gMDSCs accumulate peripherally and primarily regulate immune suppression in
females [184]. While large trials of immunotherapies for glioblastoma have thus far not
demonstrated any clear sex-based differences in outcomes, it is possible that this may still
prove to be of importance as we explore immunotherapeutic management of glioblastoma.

There are two main methods of myeloid targeting in GBM. The first involves de-
pleting or preventing the recruitment of cells to the tumor site, and the second involves
“reprogramming” these cells to become immunostimulatory (Figure 5).
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Figure 5. MDSCs can be targeted through various mechanisms. MDSCs (myeloid-derived suppressor
cells) promote an immunosuppressive tumor microenvironment. Two main methods of targeting
MDSCs include (1) inhibiting MDSC recruitment, such as with CCR2 (C-C chemokine receptor 2)
blockade, as well as DFMO (difluormethylornithine) administration, and (2) reprogramming MDSCs
to become immunostimulatory, such as with CSF1R (colony-stimulating factor 1 receptor) inhibition
and niacin administration.

Approaches that deplete myeloid cells from GBM have shown potential in preclinical
studies of GBM. One study showed that nanoparticle-mediated targeting of myeloid
cells using PD-L1 antibodies robustly depletes myeloid cells after radiation, leading to
pronounced survival benefits [115]. Other studies have utilized blockade of CCR2 as a
modality to prevent myeloid recruitment to the CNS [185]. Recent work has also identified
that the metabolic inhibitor difluormethylornithine (DFMO) could be used to deplete
myeloid cells from GBM and promote an inflammatory tumor microenvironment [186].
Clinically, a recent phase 0/1 trial utilized the natural sensitivity of MDSC to 5-Fluorouracil
to deplete this population from the tumors of GBM patients [187].

Reprogramming myeloid cells to a more tumor supportive phenotype has gained
attention by targeting the colony-stimulating factor 1 receptor (CSF1R). Pioneering preclini-
cal work identified that pharmacological blockade of CSF1R using BLZ925 can promote
the survival of animals with GBM [188], which can be used in combination with stereo-
tactic radiotherapy for even more robust antitumor responses [189]. This led to a phase
1 exploration of BLZ945 in combination with PD-1 blockade for solid tumors (including
GBM) [190]. Another CSF1R inhibitor, PLX3397 (pexidartinib), was tested in recurrent
GBM and shown to be safe, though it did not result in any changes in OS [191]. Strategies
to target this compartment in GBM are of continued interest to researchers but will likely
need to be a component of a multi-agent regimen.

The presence of immunosuppressive macrophages has been a difficult hurdle to
overcome in the attempts to develop effective immunotherapies for glioblastoma. Some
recent work has focused on using niacin (vitamin B3) to stimulate the antitumor activity
of macrophages and microglia. One study demonstrated that the exposure of monocytes
to niacin resulted in increased levels of interferon-a14 for a subsequent anti-proliferative
effect. Furthermore, preclinical work with niacin-treated mice with brain tumor-initiating
cells led to increased monocyte and macrophage intratumoral infiltration, reduced tumor
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size, and improved survival [192]. A phase I/II study studying the efficacy of niacin in
addition to radiation and temozolomide is currently ongoing (NCT04677049).

6.2. NK Cells

Natural killer (NK) cells are characterized by the expression of CD16 and CD56 surface
antigens and lack CD3/T-cell receptor molecules. In contrast to T cells, NK cells do not
require antigen sensitization prior to killing targets [193]. Although NK cells can migrate
into the GBM microenvironment, these tumor-infiltrating NK (TI-NK) cells are significantly
altered in such a fashion that their cytotoxic function is impaired, allowing glioblastomas
to evade NK cell targeting. NK cell dysfunction occurs through direct contact between
glioblastoma stem cells and NK cells, which results in the av integrin-mediated release of
TGF-β1. Preclinical studies have shown that inhibition of the av integrin/TGF-β1 axis can
protect NK cell antitumor activity, and co-administration of NK cells with either TGF-β or
av inhibitors resulted in improved OS in mice [194]. These results are overall suggestive of
a promising new immunotherapy strategy for GBM patients.

6.3. Gamma Delta T Cells

Gamma delta (γδ) T cells play a role in both the innate and adaptive systems and
are characterized by T-cell receptors comprised of one gamma and one delta chain, in
contrast to other T cells with alpha and beta chains. Though they are primarily found
in the gut mucosa, their role in impairing tumorigenesis has been an evolving area of
interest [195]. Preclinical animal studies had previously demonstrated that γδ T cells
have a cytotoxic effect on GBM cells [196–198]. When compared to control patients, one
study demonstrated that GBM patients had a lower absolute γδ T-cell count and decreased
γδ T-cell proliferation. Though tumor infiltration by γδ T cells may be hindered by the
lymphodepletive effects of temozolomide, new studies have focused on modifying γδ T
cells to be resistant to temozolomide. Preliminary results of a phase 1 trial investigating
the combination of modified γδ T cells and temozolomide in new glioblastoma patients,
known as drug-resistant immunotherapy, showed the combination therapy to be safe and
feasible [199,200]. Further results are pending.

6.4. The Role of B Cells

Although most strategies for cancer treatments are focused on the adaptive immune
system and specifically T cells, recent work has highlighted the potential role of B cells,
which are involved in both the adaptive and innate immune systems. Intratumoral B
cell infiltration is associated with a suitable prognosis in several solid tumors, such as
melanoma [201,202], breast cancer [203], colorectal cancer [204], and non-small cell lung
cancer (NSCLC) [205], and many others [206–208]. B cells that express the co-stimulatory
marker 4-1BBL have been studied in GBM models. Signaling via 4-1BBL is associated
with decreased T-cell death, enhanced T-cell proliferation, and improved immunological
memory. 4-1BBL is expressed on CD4+ and CD8+ T cells as well as B cells. B cells that
express 4-1BBL have been shown to enhance cytotoxic CD8+ T-cell response [209]. In one
recent study, 4-1BBL+ B cells that were activated via CD40 and IFNγ stimulation (known
as the BVax vaccine) were shown to have increased MHC-I and MHC-II surface expression
for both CD8+ T-cell activation and antigen presentation as an APC. Furthermore, the
combination of BVax + RT + TMZ + anti-PD-L1 therapy improved overall survival, resulted
in tumor eradication in 80% of mice, and inhibited tumor recurrence after reinjection. In
early translational studies, BVax derived from GBM patients’ activated autologous CD8+ T
cells have successfully killed autologous glioma cells in an antigen-specific manner. Overall,
these results support further investigation in future translational studies [210].
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7. Finding the Balance

The interplay between the immune system and glioblastoma is complex and influ-
enced by a myriad of factors. Certain molecular factors that predict a favorable response to
immunotherapies in non-CNS tumors paradoxically portend a worse response in glioblas-
toma. Thoughtful consideration of these factors can help guide our choice of various
synergistic combination therapies that take advantage of the vast immune landscape in
a multipronged approach. Therapies that both improve immunostimulatory responses
against glioblastoma while decreasing the immunosuppressive response will likely be the
most successful.

8. Conclusions

The prognosis for glioblastoma patients has unfortunately remained poor with our
current SOC therapeutic options. Though immunotherapy has proved successful in treating
other cancers, results in clinical trials for glioblastoma patients have been rather disappoint-
ing. Molecular factors influencing the response to immunotherapy have been extensively
studied and should be incorporated in future translational and clinical studies. Addi-
tionally, other strategies for enhancing responses to immunotherapies, including promot-
ing an immunostimulatory tumor environment and utilizing the innate immune system,
should be areas of an increased focus to develop more effective immunotherapies for
glioblastoma patients.
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