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1  | INTRODUC TION

Many evolutionary and ecological processes interact to shape spe-
cies distributions in forests communities (Cadotte & Tucker, 2017; 
Kembel & Hubbell, 2006). Two types of niche-based processes, 
environmental filtering and niche differentiation, are commonly in-
voked to explain the mechanisms of forest community assemblages 

(Chase & Leibold, 2003; Kunstler et al., 2012; Silvertown, 2004). 
Environmental filtering can be defined as the process of functionally 
similar species with superior performance in a given habitat (abiotic 
environment) excluding the presence of functionally dissimilar and 
inferior species (Keddy, 1992; Weiher, Clarke, & Keddy, 1998) or, 
more strictly, as the inability of a species to live in a given habitat 
irrespective of biotic interactions. (Kraft, Adler, et al., 2015). The 
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Abstract
Despite several decades of study in community ecology, the relative importance 
of the ecological processes that determine species co-occurrence across spatial 
scales remains uncertain. Some of this uncertainty may be reduced by studying the 
scale dependency of community assembly in the light of environmental variation. 
Phylogenetic information and functional trait information are often used to provide 
potentially valuable insights into the drivers of community assembly. Here, we com-
bined phylogenetic and trait-based tests to gain insights into community processes at 
four spatial scales in a large stem-mapped subtropical forest dynamics plot in central 
China. We found that all of the six leaf economic traits measured in this study had 
weak, but significant, phylogenetic signal. Nonrandom phylogenetic and trait-based 
patterns associated with topographic variables indicate that deterministic processes 
tend to dominate community assembly in this plot. Specifically, we found that, on av-
erage, co-occurring species were more phylogenetically and functionally similar than 
expected throughout the plot at most spatial scales and assemblages of less similar 
than expected species could only be found on finer spatial scales. In sum, our results 
suggest that the trait-based effects on community assembly change with spatial scale 
in a predictable manner and the association of these patterns with topographic vari-
ables, indicates the importance of deterministic processes in community assembly 
relatively to random processes.
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first definition is now commonly referred to as competitive exclu-
sion due to performance differences (e.g., Chesson, 2000), whereas 
the second definition can be referred to as environmental filtering 
sensu stricto. Along with these processes, niche differentiation or 
niche differences may preclude functionally similar species from 
co-occurring due to competitive effects (Cahill, Kembel, Lamb, & 
Keddy, 2008; MacArthur & Levins, 1967). Larger niche differences 
promote species co-occurrence, that is the more dissimilar two 
species are from one another, the more likely that they will be able 
to co-occur, resulting in overdispersion of species co-occurrence 
patterns as a result of competition or of enemy-mediated density 
dependence (Barabás, Michalska-Smith, & Allesina, 2016; Bennet, 
Lamb, Hall, Cardinal-McTeague, & Cahill, 2013; Cavender-Bares, 
Kozak, Fine, & Kembel, 2009; Chesson, 2013; Kunstler et al., 2016).

However, the relative importance of the processes in structur-
ing forest communities is still not well understood. This uncertainty 
can be mitigated by using refined measures of how species utilized 
resources (i.e., their ecological roles) and an appreciation that mul-
tiple processes may be operating simultaneously within and across 
spatial scales (e.g., Shipley et al., 2012; Swenson & Enquist, 2009). 
Over the past two decades, ecologists have increasingly used two 
approaches for estimating the ecological roles of species for the 
purpose of inferring mechanisms of community assembly from 
observational data (Cadotte, et al., 2009; McGill, Enquist, Weiher, 
& Westoby, 2006; Swenson & Enquist, 2009; Webb, 2000; Xu 
et al., 2017). The first method draws on patterns of phylogenetic 
relatedness (Cavender-Bares et al., 2009; Gerhold, Cahill, Winter, 
Bartish, & Prinzing, 2015; Ingram & Shurin, 2009; Pashirzad, 
Ejtehadi, Vaezi, & Shefferson, 2018), and the other one directly 
quantifies the functional similarity of species upon the basis of 
functional traits (Díaz et al., 1998; Kraft, Valencia, & Ackerly, 2008; 
Webb, Ackerly, McPeek, & Donoghue, 2002). In previous studies, 
ecologists suggested that if there were significant signals of phy-
logenetic conservatism in functional traits, the phylogenetic simi-
larity could be treated as a proxy of functional traits to detect the 
ecological processes in a community (Revell et al., 2008; Swenson, 
Enquist, Thompson, & Zimmerman, 2007; Webb et al., 2002). In re-
cent years, some studies have found that there was a mismatch be-
tween phylogenetic dispersion and functional dispersion, even when 
significant phylogenetic signals existed (Swenson & Enquist, 2009). 
Thus, phylogenetic relatedness alone cannot depict the functional 
mechanisms when species converge and diverge in different func-
tional traits (Swenson, 2013; Swenson & Enquist, 2009) and may be 
very misleading without considering the patterns of trait diversity 
in the communities under study (Hao, Zhang, Zhao, & Gadow, 2018; 
Pavoine, Gasc, Bonsall, & Mason, 2013). However, it is impossible 
to measure all of the functional traits of species and, therefore, 
phylogenetic information may be used to indicate the presence of 
non-random processes governing community structure with the 
understanding that even random phylogenetic community struc-
ture does not guarantee that only stochastic processes are at work 
(Swenson, 2019; Swenson & Enquist, 2009).

The possibility that multiple processes drive community assem-
bly and that these processes may simultaneously operate within and 
across spatial scales is now accepted (e.g., Swenson & Enquist, 2009; 
Weiher et al., 1998). Given this, strong inferences of community as-
sembly processes are best made through the analysis of community 
structure across scales (Messier et al., 2010). Thus, while measur-
ing the phylogenetic and trait structure of communities is useful, 
the power of such analyses is only realized when quantifying phy-
logenetic and functional similarity across scales (Swenson et al. 
2012; Paquette, Joly, & Messier, 2015; Whitfeld, Kress, Erickson, & 
Weiblen, 2012). In tree communities, spatial scale is often the most 
important determinant of the phylogenetic and functional structure 
of communities and, therefore, serves as a logical starting point for 
examining the scale dependency in community structure and assem-
bly (Swenson, 2013).

Most of subtropical areas on Earth form an extremely arid des-
ert or Mediterranean climate. However, due to the monsoon circu-
lation and Tibetan Plateau, the subtropical region in China holds the 
largest evergreen broad-leaved forest in the world (Song, 2004) and 
harbors abundant seed plants and endemic species (Ying, 2001). In 
this study, we present a phylogenetically trait-informed analyses of 
tree community structure across four nested spatial scales in the 
Badagongshan forest dynamic plot (BDGS FDP), which is located at 
the northern edge of mid-subtropical zone in central China to ad-
dress the following questions: (a) whether the phylogenetic disper-
sion can reflect functional trait dispersion; (b) which processes are 
most likely dominating the community assembly of the forest; and 
(c) whether the results from the test are scale dependent and what 
the indicates regarding the potential processes driving community 
assembly.

2  | MATERIAL S AND METHODS

2.1 | Study site

This study was conducted in a well-protected typical old-growth 
subtropical evergreen broadleaf forest in the Badagongshan (BDGS) 
National Nature Reserve (29°46.041′N, 110°5.248′ E), central China. 
The Reserve is located in the northern part of the Wuling Mountains 
with a monsoonal humid subtropical climate. The mean fog-free days 
and rainy days per year are 220 and 170, respectively, and the mean 
annual precipitation is 2,105.4 mm. Mean air temperatures for the 
year, July and January are 11.5°C, 23.3°C, and 0.1°C, respectively.

During 2011, a 500 × 500 m plot was established in the re-
serve using total station following the same protocol of the Center 
for Tropical Forest Science (CTFS) long-term forest dynamics plots 
(Condit, 1998). The plot was divided into 625 20 × 20 quadrats. All 
stems of freestanding shrubs and trees with diameter ≥ 1 cm at 
breast height (DBH, 1.3 m) were tagged, mapped, identified, and 
measured. In the first census, there were 186,575 live individuals of 
232 woody species (139 deciduous and 93 evergreen), belonging to 
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53 families and 114 genera. Topographically, the 25 ha plot is charac-
terized by flat ridges and steep slopes, with elevations ranging from 
1,355 to 1,456 m. Hereafter, we will refer to the plot as the BDGS 
FDP.

A soil survey of the forest plot has been previously conducted 
in the BDGS FDP (Qiao et al., 2015) where maps, at the scale of 
10 × 10 m, 20 × 20 m, 50 × 50 m, and 100 × 100 m, of 13 vari-
ables were produced. The variables are as followed: total carbon, 
total nitrogen, total phosphorus, carbon stable isotope composi-
tion (at 0–10 cm and 10–30 cm depth), soil pH, bulk density, soil 
temperature, carbon density at 0–10 cm soil depth, and nitrogen 
stable isotope composition in the subsoil layer. Because many of 
these variables co-vary, we used a principle components analysis 
to reduce this redundancy and we used the PC scores for the first 
four axes for downstream analyses. Additionally, the elevation and 
convexity values for each 20 × 20 m plot have been recorded from 
the original survey of the plot and are used in downstream analy-
ses in this work.

2.2 | Measurements of functional traits

In this study, six leaf traits were measured: leaf area (LA), specific 
leaf area (SLA), leaf thickness (LT), leaf carbon concentration (LCC), 
leaf nitrogen concentration (LNC), and leaf phosphorus concentra-
tion (LPC). Variation in leaf area is related to a trade-off between 
light capture and leaf temperature (Dolph & Ditcher, 1980; Swenson 
& Enquist, 2009); Specific leaf area (SLA) represents a trade-off be-
tween construction costs and leaf life span (Wright et al., 2004); Leaf 
thickness is related to defense ability and tolerance to light intensity 
(Mendes, Gazarini, & Rodrigues, 2001); While leaf carbon, nitrogen, 
and phosphorus concentration are relevant to leaf structural compo-
sition, mass-based maximum photosynthetic rate, and bioenergetics 
strategy, respectively (Cornelissen et al., 2003; Perez-Harguindeguy 
et al., 2013; Wright et al., 2004).

Leaves were sampled from early June to mid-September in 
2012 and 2015. For each species, we selected 1–16 healthy adult 
individuals (there were 14 species with only 1 stem in the plot) and 
collected 10–40 intact fully expanded fresh leaves from each indi-
vidual (Cornelissen et al., 2003). When sampling, we selected leaves 
exposed to the sun. For understory species, leaves were sampled 
from the top of the plants (Perez-Harguindeguy et al., 2013). In total, 
trait data were collected from 910 individuals (mean DBH: 12.64 cm) 
from 162 species (98 deciduous and 64 evergreen species). These 
species accounted for 99% of the total basal area and frequency of 
stems in the plot. In the following, we describe the measurement 
protocol for each trait.

Leaf area (LA; cm2) was measured by scanning fresh leaves using 
a Canon CanoScan LiDE 110 portable electronic scanner (Canon 
Inc.), and the areas were calculated using ImageJ imaging software 
with petioles and rachis removed (Abràmoff, Magalhães, & Ram, 
2004). Leaves from each individual were scanned, and the individual 
mean LA was calculated by dividing by the number of leaves of each 

individual. The species mean LA was the mean value of all the indi-
vidual LA of that species.

Specific leaf area (SLA; cm2/g−1) was measured using the LA 
measurements and drying the leaves at 80°C for 48 hr where upon 
their dry mass was recorded. The SLA was calculated as LA divided 
by the dry mass. Each individual had one value of SLA. The species 
mean SLA was the mean value of all individuals within the species.

The leaf thickness (LT; mm) was measured at the center of the 
leaf lamina with electronic vernier calipers (Mitutoyo Co.), avoiding 
major leaf veins, that is, the thickness between the abaxial and adax-
ial surfaces of a fully unfolded developed fresh leaf (Seelig, Stoner, 
& Linden, 2012).

Mass-based LCC (%), LNC (mg/g−1) and LPC (mg/g−1) were cal-
culated from the oven-dried leaves by first grinding the leaves using 
a ball mill (NM2000; Retsch, Haan, Germany). LCC and LNC were 
measured by Stable Isotope Mass Spectrometer (Delta V advantage, 
Germany), and LPC was determined following the molybdenum blue 
spectrophotometric procedure (M200 PRO Multiskan Spectrum 
Spectrophotometer, TECAN, Austria). Prior to analysis, all traits val-
ues were log-transformed to correct for skewness. Species mean 
traits values were calculated to analyze the interspecies differentia-
tion, ignoring the variations within species.

2.3 | Phylogenetic community structure tests

A phylogeny representing the 162 species in the BDGS plot was 
constructed using the online informatics tool Phylomatic (http://
phylo diver sity.net/phylo matic/), which uses the APG III-derived 
mega tree with reference to Flora of China (http://www.eflor as.org). 
Phylogenetic branch lengths were estimated using the BLADJ algo-
rithm in Phylocom 4.2 (Webb, Ackerly, & Kembel, 2008) with fos-
sil ages and estimated molecular ages from Magallon and Castillo 
(2009).

Next, we calculated the phylogenetic signal in our trait data, 
which estimates the degree to which shared branch length is associ-
ated with trait similarity. We estimated phylogenetic signal using the 
K statistic and whether the observed K value significantly deviated 
from a distribution of random K values generated by randomizing 
trait data on the tips of the phylogeny 999 times (Blomberg, Garland, 
& Ives, 2003). K values < 1 indicate less phylogenetic signal in trait 
evolution on the phylogeny than expected under a Brownian trait 
evolution model, while K values of 1.0 indicate that the trait distribu-
tion on the phylogeny perfectly matches a Brownian motion expec-
tation, and K values > 1 indicate a higher degree of trait similarity of 
related taxa than that expected from Brownian motion. Traits have 
significant phylogenetic signal if the observed K is greater than 95% 
of the null distribution. Calculations of the K statistic and random-
izations were performed in the R package “phytools” (https://cran.r-
proje ct.org/packa ge=phytools).

Next, we divided the 25 ha plot into nonoverlapping quadrats 
of four nested spatial scales (10 × 10 m, 20 × 20 m, 50 × 50 m, and 
100 × 100 m), we then calculated the mean nearest taxon index (NTI) 

http://phylodiversity.net/phylomatic/
http://phylodiversity.net/phylomatic/
http://www.efloras.org
https://cran.r-project.org/package=phytools
https://cran.r-project.org/package=phytools
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for all quadrats at each spatial scale to represent the phylogenetic 
structure. Specifically, the NTI metrics is a standardized version 
of the mean nearest taxon distance (MNTD) for all species in each 
quadrat (Webb, 2000; Webb et al., 2002). The NTI was calculated 
with the following equation:

where MNTD is the mean of the phylogenetic distance for each 
taxa to its nearest relative within a local community, calculated for 
each quadrat; MNTDobs represents the observed value of mean 
nearest taxon distance; mean (MNTDnull) represents the mean 
value from a null distribution after taxa names are randomly shuf-
fled 999 times; and sd (MNTDnull) is the standard deviation of the 
null distribution. To determine whether the observed phylogenetic 
community structure differs from that expected by chance, we 
used a common null model to randomize phylogenetic relatedness 
among species by randomly shuffling 999 times the taxa names 
across the tips of the phylogeny (Swenson, 2014). This algorithm 
randomizes the relatedness of co-occurring species to one an-
other, while maintaining species richness weighting by each spe-
cies' plot-wide occurrence (i.e. the number of quadrats in which 
each species is found). During each of the 999 shuffles, null mean 
nearest taxon distance (mean MNTDnull) between co-occurring 
taxa were produced, constituting the null communities to which 
the observed value was compared.

Positive NTI values indicate a phylogenetically clustered struc-
ture of communities (i.e., co-occuring species were more phylo-
genetic related than expected by chance), whereas negative NTI 
values suggest an overdispersed phylogenetically structure. At the 
whole-plot level, the significant deviations of the mean NTI at each 
spatial scale from the null expectation were assessed by a two-
tailed Wilcoxon signed-ranks test (see Kembel & Hubbell, 2006; 
Kraft & Ackerly, 2010; Kress et al., 2009). Phylogenetic analyses 
above were performed using the R package “picante” (Kembel 
et al., 2010). Lastly, across scales, we used a bivariate regression 
analysis to quantify the relationship between the NTI values and 
the four PC axis scores defining soil variation and elevation and 
convexity.

2.4 | Trait-based community structure tests

Trait-based analyses of community structure were also calculated 
at the four different spatial quadrate-scales. The analyses were the 
same as the phylogenetic analyses with the exception that we used 
a functional trait dendrogram for each trait instead of a phylogeny. 
This helped facilitate a comparison between the phylogenetically 
and trait-based tests. All analyses only included only species that 
had a value for a given trait. That is, if a species did not have a value 
for a given trait, it was not included in the observed or null model 
analyses. First, we calculated the nearest function index (NFI) to 
represent the functional dispersion in each quadrat, referring to 

the standard effect size of the nearest functional neighbor distance 
(NFND) from the functional dendrogram, while NFIM referred to the 
nearest function index at multivariate trait space (calculated from 
the Euclidean distance matrix of six traits axes, and the Pearson cor-
relation coefficients for pairwise correlations between trait was ex-
hibited as Figure A1). The equation was as follows:

A positive NFI indicates a functional clustered structure of com-
munities, whereas negative NFI values suggest an overdispersed 
functional structure (Yang et al., 2014). The same null model was 
used in the functional trait analysis just like the analysis of phylogeny 
relatedness.

In addition, we also quantified the four moments of trait distribu-
tions: mean (along with variance), range, standard deviation, and kur-
tosis to interpret the functional composition of the study community, 
which are effective metrics for detecting deterministic community 
assembly processes (e.g., Kraft et al., 2008). The standard deviation 
of the nearest functional neighbor distance (henceforth SDNN), rep-
resenting the regularity of the species spacing along a given trait axis 
(i.e., the standard deviation of the distance to the “nearest functional 
neighbor” in a community, irrespective of conspecifics in this calcu-
lation). Null trait distribution models were generated by creating 999 
null communities of equal richness to the sample quadrat by draw-
ing species randomly from the entire trait database after weighting 
by each species' plot-wide occurrence. In addition, we calculated a 
plot-wide abundance-weighted null model, which maintained spe-
cies richness and occurrence of each quadrat simultaneously. We 
predicted that, if environmental filtering was occurring at the quad-
rat scale, the variance of observed trait values and range were both 
reduced by the habitat-based performance differences (i.e., smaller 
than the null values) (Cornwell, Schwilk, & Ackerly, 2006). Likewise, 
if niche differentiation were important, we predicted that the kurto-
sis would be smaller than expected by chance (community trait dis-
tributions with “fatter” tails and therefore may indicate an increase 
in the average trait disparity between co-occurring species), while 
the SDNN would be lower (species spaced more evenly along trait 
axes), probably as a result of direct competition or negative density 
dependence (Kraft et al., 2008; Stubbs & Wilson, 2004; Wilson & 
Stubbs, 2012). The kurtosis and SDNN analyses were performed in 
the R package “fBasics” and “FD” respectively (Laliberte & Legendre, 
2010). In the context of this paper, we viewed ecological null mod-
els as a proxy of neutral dispersal assembly process, since they led 
to random patterns of co-occurring species (Gotelli & McGill, 2006; 
Hubbell 2005).

The significance of each metric was assessed using a plot-wide 
Wilcoxon signed-rank test by comparing the observed values of 
each quadrat relative to their respective null model expectation 
(Cornwell & Ackerly, 2009). Two-tailed tests were applied to trait 
means, while one-tailed tests were used for all other metrics in all 
analyses. As with the phylogenetic dispersion analyses, we used a 
bivariate regression analysis to quantify the relationship between 

(1)NTI=−1× (MNTDobs −mean(MNTDnull))∕sd(MNTDnull)

(2)NFI=−1× (NFNDobs−mean(NFNDnull))∕sd(NFNDnull)
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the NFI values and the four PC axis scores defining soil variation and 
elevation and convexity.

Lastly, in order to determine whether functional and phyloge-
netic tests tended to identify the same quadrats had non-random 
structure, we performed a chi-square test to determine whether 
quadrats that had phylogenetic clustering or overdispersion also had 
trait-based clustering or overdispesion at each spatial scale of analy-
sis. All statistical analyses above were performed in the software R, 
version 3.1.3 (R Core Team, 2014).

3  | RESULTS

3.1 | Trait conservatism

All of the traits measured had moderate phylogenetic signal with K 
values ranging from 0.21 for LA to 0.37 for LNC. These weaker phy-
logenetic signals showed that all traits had less phylogenetic signal 
than the expectation of trait evolution under the Brownian motion 
model (all trait K values < 1; Table 1) and less variable than expected 
by random community phylogeny (all trait p values < .05; Table 1). 
SLA and LA had the least phylogenetic signal, while LCC and LPC 
had the most signal. In general, trait values from close relatives were 
more similar than expected by the null random model in the BDGS 
25-ha FDP.

3.2 | Phylogenetic community structure

Compared with the more conservative occurrence-weighted null 
model, the observed co-occurring species tended to be more related 
than expected across spatial scales. Plot-wide tests showed phylo-
genetic clustering at all spatial scales using the mean observed NTI 
metric (Table 2, Figure 1), though each spatial scale showed evidence 
of both clustering and overdispersion (quadrat-level). However, at 
the smallest scale (10 × 10 m, 20 × 20 m), communities were not 
overdispersed for NTI.

The NTI of subplots was related to elevation, convexity, and the 
first three PC axis (Tables A2 and A3). However, the relationship was 
not consistently significant across spatial scales. Specifically, soil PC 
axes tended to be related to NTI at the two largest spatial scales and 
variably related to NTI at the two smallest spatial scales. Elevation 
and convexity were both related to NTI at 20 × 20 m, but variably 
related to NTI at other scales.

3.3 | Trait-based assembly patterns

Unlike the phylogenetic analysis, which only detected clustering at 
all the scales, trait-based analyses showed mixed signals throughout 
the BDGS FDP. The functional dispersion was significantly different 
from random for NFI and NFIM, and both of them were increased 
with spatial scale. NFIM tests revealed functional clustering at all 
spatial scales of analysis. As for NFI tests, we found LT, LA, SLA, 
LNC, and LPC clustered across all spatial scales, while overdisper-
sion occurred for LCC (Table 2, Figure 1).

The NFI was significantly related to elevation, convexity, and all 
soil PC axes across all spatial scales in this study (Table A2). However, 
at smaller scales, the direction and significance of the relationship 
between NFI and these variables was inconsistent.

On the one hand, trait variances and ranges were significantly 
smaller and markedly well-separated within quadrats relative to the 
null expectation for most traits and most scales (Table 3, Figure 2), 
though mean standard effect sizes were small in many trait tests 
(Table 3). On the other hand, significant divergences with respect 
to kurtosis and SDNN relative to null expectation were found at the 
10 m, 20 m, and 50 m scales, but not at the 100 m scale. LT and LNC 
represented significant clustering in all the four scales. However, on 
only one scale was overdispersion evident (50 m for LT and 20 m for 
LNC. Table 3, Table A1). For LA and LPC, there was significant clus-
tering except on the largest scale, and significant divergences on the 
two small scales, but not the two large scales. For SLA, we can detect 
significant environmental filtering on all the four scales and significant 
niche differentiation except the largest scale. However, for LCC, sig-
nificant environmental filtering was only found on 20 m scale.

Lastly, trait and phylogenetic tests tended to identify the same 
quadrats as possessing nonrandom patterns associated with func-
tional and phylogenetic filtering at the 10 m (χ2 = 17.908, p < .01) and 
20 m (χ2 = 3.488, p = .05) scales. There was no significant congru-
ence between the quadrats that identified as nonrandom referring 
to functional and phylogenetic overdispersion (Table 4).

4  | DISCUSSION

4.1 | Mismatch between phylogenetic relatedness 
and functional traits

In this study, we quantified the phylogenetic signal of six plant func-
tional traits for the 162 species in a subtropical forest in China. All 

TA B L E  1   The ranges of functional traits and phylogenetic signal 
tests using Blomberg's K statistic

Trait Range K p

LT (cm) 0.07–0.57 0.24 .012

LA (cm2) 1.93–341.98 0.21 .032

SLA (cm2 g1) 21.76–761.74 0.22 .02

LCC (%) 19.08–61.65 0.34 .001

LNC (mg/g) 0.3–4.92 0.23 .001

LPC (mg/g) 0.05–1.69 0.38 .001

Note: Hereinafter: LT, leaf thickness; LA, species area (size); SLA, 
specific leaf area; LCC, LNC, LPC, leaf carbon, nitrogen, and phosphorus 
concentration by mass, respectively. Significant p values indicate that 
the phylogenetic signal differed from zero. p values < 0.05 are shown 
in bold.
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traits showed significant, but weak, phylogenetic signal (Table 1). 
This may indicate that the phylogeny could be expected to be a 
rough proxy for trait similarity at the quadrat scale (Cadotte, Albert, 
& Walker, 2013; Swenson et al., 2007). However, when we looked at 
the community structures reflected from the two methods, it showed 
both similarities and differences between them. On the one hand, 
we detected phylogenetic and trait clustering (reflected by reduced 
variances and ranges of functional traits) across the entire FDP at 
all scales (Table 2 and Table 3). Thus, phylogenetically and function-
ally similar species tended to co-occur (Kraft et al., 2008; Swenson 
et al., 2007). This may be taken as evidence of competitive exclusion 
of functionally dissimilar species in a given environment or environ-
mental filtering sensu stricto (Kraft, Adler, et al., 2015; Mayfield & 
Levine, 2010; Webb, 2000). On the other hand, we found no evi-
dence for significant phylogenetic overdispersion at small scales, 
whereas the trait-based analyses presented here showed even trait 

dispersion patterns at small scales which indicated co-occurring spe-
cies are more dissimilar from one another than predicted. This sug-
gests that niche differences may be important at small scales in the 
BDGS FDP (Baraloto et al., 2012; Cavender-Bares, Ackerly, Baum, 
& Bazzaz, 2004; Kraft, Cornwell, Webb, & Ackerly, 2007; Kraft 
et al., 2008).

The present study has shown that in some cases there is con-
gruence in phylogenetic and trait-based patterns, while in other 
cases these results are incongruent. Similar results for tree com-
munities have been reported previously. For example, Swenson 
and Enquist (2009) have reported a mismatch between phylogeny 
and functional traits in a Neotropical dry forest. In their study, 
they indicated that the reason may be a lack of phylogenetic signal 
in functional traits basally and terminally in the phylogenetic tree. 
Thus, only functional traits with a high degree of basal and terminal 
phylogenetic signals (maximum height of trees in that study) were 

TA B L E  2   Results of a plot-wide Wilcoxon signed-ranks test determining phylogenetic and functional community structure at four nested 
spatial scales

Spatial scale N
Mean 
richness

Nearest taxon index (NTI) Nearest function index (NFI)

Estimated 
mean SE p +* −*

Estimated 
mean SE p +* −*

10 × 10 m 2,500 22.8 0.02 0.015 <.01 6.3 2.8 0.68 0.014 <.01 11.3 7.6

20 × 20 m 625 43.8 0.21 0.026 <.01 9.5 6 0.79 0.024 <.01 13.1 8.8

50 × 50 m 100 85.2 0.10 0.044 <.01 14 9.6 0.96 0.045 <.01 12 7.2

100 × 100 m 25 118.1 0.39 0.058 <.01 6 1.8 1.05 0.058 <.01 10 6.7

Note: Positive NTI/NFI values indicate phylogenetic and functional clustering, while negative values indicate phylogenetic and functional 
overdispersion of species occurring together in a quadrat. N: numbers of quadrats within the plot with corresponding mean richness listed. 
Significant p values indicate that the observed phylogenetic and functional structure at a given spatial scale differed from the null expectation, 
according to a plot-wide Wilcoxon signed-ranks test. +*: represents the percentage of quadrats exhibiting significant clustering while −*: significant 
overdispersion at α = 0.05.
Abbreviations: NFI, nearest function index; NTI, nearest taxon index; SE, standard error.

F I G U R E  1   The pattern (Mean ± SE) 
of (a) nearest taxon index (NTI) and 
nearest function index of multivariate 
trait space (NFIM), and (b) nearest function 
index (NFI) of each univariate trait at 
four spatial scales within the 25-ha 
BDGS FDP. Positive values indicate 
functional clustering, while negative 
values indicate functional overdispersion. 
LT, leaf thickness; LA, species area (size); 
SLA, specific leaf area; LCC, LNC, LPC, 
leaf carbon, nitrogen, and phosphorus 
concentration by mass, respectively
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consistent with their phylogenetic results. A similar inconsistency 
was found in the Xishuangbanna tropical forest plot in Yunnan, 
China (Yang et al., 2014). Thus, when there are multiple potentially 
opposing mechanisms and little-to-no phylogenetic signal in trait 
data, phylogenetic and functional trait-based analyses will have 
varying levels of congruence as seen in the present study. Despite 
these inconsistencies, phylogenies may still capture additional 
information that is not contained in the traits that can be mea-
sured and may, therefore, still be a useful indicator of non-random 

processes (Swenson, 2013, 2019; Swenson et al., 2017; Zambrano 
et al., 2017).

4.2 | Scale dependence of the community processes

The means NTI increased at larger spatial scales (Table 2), which in-
dicated that phylogenetic clustering was stronger at larger spatial 
scales and this general pattern was also found in the trait data. Thus, 

TA B L E  3   Result of plot-wide trait-based tests of community assembly with average effect sizes (±SE) at four nested spatial scales, 
(observed – expected)/null SD

Trait and Scale (m)

Environmental filtering Niche difference

Mean Range Variance Kurtosis SDNN

LT

10 0.77 ± 0.04 0.13 ± 0.02 −0.115 ± 0.03 0.54 ± 0.14 0.97 ± 0.01

20 1.132 ± 0.048 0.070 ± 0.05 −0.089 ± 0.043 0.099 ± 0.05 0.339 ± 0.038

50 0.88 ± 0.02 0.213 ± 0.03 0.127 ± 0.07 0.23 ± 0.04 0.53 ± 0.01

100 0.84 ± 0.049 −0.042 ± 0.212 0.617 ± 0.148 0.596 ± 0.017 0.992 ± 0.032

LA

10 0.87 ± 0.02 0.28 ± 0.11 0.77 ± 0.03 −0.63 ± 0.04 −0.14 ± 0.04

20 1.181 ± 0.05 −0.272 ± 0.038 −0.109 ± 0.057 −0.28 ± 0.05 −0.065 ± 0.05

50 0.97 ± 0.048 1.18 ± 0.05 0.94 ± 0.043 −1.07 ± 0.05 −0.07 ± 0.038

100 1.013 ± 0.002 0.780 ± 0.052 1.699 ± 0.097 0.983 ± 0.007 0.030 ± 0.09

SLA

10 1.32 ± 0.03 −0.19 ± 0.06 0.21 ± 0.03 −0.19 ± 0.02 0.33 ± 0.05

20 2.314 ± 0.033 −0.178 ± 0.05 −0.208 ± 0.041 −0.17 ± 0.041 −0.167 ± 0.05

50 1.14 ± 0.06 0.188 ± 0.03 0.334 ± 0.03 −1.28 ± 0.014 −0.93 ± 0.02

100 0.992 ± 0.001 0.787 ± 0.008 0.977 ± 0.149 1.203 ± 0.003 −1.019 ± 0.059

LCC

10 0.77 ± 0.05 0.11 ± 0.04 0.45 ± 0.04 −0.17 ± 0.04 −0.81 ± 0.05

20 1.776 ± 0.058 0.182 ± 0.033 0.243 ± 0.048 0.055 ± 0.04 0.219 ± 0.058

50 0.47 ± 0.027 −0.39 ± 0.039 0.26 ± 0.043 −1.14 ± 0.099 −0.81 ± 0.088

100 0.462 ± 0.002 −0.445 ± 0.002 0.901 ± 0.127 0.214 ± 0.002 −0.883 ± 0.033

LNC

10 0.33 ± 0.04 −0.88 ± 0.05 −0.77 ± 0.02 0.68 ± 0.11 0.56 ± 0.03

20 1.667 ± 0.061 −0.233 ± 0.05 −0.032 ± 0.05 −0.22 ± 0.055 −0.88 ± 0.042

50 0.63 ± 0.018 −1.36 ± 0.049 −1.39 ± 0.067 2.11 ± 0.031 1.15 ± 0.052

100 0.620 ± 0.001 −1.362 ± 0.001 −0.774 ± 0.022 −1.391 ± 0.001 1.155 ± 0.075

LPC

10 0.87 ± 0.07 −0.21 ± 0.14 −0.33 ± 0.11 −0.23 ± 0.06 0.45 ± 0.03

20 1.270 ± 0.052 −0.118 ± 0.044 −0.143 ± 0.045 −0.108 ± 0.05 0.22 ± 0.05

50 1.39 ± 0.002 −0.50 ± 0.069 −0.41 ± 0.008 −0.65 ± 0.05 0.34 ± 0.15

100 1.370 ± 0.001 −0.511 ± 0.008 −0.439 ± 0.108 −0.450 ± 0.007 0.877 ± 0.022

Note: Wilcoxon signed-rank test is used to compare observed trait values with the mean values of 999 null models expectation. The mean test 
was two-tailed, all other tests were one-tailed, we report the absolute value of the effect size. Boldface type indicates p < .05. SDNN, standard 
deviation of nearest trait axis neighbor in a quadrat. Specifically, all the values of significance are test whether the observed trait distributions were 
significantly smaller or less than expected by chance as we predicated, except for the mean test according to a priori assumptions. For example, a 
significant Kurtosis value indicates a more flat curve of traits distributions than random assemblies, and a significant SDNN value represents species 
spaced more evenly along trait axes
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similar species tend to cluster on large scales, which is indicative of 
competitive exclusion of dissimilar species via performance differ-
ences (e.g., Mayfield & Levine, 2010) or environmental filtering sensu 
stricto. It is impossible to disentangle these two possibilities without 
detailed assays of species performance in all environments while re-
moving species interactions, but both possibilities indicate the over-
all importance of the abiotic environment in driving the structure and 
assembly of the tree community at large scales. Even trait dispersion 
was found at the 10 × 10 m, 20 × 20 m, and 50 × 50 m scales, but 
not at the largest spatial scale (Table 3, Table A1). This overall trend is 
similar to previous scale dependency work in phylogenetic and trait-
based community ecology where the abiotic environment is more 
important at large scales and biotic interactions are more important 
at fine scales (Cavender-Bares, Keen, & Miles, 2006; Grime, 2006; 
Kraft et al., 2008; Kooyman, Cornwell, & Westoby, 2010; Kraft & 

F I G U R E  2   Examples of community trait distribution patterns at different scales. For instance, SLA (log-transformed). Rows (a) (b) (c) (d) 
represented for mean, range, kurtosis, SDNN (standard deviation of nearest neighbor distance) of SLA at 10 × 10 m, 20 × 0 m, 50 × 50 m, 
100 × 100 m scale, respectively. Points indicated the observed distribution of SLA in each quadrate as a function of quadrate richness. The 
solid line indicates the expected range value predicted by the null model, and the dashed line indicates the 5% confidence interval of the null 
distribution. One interval indicates one-tailed test

TA B L E  4   Congruence between phylogenetic and trait-based 
tests of community assembly at four nested spatial scales

Scale

Clustered Overdispersion

χ2 p χ2 p

10 m 17.908 <.01 0.737 .39

20 m 3.488 .05 0.844 .36

50 m 0.005 .95 0.12 .84

100 m 0 1 0 1

Note: Individual quadrats were scored for the presence of phylogenetic 
test indicating phylogenetic clustering and trait-based test consistent 
with habitat filtering. A chi-square test (df = 1) was used to test the 
hypothesis that trait-based and phylogenetic-based tests identified 
the same quadrats. The process was repeated for phylogenetic tests 
indicating even dispersion and trait-based tests indicating even spacing. 
Boldface type indicates p < .05.
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Ackerly, 2010; Qian, Hao, & Zhang, 2014; Swenson & Enquist, 2009; 
Falster, Brännström, Westoby, & Dieckmann, 2017).

4.3 | Community processes reflected by 
functional traits

In this study, we found LT and LNC were clustered at all scales, indicat-
ing the important effects of the environmental factors on community 
structure and assembly. Generally, variation in LT is thought to be linked 
to plant responses to light (Mendes et al., 2001; Urbas, 2000). Nitrogen 
is an important nutrient in plants, and most nitrogen is concentrated in 
chloroplasts, mainly used to form RuBisCo and therefore greatly regu-
lating the Calvin Cycle. Therefore, nitrogen determines the key factor of 
photosynthetic material metabolism and plant growth in the process of 
photosynthesis (Hikosaka, 2004; westoby & wright, 2006), which is the 
key limiting factor of leaf photosynthesis. In general, these patterns of 
trait dispersion were correlated with topographic and soil variables in-
cluding elevation, convexity, and soil fertility (Tables A2 and A3) particu-
larly on larger spatial scales. This further underscores the importance 
of deterministic processes and the abiotic environment in driving tree 
community assembly in the forest plot. It is important to note, that many 
abiotic variables co-vary with topographic gradients including many not 
measured presently. Additionally, due to working in diverse systems of 
large long-lived organisms, experimental manipulations are not feasible. 
Thus, we are unable to definitively infer the importance of one abiotic 
variable over another given the data and analyses.

Our analyses of LA and LPC found significant overdispersion and 
the SLA results found both clustering and overdispersion. In other 
words, species with dissimilar values for these traits were, typically, 
more likely to co-occur in the forest plot. This local scale observation 
is the pattern expected from niche differences driving community as-
sembly. Thus, we find evidence for multiple deterministic processes 
driving the structure and assembly of the tree communities in this for-
est with the abiotic environment being important across spatial scales 
and the importance of functional differentiation only being detectable 
on finer spatial scales. Finally, while we find evidence of deterministic 
processes, we also find patterns of phylogenetic and trait dispersion 
that are hardly, or not at all, distinguishable from a random pattern. 
This result is congruent with previous analyses of this forest focusing 
on beta diversity where there is evidence for both deterministic and 
stochastic processes (Qiao et al., 2015). Though, whether the random 
patterns in both of these papers are truly attributable to stochastic-
ity or whether they are due to opposing deterministic processes (e.g., 
Swenson & Enquist, 2009) is still uncertain. Disentangling these possi-
bilities would require further study including experimentation.

5  | CONCLUSIONS

The phylogenetic and trait-based tests we have conducted in this 
study show that the structure and assembly of the tree community 
in the 25-ha BDGS FDP are largely nonrandom. The results show 

that clustering of similar species occurs across most scales and spe-
cies with dissimilarity on a few trait axes co-occur locally. From 
this, we can infer that the abiotic environment plays a major role 
in driving species distributions and co-occurrences either through 
competitive exclusion of dissimilar species or environmental filtering 
sensu stricto. Niche differences do also play a role locally, as indi-
cated by patterns of trait overdispersion, and stochasticity is less 
important, as indicated by the non-random phylogenetic and trait 
results throughout the study. In sum, the results generally reject a 
stochastic model of community assembly in the forest studied and 
further indicates the importance of abiotic variation in driving spe-
cies distributions across scales and the importance of biotic interac-
tions locally.
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APPENDIX 1

TA B L E  A 1   Wilcoxon signed-rank test of abundance-weighted null model results at four nested spatial scales

Trait and Scale (m)

Environmental filtering Niche difference

Mean Range Variance Kurtosis SDNN

LT

10 0.43 ± 0.01 0.31 ± 0.03 0.27 ± 0.03 0.29 ± 0.03 −0.17 ± 0.01

20 0.722 ± 0.048 0.175 ± 0.032 0.159 ± 0.043 0.133 ± 0.023 0.389 ± 0.028

50 0.808 ± 0.021 0.772 ± 0.008 0.351 ± 0.027 0.454 ± 0.001 0.87 ± 0.027

100 1.433 ± 0.09 −0.175 ± 0.011 0.987 ± 0.044 0.716 ± 0.097 0.92 ± 0.032

LA

10 0.31 ± 0.03 −0.16 ± 0.11 −0.66 ± 0.03 0.82 ± 0.01 −0.11 ± 0.02

20 0.92 ± 0.061 −1.19 ± 0.043 0.977 ± 0.49 1.203 ± 0.003 −0.065 ± 0.05

50 0.97 ± 0.05 0.462 ± 0.04 −0.445 ± 0.02 0.79 ± 0.03 −0.032 ± 0.03

100 0.888 ± 0.09 0.780 ± 0.052 1.699 ± 0.077 0.983 ± 0.007 0.031 ± 0.009

SLA

10 0.33 ± 0.02 0.16 ± 0.02 −0.72 ± 0.01 −0.68 ± 0.05 0.12 ± 0.01

20 0.25 ± 0.013 −0.128 ± 0.033 −0.821 ± 0.016 −0.70 ± 0.011 −0.175 ± 0.067

50 0.877 ± 0.012 0.410 ± 0.041 −1.093 ± 0.043 −1.28 ± 0.082 −0.381 ± 0.012

100 0.229 ± 0.182 1.487 ± 0.059 1.132 ± 0.098 1.323 ± 0.004 −0.789 ± 0.043

LCC

10 0.22 ± 0.01 0.25 ± 0.01 0.43 ± 0.04 0.28 ± 0.03 −0.46 ± 0.05

20 0.667 ± 0.053 0.122 ± 0.053 0.413 ± 0.012 0.135 ± 0.001 −0.482 ± 0.005

50 0.413 ± 0.027 −0.952 ± 0.04 0.615 ± 0.041 0.402 ± 0.008 −0.682 ± 0.05

100 0.162 ± 0.033 −1.045 ± 0.002 0.301 ± 0.072 0.145 ± 0.001 0.783 ± 0.083

LNC

10 0.55 ± 0.03 −0.74 ± 0.02 −0.66 ± 0.1 0.84 ± 0.05 0.32 ± 0.02

20 0.775 ± 0.011 −0.336 ± 0.05 −0.019 ± 0.05 −0.021 ± 0.065 −0.243 ± 0.028

50 0.355 ± 0.018 −0.964 ± 0.049 −0.755 ± 0.009 1.144 ± 0.031 0.477 ± 0.072

100 0.705 ± 0.076 −0.862 ± 0.001 −0.904 ± 0.321 −1.114 ± 0.02 0.905 ± 0.035

LPC

10 0.63 ± 0.02 −0.32 ± 0.03 −0.66 ± 0.05 −0.25 ± 0.01 0.11 ± 0.04

20 0.370 ± 0.052 −0.184 ± 0.024 0.133 ± 0.065 −0.118 ± 0.05 −0.25 ± 0.05

50 0.688 ± 0.002 −0.504 ± 0.003 −1.232 ± 0.05 −0.571 ± 0.05 0.412 ± 0.003

100 0.215 ± 0.063 −0.899 ± 0.018 −0.889 ± 0.098 −0.750 ± 0.037 0.473 ± 0.05

Note: The mean test was two-tailed; all other tests were one-tailed. Boldface type indicates p < .05. Specifically, all the values of significance are 
test whether the observed trait distributions were significantly smaller or less than expected by chance as we predicated, except for the mean test 
according to a priori assumptions. For example, a significant Kurtosis value indicates a more flat curve of traits distributions than random assemblies.
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Scale Elevation Convex PC1 PC2 PC3 PC4

NTI 10 m 0.14 0.11 −0.06 −0.16 0.15 −0.04

20 m 0.2 0.19 −0.17 0.14 −0.05 −0.02

50 m 0.13 0.19 −0.13 −0.17 0.21 0.01

100 m −0.03 0.03 0.11 −0.2 0.13 −0.05

NFI 10 m 0.27 0.2 0.04 −0.3 0.18 −0.07

20 m 0.36 0.34 0.01 0.18 0.1 −0.01

50 m 0.08 0.15 0.01 0.02 0.06 0.21

100 m 0.17 −0.34 −0.4 −0.18 −0.18 0.28

Note: Elevation, convex, and the first four principal components of soil fertility represent for 
quadrat-level topographic conditions. Significant standardized regression coefficients were shown 
in boldface type indicating p < .05.
Abbreviations: NFI, nearest function index; NTI, nearest taxon index.

TA B L E  A 2   Results of bivariate 
regression analyses between each 
community structure index and 
topographic conditions (topography and 
soil component) at four spatial scales

TA B L E  A 3   Principal component analyses for thirteen variables 
of soil fertility at 20 × 20 m scale in the 25-ha BDGS forest 
dynamics plot

Soil fertility PCA1 PCA2 PCA3 PCA4

C −0.59 −0.35 0.22 −0.21

N 0.88 0.35 −0.18 0.11

δ13C 0.75 −0.42 −0.39 −0.24

Bulk density −0.81 −0.24 0.05 −0.36

PH 0.84 −0.42 0.23 0.14

T −0.77 0.5 0.35 0.08

p −.17 .44 .05 .79

C. Density −0.4 0.5 −0.72 −0.01

SSN 0.63 0.74 0.11 −0.08

SSC 0.5 0.84 −0.02 −0.12

SS δ13C 0.52 −0.68 −0.22 0.06

SS δ15N 0.57 −0.04 0.8 −0.02

SSP −0.21 −0.54 −0.1 0.78

Eigenvalue 5.13 3.35 1.65 1.53

% explained 0.39 0.26 0.13 0.12

Note: Entries are component loadings, eigenvalues, and percentage 
of variation explained by the first four principal components (PCA1, 
PCA2, PCA3, and PCA4). Soil samples were taken and analyzed for 13 
parameters, including total C and N, P, δ13C isotope of two soil layers 
(0–10 cm and 10–30 cm), pH value, bulk density, soil temperature, C 
density of first soil layer, and δ15N isotope of the subsoil layer.



8104  |     ZHANG et Al.

F I G U R E  A 1   Frequency distribution histogram and Pearson's correlation coefficients for pairwise correlations between functional traits. 
Note. LT, leaf thickness; LA, leaf area (size); SLA, specific leaf area; LCC, LNC, and LPC, leaf carbon, nitrogen, and phosphorus concentration 
by mass, respectively. Boldface type indicates p < .05


