
RESEARCH ARTICLE

The influence of suturectomy on age-related

changes in cerebral blood flow in rabbits with

familial bicoronal suture craniosynostosis: A

quantitative analysis

Ramesh Grandhi1*, Geoffrey W. Peitz1, Lesley M. Foley2,3, Christopher M. Bonfield4,

Wendy Fellows-Mayle5, T. Kevin Hitchens2,3, Mark P. Mooney6,7,8,9,10

1 Department of Neurosurgery, University of Texas Health Science Center at San Antonio, San Antonio, TX,

United States of America, 2 Pittsburgh NMR Center for Biomedical Research, Carnegie Mellon University,

Pittsburgh, PA, United States of America, 3 High Field Animal Imaging Center, University of Pittsburgh,

Pittsburgh, PA, United States of America, 4 Department of Neurosurgery, Vanderbilt University Medical

Center, Nashville, TN, United States of America, 5 Department of Neurological Surgery, University of

Pittsburgh Medical Center, Pittsburgh, PA, United States of America, 6 Departments of Oral Biology,

University of Pittsburgh, Pittsburgh, PA, United States of America, 7 Department of Anthropology, University

of Pittsburgh, Pittsburgh, PA, United States of America, 8 Deparment of Plastic Surgery, University of

Pittsburgh, Pittsburgh, PA, United States of America, 9 Deparment of Orthodontics, University of Pittsburgh,

Pittsburgh, PA, United States of America, 10 Department of Communication Science and Disorders,

University of Pittsburgh, Pittsburgh, PA, United States of America

* grandhi@uthscsa.edu

Abstract

Background

Coronal suture synostosis is a condition which can have deleterious physical and cognitive

sequelae in humans if not corrected. A well-established animal model has previously dem-

onstrated disruptions in intracranial pressure and developmental abnormalities in rabbits

with congenital craniosynostosis compared to wild type rabbits.

Objective

The current study aimed to measure the cerebral blood flow (CBF) in developing rabbits

with craniosynostosis who underwent suturectomy compared to those with no intervention

and compared to wild type rabbits.

Methods

Rabbits with early onset coronal suture synostosis were assigned to have suturectomy at 10

days of age (EOCS-SU, n = 15) or no intervention (EOCS, n = 18). A subset of each group

was randomly selected for measurement at 10 days of age, 25 days of age, and 42 days of

age. Wild type rabbits (WT, n = 18) were also randomly assigned to measurement at each

time point as controls. Cerebral blood flow at the bilateral hemispheres, cortices, thalami,

and superficial cortices was measured in each group using arterial spin-labeling MRI.
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Results

At 25 days of age, CBF at the superficial cortex was significantly higher in EOCS rabbits

(192.6 ± 10.1 mL/100 mg/min on the left and 195 ± 9.5 mL/100 mg/min on the right) com-

pared to WT rabbits (99.2 ± 29.1 mL/100 mg/min on the left and 96.2 ± 21.4 mL/100 mg/min

on the right), but there was no significant difference in CBF between EOCS-SU (97.6 ± 11.3

mL/100 mg/min on the left and 99 ± 7.4 mL/100 mg/min on the right) and WT rabbits. By 42

days of age the CBF in EOCS rabbits was not significantly different than that of WT rabbits.

Conclusion

Suturectomy eliminated the abnormally increased CBF at the superficial cortex seen in

EOCS rabbits at 25 days of age. This finding contributes to the evidence that suturectomy

limits abnormalities of ICP and CBF associated with craniosynostosis.

Introduction

Craniosynostosis is a condition in which one or more of the calvarial sutures fuse prematurely.

Though there are syndromic causes, most commonly, craniosynostosis is considered to be idi-

opathic, and its incidence is estimated at 1 out of 2500 live births. Involvement of the coronal

sutures (CS) constitutes approximately 25% of cases [1]. Children with uncorrected craniosyn-

ostosis develop abnormal head shapes, based on the particular suture that has prematurely

closed. The restriction imposed by the closure of the suture involved may not allow for the

developing brain to have enough space for the growth. Left untreated, the downstream clinical

sequelae may include visual impairment, headaches, and delays in cognitive and psychomotor

development [2–3] with consequent impairment of mental development and significant

reductions in IQ [4]. The causes of these sequelae are multifactorial, but intracranial hyperten-

sion may be an important component.

The prevalence of intracranial hypertension in patients with craniosynostosis is unclear

due to variation in method, duration of measurement, and ambiguity on what threshold

value of intracranial pressure (ICP) is considered abnormal in each age group. Whereas

reported prevalence ranges from 30–40% in syndromic craniosynostosis and 15–20% in

nonsyndromic craniosynostosis, Tamburrini et al. (2005) argued for prolonged monitoring

of ICP and attention to plateau waves and determined that 87.5% of syndromic patients

with craniosynostosis had abnormal ICP [5–6]. While definitions of abnormal ICP vary,

within-study comparisons between ICP before and after surgical correction of craniosynos-

tosis have not shown a consistent normalization of ICP after surgery [5]. In addition,

important factors besides decreased intracranial volume, such as airway obstruction,

impaired venous drainage, and altered CSF flow and absorption, contribute to intracranial

hypertension in craniosynostosis patients. It is unproven which, if any, of these factors may

be responsible for reported neurocognitive outcomes [7, 8]. Therefore, besides the conse-

quent changes in head shape achieved with surgical intervention, it is important to investi-

gate other neurophysiologic phenomena to understand the potential ramifications of

surgery in patients with craniosynostosis.

Along with increased intracranial pressure (ICP) [9–13], other aberrations in neurophysio-

logic parameters have been noted, most notably, abnormal cerebral blood flow (CBF) [14–16].

Observed downstream neuroanatomic consequences of these perturbations include white mat-

ter injury [17] and atypical venous drainage [18–20]. Examining CBF before and after surgical
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intervention for craniosynostosis could help characterize the effect of surgery on the patho-

physiology of craniosynostosis.

Conventional anatomical magnetic resonance imaging (MRI) allows for detection of struc-

tural changes in the brain in a non-invasive manner, but only after potentially irreversible

damage has been done. Anatomical MRI does not allow for the study of CBF. The use of arte-

rial spin labeling MRI (ASL-MRI) to serially and non-invasively study CBF represents a crucial

adjunctive imaging modality.

We have developed an inbred rabbit model of early-onset bilateral coronal craniosynostosis

(EOCS) and have extensively described growth changes in the cranial vault and intracranial

contents on these rabbits. Phenotypically, EOCS rabbits exhibit bony bridging of the coronal

suture by 21 days gestation (gestation is 30 days in the rabbit), obliterated coronal sutures at

birth, coronal ridging and brachycephalic cranial vaults by 10 days of age, and secondary

changes in the cranial vault base, brain, and intracranial volume by 42 days of age [9, 10, 12,

13, 17, 21–24]. CBF was studied in EOCS rabbits at 10, 25 and 42 days of age using ASL-MRI.

A previous study from our group revealed CBF to be similar between wild-type (WT) and

EOCS subjects, with the exception of the superficial cortex surfaces in EOCS rabbits at 25 days

of age [25]. A two-fold increase in superficial cortex CBF at 25 days of age was noted. However,

by 42 days of age, the CBF reduced back to normal values. Interestingly, as noted by Fellows-

Mayle and colleagues’ (2000) study, ICP values in EOCS rabbits mirror the increases in CBF

seen: at 25 days of age, the EOCS subjects had significantly increased ICP, with a decrement

noted by Day 42 [9]. Additionally, brain morphology studies in EOCS rabbits showed that sig-

nificant brain atrophy occurred in these animals [21, 23, 24]. Given that brain growth acceler-

ates in rabbits from early gestation to 30 days of age [23], which also corresponds to peak CBF

and ICP levels seen at 25 days of age in EOCS rabbits, these studies suggest that perhaps cere-

bral autoregulation results in hyperemia at the pial surfaces in response to increased ICP; how-

ever, due to inadequate CBF, cerebral atrophy eventually occurs with consequent ICP

reduction by day 42.

The present study was undertaken to serially map CBF in our animal model and determine

the impact of suturectomy on CBF in EOCS subjects. We used ASL-MRI to show the age-

related changes in CBF, comparing wild-type subjects, and EOCS subjects with and without

suturectomy over various time points. In light of the previous studies showing age-related

increased ICP and CBF in rabbits with craniosynostosis and the prevention of early increased

ICP via suturectomy [9, 12, 24, 25], we investigated the hypothesis that early suturectomy in

rabbits with bicoronal craniosynostosis will result in the abolishment of the age-related

increase in CBF seen in the ipsilateral superficial cortical surfaces of our rabbit craniosynosto-

sis model. By analyzing the differences in cerebral blood flow seen over time in subjects under-

going suturectomy versus those that do not undergo suturectomy, one may obtain clinically-

relevant information and potentially determine whether a critical period exists during which

suturectomy is indicated to prevent a cascade of changes in neurophysiologic parameters that

may result in secondary brain injury.

Materials and methods

Animal model

This study used a breeding colony of New Zealand white rabbits with naturally occurring coro-

nal suture synostosis [15, 21–25]. All rabbits were born and maintained in the vivarium at the

Department of Anthropology, University of Pittsburgh and housed in stainless steel cages with

access to food and water ad libitum. Rabbits were housed with mothers and littermates, up to

the time of the experiment. Approval by the University of Pittsburgh Institutional Animal
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Care and Use Committee (#12100948) was obtained, and the experiment was reported in com-

pliance with Animal Research: Reporting in Vivo Experiments guidelines [26].

Synostotic rabbits were initially diagnosed at 10 days of age using previously described cri-

teria [9, 10, 12, 13, 17, 21–24]. Briefly, all rabbits were anesthetized with an IM injection (0.59

mL/kg) of a solution containing 91% Ketaset (ketamine hydrochloride, 100 mg/mL, Aveco

Co., Inc., Fort Dodge, IA) and 9% Rompun (xylazine, 20 mg/mL, Mobay Corp., Shawnee, KS).

The scalps were then shaved, depilated, and prepared for surgery. Calvaria were exposed by

midline incision of the scalp, and the skin was reflected laterally to the supraorbital borders.

Coronal suture morphology was assessed by direct observation and the degree of bony bridg-

ing and coronal suture mobility were ascertained (Fig 1). Rabbits with bilaterally fused coronal

sutures with no mobility were diagnosed with early-onset coronal suture synostosis (EOCS)

and were placed in the study.

Removal of the coronal suture (EOCS-SU group) occurred immediately after diagnosis of

synostosis in a random subset of EOCS rabbits. The coronal suture was removed by drilling

2mm anterior to, and 2mm posterior to the suture, for the length of the affected suture (Fig 2).

A 4mm x approximately 20 mm piece of the skull was removed (Fig 2). The skin of the head

was sutured and the rabbit was monitored during recovery. Rabbits were given enrofloxacin at

a dose of 2 mg/kg twice a day subcutaneously and buprenorphine at a dose of 0.02 mg/kg sub-

cutaneously immediately after surgery and for 2 days post operatively. The scalp incision was

monitored daily and the skin sutures were removed at 20 days of age. At the conclusion of the

experiment, rabbits were euthanized with Fatal Plus at a dose of 100 mg/kg intravenous.

Rabbits were randomly assigned into the following experimental groups: wild-type control

rabbits (WT) at 10 days of age (n = 6); EOCS rabbits at 10 days of age (n = 6); EOCS-SU rabbits

at 10 days of age (n = 5); WT rabbits at 25 days of age (n = 6); EOCS rabbits at 25 days of age

(n = 6); EOCS-SU rabbits at 25 days of age (n = 5); WT rabbits at 42 days of age (n = 6); EOCS

rabbits at 42 days of age (n = 6); and EOCS-SU rabbits at 42 days of age (n = 5).

Protocol for MRI studies of CBF

For magnetic resonance studies, at or near 10, 25, and 42 days of age, rabbits were transported

to the Pittsburgh NMR Center for Biomedical Research at Carnegie Mellon University. Rabbits

were preanesthetized with an intramuscular injection of ketamine (100mg/ml) and xylazine

(20 mg/ml) in a 9:1 solution at a dose of 0.6 mg/kg. All rabbits underwent tracheotomy and

were ventilated (Harvard Apparatus, Holliston, MA) via an endotracheal tube with 1–1.5% iso-

flurane in a N2O:O2 (1:2) gas mixture. The rabbits were placed in dorsal recumbency and an

indwelling catheter was inserted into the femoral artery. Arterial blood gases were collected

immediately before and after MRI. Arterial CO2 tension (PaCO2) was maintained between 20

and 46 mmHg for the duration of the study. This has been reported as the normal PaCO2 for

rabbits [27]. During MRI assessment animals were maintained at 36±0.5˚C via a warm air

heating system (SA Instruments, Stony Brook, NY).

MRI image acquisition

MRI studies were performed on a 4.7-T, 40-cm bore Bruker AVANCE-AV system, equipped

with a 12-cm-diameter-shielded gradient insert and a 72-mm volume RF coil for 10 and 25

days of age. At 42 days of age, half-PCOS RF coil was used. T2-weighted spin-echo images

were used to verify the position of the perfusion slice, which was based on Figure 70 in the

Atlas of the Rabbit Brain and Spinal Cord [28], and were acquired with the following parame-

ters: field of view (FOV) = 6.4x6.4cm, 2-mm slice thickness, TR/TE = 2,000/90 ms, two aver-

ages, five slices and a 128x70 matrix interpolated to 128x128. Perfusion studies were

Influence of suturectomy on changes in cerebral blood flow in rabbits with craniosynostosis

PLOS ONE | https://doi.org/10.1371/journal.pone.0197296 June 1, 2018 4 / 14

https://doi.org/10.1371/journal.pone.0197296


Influence of suturectomy on changes in cerebral blood flow in rabbits with craniosynostosis

PLOS ONE | https://doi.org/10.1371/journal.pone.0197296 June 1, 2018 5 / 14

https://doi.org/10.1371/journal.pone.0197296


performed using continuous arterial spin-labeling imaging technique (spin-echo, 128x70

matrix, TR = 200 ms, summation of three echoes, TE = 10, 20, and 30 ms and two averages)

[29]. The labeling and control continuous RF pulse for the inversion plane was positioned ±2

cm from the perfusion detection plane. The spin-lattice relaxation time of tissue water (T1obs)

was measured from a series of spin-echo images (TR = 8,000, 4,300, 2,300, 1,200, 650, 350, 185,

and 100 ms, TE = 9 ms, two averages and a 128x70 matrix) [30]. Spin-labeling efficiency, α,

was determined from intensities within the carotid arteries (gradient echo, 45o flip angle, eight

averages, TR/TE = 100/9.6 ms, 256x256 matrix and spin-labeling applied at ±6 mm) [31].

Data analysis

All image processing was performed with the Bruker ParaVision 5.0 image analysis software.

Pixel by pixel maps of (MC − ML) x MC−1 were generated from the perfusion data. MC and ML

are the magnetization intensities from the control image and labeled image, respectively. T1obs

maps were generated from the series of variable TR images by a three-parameter, non-linear

fit. Regional CBF was then calculated according to Zhang et al [32]. CBF = λ.(T1obsx2α)−1 x

(MC − ML) x MC−1, where λ is the blood–brain partition coefficient of water, with a spatially

constant value of 0.9 mL/g assumed [33], and α is the spin-labeling efficiency measured in the

carotids. T2-weighted images were used to define regions of interest (ROIs) in the left and

right hemisphere, which were copied onto the CBF maps where the mean CBF across the left

and right hemispheres were calculated to see if there were large difference between animals.

Smaller, more specific regions within each hemisphere including the cortex, thalamus, and the

superficial cortex surfaces were also defined, guided by assignments from the rabbit brain atlas

[28]. Mean CBF values were also calculated in these individual, smaller ROIs to determine if

specific regions within the hemisphere may be significantly different between groups.

Statistical analysis

Mean blood flow data were compared between groups at each age, and significant differences

were assessed using one-way ANOVA on SPSS software (v. 13, SPSS Incorporated, Chicago,

IL). Post-hoc group comparisons were made, and the Bonferroni correction was used for the

multiple comparisons. All differences were considered significant if p< 0.05.

Results

Representative CBF maps for WT, EOCS, and EOCS-SU rabbits from the 10-day, 25-day, and

42-day groups are shown in Fig 3, and Table 1 shows mean CBF and associated standard devi-

ation for each group. As shown in Table 1 and Fig 3, hemispheric, cortical, thalamic, and

superficial cortical CBF was increased in the 25-day-old group and 42-day-old group com-

pared to the 10-day-old group in WT, EOCS, and EOCS-SU rabbits. In most cases, this differ-

ence was significant at the 5% level. The exception was that mean CBF in the right cortex of

the 42-day-old WT rabbits was not significantly different from that of the 10-day-old WT rab-

bits. Comparing WT and EOCS rabbits, the superficial cortical CBF in the 25-day-old EOCS

(192.6 ± 10.1 mL/100 mg/min on the left and 195 ± 9.5 mL/100 mg/min on the right) rabbits

was nearly double that of the of the 25-day-old WT rabbits (99.2 ± 29.1 mL/100 mg/min on

the left and 96.2 ± 21.4 mL/100 mg/min on the right, p< .001), as shown in Fig 3. Superficial

Fig 1. Representation of rabbit coronal sutures in cartoon (Panel A) and photographs (Panels B and C). Panel B

demonstrates patent coronal sutures in a wild type rabbit, and Panel C demonstrates bilaterally fused coronal sutures

in a rabbit with early-onset craniosynostosis (EOCS).

https://doi.org/10.1371/journal.pone.0197296.g001
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Fig 2. Cartoon (Panel A) and photograph (Panel B) of a rabbit skull after coronal suturectomy.

https://doi.org/10.1371/journal.pone.0197296.g002
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Fig 3. Representative cerebral blood flow maps from wild-type, EOCS, and EOCS with suturectomy rabbits at 10,

25, and 42 days of age.

https://doi.org/10.1371/journal.pone.0197296.g003

Table 1. Regional cerebral blood flow by group.

Left

Hemisphere

Right Hemisphere Left Cortex Right Cortex Left Thalamus Right Thalamus Left Superficial

Cortex

Right Superficial

Cortex

Wild-type

10 days of

age

35.7 ± 7.6 35 ± 7.6 45.7 ± 12.2 44.2 ± 11.8 36.7 ± 9.9 35.9 ± 9.1 41.7 ± 8.3 41.3 ± 5.7

25 days of

age

90.7 ± 39.4 � 92.5 ± 39.4 � 90.2 ± 30.3 � 92 ± 33.4 � 122.3 ± 55.6 � 124.3 ± 58.3 � 99.2 ± 29.1 � 96.2 ± 21.4 �

42 days of

age

72.8 ± 24.9 � 74.5 ± 21.3 � 78.3 ± 34.7 � 63.8 ± 22.8 99.3 ± 30.3 � 100 ± 36.4 84.3 ± 35.2 � 76.5 ± 23.9 �

EOCS

10 days of

age

29.5 ± 9.1 30.7 ± 7.2 32.7 ± 9.9 34.7 ± 8.2 36.2 ± 11.3 35.3 ± 9.6 38.7 ± 12.6 40.7 ± 12

25 days of

age

92.2 ± 14.5 � 91.6 ± 15.6 � 108.8 ± 27.4 � 109 ± 29.5 � 129 ± 24.8 � 125.6 ± 23.3 � 192.6 ± 10.1 �, # 195 ± 9.5 �, #

42 days of

age

70 ± 7.9 � 76 ± 8.9 � 70 ± 12 � 81.3 ± 6.1 � 112.5 ± 10 � 106.8 ± 14.2 � 81.5 ± 6.7 � 80.3 ± 5.5 �

EOCS-SU

10 days of

age

41 ± 14.5 44 ± 11.9 36 ± 6.8 43 ± 3.2 42.8 ± 11.6 40.2 ± 8.5 41.2 ± 8.6 47.4 ± 8.1

25 days of

age

104.6 ± 6.9 � 106.4 ± 6.8 � 98.2 ± 5.5 � 105 ± 13.5 � 144.6 ± 11.2 � 140.4 ± 18.9 � 97.6 ± 11.3 � 99 ± 7.4 �

42 days of

age

80.2 ± 7.4 � 74.5 ± 14.9 � 90.6 ± 9.1 � 79 ± 19 � 91.8 ± 11.1 � 83 ± 12.9 � 87.6 ± 13 � 76 ± 24.2 �

Data are mean ± standard deviation, units mL/100 mg/min. Data were analyzed with ANOVA tests, and results with p values < 0.05 were considered significant.

� Indicates significant difference from the corresponding 10-day-old group.

# Indicates significant difference from the wild-type group of the same age.

https://doi.org/10.1371/journal.pone.0197296.t001
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cortical CBF was not significantly elevated in EOCS-SU rabbits (97.6 ± 11.3 mL/100 mg/min

on the left and 99 ± 7.4 mL/100 mg/min on the right) compared to WT rabbits at 25 days of

age. By 42 days of age, superficial cortical CBF in EOCS rabbits was decreased to a level similar

to the WT and EOCS-SU rabbits. In other ROIs, no significant differences in CBF were

observed in WT compared to EOCS or EOCS-SU rabbits at any age.

Discussion

Our data demonstrates that in our rabbit model of early-onset craniosynostosis, age-related

changes in CBF occurred in the superficial cortex compared to control animals and that this

change was not seen in rabbits with early-onset craniosynostosis that underwent suturectomy.

The increased CBF that is seen in the superficial cortex at 25 days coincides with the period of

increased ICP previously reported by our group [9], which corroborates Auer et al.’s (1987)

and Pennings et al.’s (2005) findings that during periods of intracranial hypertension and

hypercapnia, respectively, owing to relaxation of smooth muscle within the arterial walls, pial

arteries undergo compensatory dilation secondary to the process of cerebral autoregulation

[34, 35]. By 42 days of age, CBF in our early-onset craniosynostotic rabbits decreased back to

normal range and pial vasculature no longer demonstrated high CBF as compared to control

animals, once again mirroring the age-related changes in ICP seen in craniosynostotic rabbits

in which ICP decreases back to normal between 25 and 42 days of age [9].

Subjects that underwent suturectomy did not show a similar pattern of increased CBF at

the superficial cortex at the 25-day time point. This study adds new evidence to the existing

sequelae of craniosynostosis in the rabbit model, which includes decreased brain growth [23]

and intracranial volume [24] and hyperactivity with early reflexive behavior in the early stages

of life [36].

Based on the results of ASL-MRI, we found that cortical, hemispheric, and thalamic CBF

were not different in rabbits with early-onset craniosynostosis of the coronal sutures when

compared to age-matched wild-type rabbits and rabbits with early-onset craniosynostosis who

underwent suturectomy. The increase in all groups seen between 10- and 25-days of age repre-

sents the normal pattern of CBF increase seen in the immature brain [37–39]; Tuor demon-

strated low CBF in the early postnatal development in the rabbit (between 1 and 8 days of age)

and a marked increase in CBF by 17 days of age [39]. One of the most important factors deter-

mining CBF is the local energy demand of the tissue for cell maintenance, growth, differentia-

tion, and myelination. Thus, significant increase in CBF observed between 8 and 17 days of

age in rabbits occurs at a critical period of marked maturational advances in brain anatomy,

connectivity, and behavior.

Whereas a rationale for increased CBF from 10 days of age to 25 days of age in normal rab-

bits has been described, the reason for the marked change in CBF and ICP from abnormally

high on day 25 to normal on day 42 in rabbits with craniosynostosis is not well understood.

With cerebral autoregulation, one may expect elevated ICP from craniosynostosis to result in

either preserved CBF if the cerebral perfusion pressure (CPP) lies within the autoregulatory

range or decreased CBF if the ICP is elevated to the extent that CPP is below the autoregulatory

range. However, the CBF was actually greater in craniosynostosis rabbits than in normal rab-

bits at 25 days of age, which may represent an upward shift of the autoregulation curve. Shifts

in the autoregulation curve have been described in humans and animals with orthostatic

changes in sympathetic tone related to central venous pressure [40, 41]. Additionally, intracra-

nial hypertension has been associated with defective autoregulation, and in a study of dogs

with induced ICP elevations, hyperemia was often but not always seen with defective autoregu-

lation [42]. Measuring ICP and CBF in WT and EOCS rabbits over a range of mean arterial
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blood pressure would help determine whether the observed changes in CBF are related to a

change in position on the autoregulation curve, a shift of the curve, or a change in shape of the

curve. Furthermore, shorter intervals between ICP and CBF measurements could help deter-

mine whether the return to normal CBF at 42 days precedes or follows the return to normal

ICP.

Human data is sparse with regards to the influence of surgical correction on CBF. A Japa-

nese group published their results on the use of I-123-IMP single photon emission computed

tomography (SPECT) imaging studies in thirteen patients with craniosynostosis before and

after surgical correction, with eight patients showing a focal area of hypoperfusion on the pre-

operative study [43]. Following surgery, there was improvement or resolution of the hypoper-

fusion in six of the eight patients. In another case series, Sen and colleagues (1995) reported on

the use of technetium-99m HMPAO SPECT to study cerebral perfusion in seven children with

craniosynostosis [44]. In all four patients who had pre- and postoperative studies done, cere-

bral hypoperfusion was detected by SPECT in the corresponding cerebral cortex underlying

the affected suture in the preoperative scan, with an amelioration of the hypoperfusion follow-

ing surgery. The cerebral hypoperfusion demonstrated in humans with craniosynostosis at

various ages in development is in contrast to the hyperperfusion seen in rabbits with cranio-

synostosis at 25 days of age. The reason for this difference is unclear but may be related to dif-

ferent relative ages in development at which the cerebral blood flow measurements were

made.

ASL-MRI represents a promising non-invasive imaging modality that could provide insight

into the anatomical etiology of the neurodevelopmental deficits seen in patients with cranio-

synostosis. Furthermore, its ability to provide both quantitative and qualitative data with high

spatial resolution represents key advantages over other imaging modalities. However, the reli-

ability of the results of this study is limited by high variability from small sample sizes and the

inability to test repeatability of CBF measures from ASL-MRI due to instrument decommis-

sioning. Also, a comparison of CBF as measured by ASL-MRI in rabbits with unilateral coro-

nal suture synostosis could add validity to the conclusion that CBF is abnormal in

craniosynostosis if CBF were elevated in the same side of the brain as the fused suture.

While direct neurohistopathological analysis was beyond the scope of the present study,

previous results from this rabbit model have shown that early suturectomy resulted in the pres-

ervation of white matter integrity as assessed by diffusion tensor imaging (DTI) [17], an

increase in intracranial volume and a normalization of brain surface morphology as assessed

with CT-imaging, and a normalization of cranial vault and cranial base angulation as assessed

radiographically [13, 23, 24, 45, 46, 47]. Furthermore, studies have shown reossification of the

suture following suturectomy can halt the initial improvements in intracranial volume and

brain morphology after suturectomy, and further research has aimed to prevent reossification

of the suture through molecular therapies [47–50]. In this model, direct neurohistopathologi-

cal analysis is still needed to determine what effect the prevention of hyperemia through

suturectomy has on neural growth and morphology.

Our well-established rabbit model of familial coronal suture synostosis [9–13, 17, 21, 25,

51] was used due to the similarity in the sutural, cranial vault, and cerebrovascular architecture

dysmorphology, compared to infants with craniosynostosis [13, 21, 23, 39, 48–50, 52–54];

however, we acknowledge the limitation of extrapolating these results to a human clinical set-

ting given the differences in brain morphology and growth patterns between humans and lago-

morphs. Approximately 90% of brain growth in rabbits is completed by 35 days of age [13, 55],

as compared to about 4 to 6 years of age in humans [56]. These findings suggest that the lago-

morph neurocapsular matrix responds and adapts much more rapidly than the human and

may be more exaggerated. Even with these limitations, this study demonstrates that early
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suturectomy prevents the superficial cortical hyperemia observed in response to intracranial

hypertension seen in untreated animals.

Based on the result of this experiment alone, the influence of suturectomy on mitigating

downstream functional deficits is unclear. Further studies with the rabbit model will have to

be coupled with behavioral testing as well as histopathology. Ultimately, in the clinical setting,

the use of imaging such as ASL-MRI, along with pre- and postoperative neuropsychological

testing may provide further insight into the influence of surgical intervention in the neurocog-

nitive development of children with craniosynostosis.

Conclusion

Coronal suture synostosis is associated with aberrations of ICP and CBF in the developing

brain. Using a well-established animal model of craniosynostosis and arterial spin-labeling

MRI, CBF has been studied in the developing brain of rabbits with coronal suture synostosis.

Previously, authors have demonstrated a two-fold increase in CBF in the superficial cortex at

25 days of age in EOCS rabbits compared to WT rabbits followed by a return to normal CBF at

42 days of age. The current study demonstrated that after coronal suturectomy in EOCS rab-

bits, the CBF at 25 days of age was similar to WT rabbits. These findings set the stage for fur-

ther animal and human studies to determine whether there is a critical period during which

suturectomy could minimize functional impairment secondary to craniosynostosis.
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