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ABSTRACT: Computer simulations are used to determine the free energy
landscape for the binding of the anticancer drug Dasatinib to its src kinase
receptor and show that before settling into a free energy basin the ligand must
surmount a free energy barrier. An analysis based on using both the ligand-
pocket separation and the pocket-water occupancy as reaction coordinates
shows that the free energy barrier is a result of the free energy cost for almost
complete desolvation of the binding pocket. The simulations further show
that the barrier is not a result of the reorganization free energy of the binding
pocket. Although a continuum solvent model gives the location of free energy
minima, it is not able to reproduce the intermediate free energy barrier.
Finally, it is shown that a kinetic model for the on rate constant in which the
ligand diffuses up to a doorway state and then surmounts the desolvation free
energy barrier is consistent with published microsecond time-scale simulations of the ligand binding kinetics for this system
[Shaw, D. E. et al. J. Am. Chem. Soc. 2011, 133, 9181−9183].

1. INTRODUCTION

Computational drug discovery efforts are generally focused on
calculation of equilibrium protein−ligand binding affinities.
There is no question that the equilibrium binding affinity is an
important predictor of ligand efficacy, and achieving adequate
values of this quantity is a necessary (although not sufficient)
condition for a viable drug candidate. The calculation of
equilibrium binding free energy, while very challenging, can be
pursued via both fast approximate methods (empirical scoring
function, MM-GBSA,1 etc.) as well as more expensive, but
rigorous, statistically mechanical simulation approaches such as
free energy perturbation theory (FEP).2−4 Recent work in these
areas suggests that significant progress is possible, provided
sufficient computation time is available and accurate force field
representations of the ligand and protein are employed.
However, there is also an increasing belief that, at least for

some ligands and pharmaceutical targets, the kinetics of binding
can play a significant role in in vivo efficacy. It is generally
suggested5 that existence of intermediate free energy barriers
can influence the so-called on-rate and off-rate of ligand-
binding, which in turn will influence the potency of the drug, by
tuning the residence time of the ligand. Hence, the design of
drug candidates with increased activation barrier to dissociation
is of potential interest as a strategy for finding superior
compounds in a drug discovery project.
Computational methods in principle can facilitate the design

of ligands with intermediate activation barriers (which must be
introduced along with the manifold of other properties required
for suitability as a drug). However, the calculation of activation
barriers in a complex condensed phase system of this type is
even a more formidable task at present than determination of

equilibrium binding affinities. Molecular dynamics simulations
are one possible way of determining binding kinetics. Many
factors contribute to the activation barriers including, for some
systems, the movement of water molecules into or out of the
binding pocket (desolvation and resolvation). Several studies
have evaluated the free energy changes accompanying such
processes,6−9 but there are relatively few simulations focusing
on the kinetic barriers arising from desolvation. For example,
some recent studies focus on binding kinetics in systems where
there is a large scale drying transition before binding.10,11 Shaw
and co-workers have used ANTON, a specialized massively
parallel molecular dynamics engine, to generate microsecond to
millisecond trajectories of ligands diffusing toward and binding
to a protein. Using this approach they have been able to
provide a microscopically detailed view of the real-time binding
pathways of several beta-blockers to a G-protein coupled
receptor12 as well as the FDA-approved anticancer drugs PP1
and Dasatinib to a kinase.13 In both of these studies a shell of
water molecules is ejected just before the ligand binds to the
native pocket. Such calculations provide important insights into
the kinetics of the binding process, but they are probably too
expensive at present to be employed on a routine basis in
evaluating libraries of candidate ligands.
In order to obtain physical insight and useful semi-

quantitative information concerning the barriers to ligand
binding and unbinding, in this paper we analyze how the free-
energy changes as the ligand approaches its binding pose. We
explore the binding of a FDA-approved kinase-inhibitor
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Dasatinib14−16 to src-kinase,17 the same kinase and ligand
studied by Shaw and co-workers. A representative snapshot of
Dasatinib in its native binding pose in the pocket of kinase is
shown in Figure 1 a. In the present work, we take a different

approach. In particular we explore the role played by explicit
water molecules in the binding process with a focus on the free
energy of pocket desolvation. Using molecular dynamics and
free energy simulation methods we show that the ligand
encounters a free-energy barrier just prior to reaching its
binding pose. By treating both the water-occupancy and the
ligand-pocket separation distance as reaction coordinates, we
quantitatively trace the origin of this barrier to the displacement
of pocket-waters by the ligand en route to its binding. In
addition, application of the WaterMap technique6 helps to
clarify our findings by characterizing the thermodynamic nature
of pocket-waters at various ligand-pocket distances. As
expected, application of a continuum solvent model (GBSA)
fails to find the free energy barrier as implicit solvent models
ignore explicit solvation. Finally, it is shown that a kinetic
model for the on rate constant, in which the ligand diffuses up
to a doorway state and then surmounts the desolvation free
energy barrier, is consistent with the Shaw group’s very long
simulations of the ligand binding kinetics for this system.
In what follows, we shall focus our attention on calculation of

the barrier to protein−ligand association (enabling estimation
of the on-rate for ligand binding), as opposed to the reverse
process of ligand dissociation. There are several reasons that we
make this choice. First, the dissociation barrier can be
calculated via the detailed balance relation if the association-
barrier and the equilibrium binding constant is known.
Calculation of the equilibrium binding constant can in principle
be accomplished using free energy perturbation (FEP)
methods. Recent work18 has demonstrated that very reasonable
RMS errors (on the order of 1.2 kcal/mol) can be obtained for
relative protein−ligand binding affinities in congeneric series,
for multiple data sets comprising 200 compounds in all. While
additional validation will be required to fully establish the
accuracy and robustness of FEP methods (including that of ref
18), these promising results suggest that if a reliable approach
to the calculation of the association barrier can be established, it
will be possible to compute the barrier to dissociation,
exploiting the detailed balance relation, within reasonable
error bars. The FEP methods we cite above involve the
calculation of relative (compared to a reference molecule, the
binding affinity of which is known experimentally), as opposed
absolute, free energies of binding. This imposes some

important limitations on the proposed strategy to address
dissociation. First, a suitable reference molecule with
experimental binding affinity data is required. Second, because
it addresses relative rather than absolute effects, the FEP
calculation is limited with regard to the physical insight it can
provide. For example, as discussed in detail by Pearlstein and
co-workers,19−21 the process of desolvation during ligand
dissociation is critical to the magnitude of the dissociation
barrier. However, the FEP calculation addresses only relative
desolvation effects, a complete picture as to how the filling of
the cavity with waters as the ligand is evacuated may not be
available. The problem of extracting the information that is
available with regard to the dissociation barrier from the FEP
calculations will not be discussed further in this paper; we will
instead focus entirely on the barrier to association. However,
this issue will need to be carefully investigated in future work.
Second, the final steps in the binding process, in which the
ligand and protein fully adjust to each other to form the
equilibrium protein−ligand complex, represent a more
challenging computational problem than the early steps and
would require a substantially greater amount of computation
time, and perhaps an expanded definition of the reaction
coordinate, in order to accurately map out the potential of
mean force which undergoes a very rapid change as the protein
and ligand adjust to full complementarity. In fact, we can
estimate the computational effort as comparable to that
required for the computation of absolute protein−ligand
binding free energies. In contrast, umbrella sampling or FEP
methods computing relative binding affinities are much less
expensive, as long as there is an acceptable reference molecule
with experimentally known binding affinity; this is always the
case in a drug discovery project in its lead optimization phase.
Finally, direct simulation using explicit time dependent
molecular dynamics is only feasible for the association rate-
constant; the barrier for the dissociation is too large for
optimized ligand binding to enable access to this barrier with
current computational hardware. Comparison between the
approximate methods that we investigate herein (WaterMap
based estimation of the barrier and FEP computation of the
potential of mean force) and direct simulation is highly
desirable in order to calibrate the validity of the approximations,
exclusive of the details of the force field.

2. SIMULATION MODEL AND METHODS
2.1. Simulation Model. The initial structure of Dasatinib

bound to the protein was obtained from protein data bank
(PDB Id: 3G5D).16 All the non-protein molecules (except
Dasatinib) were then removed, and protein preparation
wizard22 within the Schrodinger software package23 was used
to post process the structures of proteins and Dasatinib for
simulation. Protonation states of the amino acid residues were
assigned assuming the systems are at pH 7.0. Any missing
hydrogens and any missing atoms of side chains were added,
and finally any missing loops in the pdb structures were filled
in. The chemical formula of Dasatinib as provided in the RCSB
protein data bank is C22H26ClN7O2S. Based on the chemical
structure of Dasatinib illustrated in the original article by Getlik
et al.16 which also provided the pdb coordinates (3G5D),
Dasatinib is rendered as a charge-neutral ligand (i.e., there is no
proton bound to the nitrogen atoms of piperazine rings). To be
consistent with the same chemical formula and chemical
structure, in our simulation model, Dasatinib is also treated as
charge-neutral molecule. The chemical structure of the

Figure 1. a) Representative snapshot of Dasatinib (silver color) in its
native binding pocket (purple color) of kinase. The density map of the
native binding pocket has been obtained by averaging over frames of
trajectory. Only part of the proteins has been shown (in ribbon
representation), and water and ions are not shown for clarity. b) The
chemical structure of the ligand Dasatinib used in the work (identical
to that provided in ref 16).
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Dasatinib as used in the current work, is also shown in Figure
1b).
The OPLSAA all-atom force-field24 was used to model

Dasatinib bound to the protein, and the TIP4P model25 was
used for water. OPLS force field parameters for Dasatinib were
obtained from the Schrodinger package by selecting parameters
for the analogous atoms of the ligand Dasatinib. All force-field
parameters of Dasatinib have been provided near the end of the
Supporting Information of this paper (gromacs-compatible
parameter files are available upon request). The postprocessed
pdb structure of Dasatinib bound to protein was then solvated
with TIP4P water. We defined any protein-atom which is
within 0.5 nm of the center of mass of the ligand in its native
binding pose as belonging to the ’binding pocket’. Counterions
were added to ensure electrical neutrality. To be consistent
with the work of Shaw and co-workers,13 sodium chloride
(NaCl) salt was added to a concentration of 150 mM to
maintain the medium at physiological conditions. Then the
entire solvated system was run in the NPT ensemble at a
constant pressure of 1 bar and a constant temperature of 300 K,
keeping the position of ligand restrained in its native binding
pose. Nose Hoover Thermostat26,27 and Parinello-Rahman
barostat28 were employed to maintain temperature and
pressure respectively to their desired average value. The
dimension of the equilibrated box was 7 nm × 7 nm × 8
nm. Periodic boundary conditions were applied in all three
directions, and the Lennard-Jones (LJ) interactions were
smoothly switched off at 1.0 nm. Particle-mesh ewald
(PME)29,30 summation was used for the long-range electro-
static interactions. The PME parameters used a real space cutoff
distance of 1.4 nm and an interpolation order of 6, with a
maximum fast Fourier transform grid spacing of 0.12 nm. The
SETTLE31 algorithm was used to keep the water molecules
rigid. The LINCS32 algorithm was used to keep all the bonds
with hydrogen rigid. The system was evolved with a time step
of 2 fs. All atomistic simulations were carried using the software
package GROMACS4.5.4.33

2.2. Free Energy Simulation. One of our aims is to
compute the free energy landscape for the approach of the
ligand to its native binding pose in the protein. To accomplish
this we employ the umbrella sampling technique as
implemented in GROMACS4.5.4. The scalar distance d
between the center of masses (COM) of the binding pocket
and the ligand is treated as a preliminary reaction coordinate for
the purpose of calculating the free energy profile. In order to
generate reasonable initial configurations for each individual
umbrella-sampling windows, we have employed Steered
Molecular Dynamics (SMD) simulations. In this protocol, we
start with the configuration of ligand in its native pose in the
binding pocket. Then we slowly pull the ligand away from the
pocket along d by attaching a spring of force constant 1000 kJ/
mol/nm2. We employ a pulling speed of 0.0005 nm/ps which is
slow enough to ensure that the ligand spends significant time at
different d. Then from the saved SMD trajectories, the starting
configurations for each of the umbrella-sampling windows were
chosen based on the respective pocket-ligand distance d which
ranges from 0.1 nm (ligand closest to binding pocket) to 1.5
nm (ligand just out of pocket) at a spacing of 0.05 nm
(produced using a higher umbrella-potential force constant
(4500 kJ/mol/nm2)). Each of the configurations corresponding
to individual umbrella-sampling windows was run for 10 ns in
the NVT ensemble at 300 K. The average temperature was
maintained at the desired value of 300 K by using a Nose

Hoover thermostat.26,27 Our principal aim is to determine the
free energy barriers that might be encountered by the ligand as
it moves into the binding pocket, and not to compute the
absolute free energy of binding. The latter calculation would
require a significantly more extensive exploration of phase
space, including a comparison to the unbound state, which is
not available from our current simulation protocol. The
restricted nature of the present calculation is essential in
reducing the required computation time to manageable
proportions.
The extent to which pocket reorganization contributes to the

free energy surface as the ligand approaches the pocket was
investigated by imposing position-restraining harmonic poten-
tials with force constant equal to 1000 kJ/mol applied to each
of the X, Y, and Z coordinates of each of the atoms constituting
the binding pocket as implemented within Gromacs4.5.4. In the
presence of these position restraints, all umbrella sampling
simulations were repeated using the same protocol as described
previously for an unrestrained pocket.
Continuum solvent models are unable to treat desolvation.

Thus, it is of interest to see if such models predict the
intermediate free energy barrier observed in the full MD
simulations with explicit water. We performed umbrella
sampling simulations using the Generalized Born implicit
solvent model,34,35 as implemented within Gromacs4.5.4. The
OBC36 algorithm was used for computing the Born Radii and a
simple ACE type approximation due to Schaefer et al.37 was
used for computing the nonpolar part of the solvation free
energy. The Wham38 algorithm (http://membrane.urmc.
rochester.edu/content/wham) was used to reconstruct the
free energy landscape.

2.3. Analysis of Pocket-Water Profile. One of the main
focuses of the current work is to determine to what degree
desolvation of water molecules in the binding pocket
contributes to the free energy barriers encountered by the
ligand in approaching its binding pose in the pocket. To
accomplish this, we must first decide on a consistent definition
of pocket-water to be used for all the umbrella-sampling
windows. For this purpose, we define any water molecule
whose oxygen atom is within 0.5 nm of center of mass of the
binding pocket to be a pocket-water molecule (based on the
radial distribution function). We then use umbrella sampling
techniques to compute the free energy change for bringing the
COM of the ligand from bulk solution to a separation d from
the COM of the pocket using umbrella sampling.
Umbrella sampling with d constrained is straightforward, but

constraining the number of pocket-water requires some
ingenuity as described in the literature where the number of
water molecules N in the pocket is approximated by a
continuous function.39−41 Based on an analysis of the pair-
correlation function of water molecules with respect to the
position of the center-of-mass of the pocket, we count all water
molecules within an effective cutoff distance r0 = 0.5 nm of the
center of mass of the pocket as “pocket water molecules”. We
then take the coarse-grained water occupancy number N in the
pocket to be
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where r is the distance of the oxygen atom of each water
molecule from center of mass position, rcom, of the binding
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pocket, that is r = |rW − rcom|, and the summation runs over all
water molecules in the simulation box. As shown in Figure 2,

this coarse-grained representation of the water occupation
number reproduces the time profile of ‘atomistic‘ water number
reasonably well and makes it possible to apply restraints to bias
the pocket-water occupancy in an umbrella sampling simulation
of the water occupancy number. With this definition, the
pocket water occupancy is a continuous variable that adopts
noninteger values, and its corresponding probability distribu-
tion P(N) (and free energy G(N) = −kBT ln P(N)) becomes a
continuous function.
We determine G+(N;d), the free energy corresponding to N

water molecules being in the pocket when the COM of the
ligand is at a separation d from the COM of the pocket, by
performing umbrella sampling simulations where both the
ligand-pocket distance d and the number of pocket-water N are
constrained. Umbrella sampling with constraints on the two
continuous reaction coordinates d and N allows us to
determine G+(N;d). The special case of G+(N;d = ∞), the
free energy as a function of N in the ligand-f ree pocket, requires
umbrella sampling only along the single dimension N. As
Hummer has shown,41 this is accomplished using harmonic
restraints U = 0.5Kw(N−nr)2 in which nr is the reference water
number. We first carry out multiple independent equilibrium
simulations to sample the water-number in a ligand-free pocket.
Then using the snapshots in the trajectory as initial coordinates,
we performed umbrella sampling simulations in each of 16
windows in the range of 0 to 8 at a separation of 0.5 with a
spring constant Kw = 2.5 kcal/mol. Each simulation was run for
2 ns. and the last 1.5 ns of each trajectory was used for
computing the free energy in a ligand-free pocket as a function
of N using WHAM.
The computation of the free energy G+(N;d) for relevant

values of d requires umbrella sampling along both d and N
resulting in a two-dimensional potential of mean force. To
minimize the computational expense of such simulations, we
restricted the calculations for d to three windows at a separation
of 0.10 nm in the range d = 0.75 to 0.95 nm, the range of
ligand-pocket separations corresponding to the intermediate
free energy barrier, and we restricted the calculations for N to
20 windows of width 0.250 in the range from N = 0 to 4.75,
observed to be the range associated with this range of d. We
adopt harmonic restraints U = 0.5Kw(N−nr)2 + 0.5Kd(d−dr)2
with Kd = 478 kcal/mol/nm2 and Kw = 2.5 kcal/mol. The values
of Kd and Kw were chosen such that the distributions of the
corresponding reaction coordinates around the desired d and w

are Gaussian in nature and there is significant overlap among
adjacent windows. Thus, in the twodimensional reaction space
there are a total of 3 × 20 = 60 windows. We use the snapshots
from the previous umbrella sampling simulation along d as the
initial configurations. Each of 60 windows was run for 2 ns, and
the last 1.5 ns of each of trajectory were used for computing the
two-dimensional free energy as a function of N and d using
WHAM. The latest version of PLUMED software42 was used
for this part of the analysis.

2.4. WaterMap Analysis. The WaterMap technique7,9

allows us to thermodynamically characterize the principal
hydration sites in the pocket as a function of the ligand-pocket
distance, d. Based on the computation of relative free energies
and inhomogeneous solvation theory,43,44 the WaterMap
technique identifies water-clusters of relatively high free energy
which when displaced by the ligand significantly contribute to a
favorable ligand-binding affinity. We perform independent
WaterMap calculations using the final protein configuration
from each umbrella-sampling window (equilibrated for 10 ns)
when the ligand distance is restrained at d = 0.95 nm (just
before the ligand overcomes the barrier and 0.75 nm (just after
the ligand overcomes the barrier). The high occupancy
hydration sites (of radii 1 nm) in the binding pocket were
identified, the waters were clustered, and their associated
enthalpies and entropies of displacement are calculated using
inhomogeneous solvation theory from MD runs (of 2 ns
duration) in the NPT ensemble, with the heavy atoms of the
protein harmonically restrained at there respective positions as
determined from umbrella simulations in d-windows.

3. RESULTS AND DISCUSSION
3.1. Interplay of Free Energy Profile and Pocket-

Water. The free energy profile, or PMF, of the binding
complex as a function of the distance, d, is shown in Figure 3

(left-hand scale). The distance d is a simple reaction coordinate
containing no orientational bias that provides some insight into
the binding process yet, as is well-known, the choice of reaction
coordinate is critical and the results will be sensitive to its
choice. As we shall see, it will be necessary to augment this
choice at the very least with the solvent occupation number.
Nevertheless, as shown below, the choice of d generates some
interesting observations. We find for example that as the ligand

Figure 2. Comparison performance of the coarse-grained representa-
tion of water-number to reproduce time-profile of actual number of
water.

Figure 3. Free energy profile (PMF) of ligand-approach (red curve,
left scale) and profile of number of pocket-water (black curve, right
scale) as a function of the distance d between the pocket and ligand
centers of mass. Inset: The free energy profile is zoomed in between d
of 0.75 and 0.95 nm to show the free energy barrier due to dewetting.
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approaches the pocket from d = 1.5 nm to d = 0.95 nm, the free
energy profile remains almost flat. However, as shown in the

inset of Figure 3, as the ligand passes from d = 0.95 nm to d =
0.75 nm, it has to surmount a free energy barrier of more than
4.0 kcal/mol at an intermediate ligand-pocket distance. We also
observe a weak shoulder at d = 0.65 nm, and we find this is
mainly steric in origin resulting from the pocket-ligand
interaction. At closer separations d < 0.75 nm, a steep decrease
in free energy is observed before the ligand settles into a deep
global free-energy minimum at d = 0.4 nm. At short distances, d
< 0.4 nm, the free energy increases, mainly due to steric
repulsions between pocket-wall and ligand. We have checked
the reliability of the PMF landscape and the corresponding
pocket-water profile, by repeating the same umbrella sampling
simulation for a different set of initial configurations. As
depicted in Figures S1 and S2 of the Supporting Information,
the two different sets of umbrella sampling simulation results
are in reasonable mutual agreement. The approximate agree-
ment of two simulations does not of course provide a rigorous
estimation of the error, but it does suggest that there are not
any immediately obvious major sampling problems. We have
also provided the convergence plot of number of pocket-water
profile along with the measure of standard deviation from
average profile in Figure S6 of the Supporting Information.
The contribution of desolvation to large binding affinities in

other complexes has been explored before.6,41,45 We investigate
the desolvation of the binding pocket on ligand approach and
determine its contribution to the free energy. Figure 3 (right-
hand scale) shows that the number of water molecules present
in the kinase binding pocket as a function of d first decreases
from 6, when the ligand is out of the pocket, to 3, when it is at
the barrier, to essentially zero, right after it passes the barrier,
and then increases slightly as some water molecules reenter the

pocket when the ligand takes up its binding pose. Figure 4
shows representative snapshots (which are also similar to final
snapshots of each windows) of the distribution of water before
and after the ligand overcomes the barrier.
However, at smaller ligand-pocket distances, the number of

pocket-water molecules increases slightly until a relatively sharp
rehydration takes place at distances close to the position of the
free-energy minimum. These water molecules then occupy
positions no longer occupied by the invading ligand.
Interestingly, Figure 3 (right-hand scale) shows that desolvation
gives rise to an intermediate free-energy barrier. In the next
subsection, we will analyze the implications of desolvation in
the free energy profile.

3.2. Role of Pocket Dewetting in the Free Energy
Profile. We determine the contribution of desolvation to the
free energy barrier that the ligand must overcome in the
process of binding to the pocket using the umbrella sampling
strategy introduced by Hummer et al.41 The Gibbs free energy
G(N;d = ∞) shown in the top panel of Figure 5 exhibits a
strong monotonic decrease with N between N = 0 and 8 water
molecules. The minimum of G(N;d = ∞) gives the average
number of pocket-water molecules, N̅ in the ligand-free pocket.

Figure 4. Representative snapshots of pocket-water at ligand-pocket
distances corresponding to d = 0.95 and 0.75 nm. The average density
map of the binding pocket is shown in pink, the waters are shown in
blue color with space-filling representation, and the ligand is shown in
silver color with licorice representation.

Figure 5. Top: Free energy G(N;d = ∞) in kcal/mol as a function of
number of pocket water (N) (which is effectively similar to the case of
a ligand-free pocket). (The free energy G(N;d = ∞) was obtained
from umbrella sampling simulation using water-number as the reaction
coordinate as described in the Method section.) Bottom: The
dependence of the free energy G(N;d) on the number of pocket-
waters, N, and on the ligand-pocket separation d in the range of
intermediate free energy barrier. The blue basins correspond to the
free energy minima appearing on either side of the intermediate free-
energy barrier. The average numbers of water molecules, N̅, at d = 0.75
nm (after overcoming the barrier) is ≈0 and at N̅ at d = 0.95 nm
(before overcoming the barrier) is ≈3. The two red lines provide the
changes in desolvation free energies for protein−ligand separations
relative to the case when the ligand is outside the pocket just prior to
and just after surmounting the intermediate free energy barrier.
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From this we can compute ΔG for the transition from N̅ to N,
corresponding to partial desolvation of the ligand-f ree pocket.
The bottom plate of Figure 5 shows the free energy profile
G+(N;d) as a function of N and d, in the neighborhood of the
intermediate free energy barrier. We clearly see the presence of
two basins before and after the intermediate free energy
maximum. At d = 0.95 nm (just before overcoming the barrier)
the average water occupation number is N̅ ≈ 3, and at d = 0.75
nm (just after overcoming the barrier) it is N̅ ≈ 0. Thus, for a
given ligand-pocket distance, we can read from the graph in the
bottom plate the average number of water molecules in the
pocket with the ligand present, and then from the top plate the
corresponding value of ΔG for partial desolvation of the ligand-
free pocket to that same number of water molecules. This
allows us to estimate the desolvation free energy required for
the ligand to replace the water molecules in a ligand-free pocket
upon binding. From Figure 3, we estimate the desolvation free
energy change accompanying the change in ligand-pocket
distance from d = 0.95 → d = 0.75 nm (which are the position
before and after the intermediate free-energy barrier
respectively) to be ≈3.7 kcal/mol, a result almost equal to
the total free energy cost (4 kcal/mol) for the ligand to
surmount the barrier on going from d = 0.95 → d = 0.75 nm.
This suggests that the intermediate free energy barrier
encountered by the ligand is mainly due to pocket-desolvation,
and that pocket-desolvation is thus a key step in the kinetics of
ligand binding. Both these one-dimensional and two-dimen-
sional free energetics of pocket-water are in reasonable
agreement with an independently performed pocket-water
free energy analysis, using different initial configuration
(Figures S2 and S3 in the Supporting Information). We have
also found that extending the simulation length of each window
from 2 to 5 ns does not change the result significantly.
The above-mentioned three pocket-waters corresponding to

ligand-pocket separation of d = 0.95 nm are mainly stabilized in
the pocket by hydrogen bonding interactions. A hydrogen
bonding analysis involving these three pocket waters (using a
distance cutoff of 0.3 nm and angle cutoff of 20 degrees) reveals
that the contribution comes in two forms: water−water
hydrogen bonding interaction among these three closely seated
waters and hydrogen bonding between water and certain polar
amino residues constituting the binding pocket. A study of the
hydrogen bonding occupancy over the simulation trajectory
corresponding to the d = 0.95 nm identifies three amino acid
residues which form considerably stable hydrogen bonds with
these water molecules through their polar side chain groups
located at the proximity of the water molecules. As illustrated in
Figure S7 in the Supporting Information, these three amino
acid residues participating in protein−water hydrogen bonds
are LYS36 through its side chain amino group (acting as
hydrogen bond donor), GLU46 through its side chain
carboxylate group (acting as hydrogen bond donor), and
THR74 through its side chain hydroxyl group (acting as
hydrogen bond acceptor). Even though there are other
transient hydrogen bonds between pocket amino residues and
three waters, analysis of hydrogen bonding occupancies shows
that these three particular hydrogen bonds between pocket and
water make most significant contributions in stabilizing those
water molecules.
3.3. WaterMap Analysis of Pocket-Waters and Its

Relation to Free Energy Barriers. The use of WaterMap to
understand ligand association and dissociation barriers has been
pioneered in a series of papers by Pearlstein et al.19−21 over the

past several years. These papers correlate water displacement
upon ligand binding (or resolvation upon unbinding) with the
on and off rates of ligand binding, respectively, in a number of
different types of receptor systems. In the present paper, we
build on ideas in this work but utilize descriptors based on
water displacement free energies, calculated from WaterMap,
that are different in their details from those proposed in those
references. Specifically, we evaluate water displacement as a
function of a proposed reaction coordinate and identify the
association barrier as the free energy cost of water displacement
at an approximate transition state, as opposed to utilizing water
displacement enthalpies from the bound ligand pose, as is done
in the work by Pearlstein et al. As was discussed above, we do
not investigate the relationship of water resolvation to the off-
rate, as our approach to binding kinetics exploits calculation of
the off-rate from the on-rate and the equilibrium binding
constant.
We explore the possibility of using the recently developed

WaterMap method6 to determine the position and approximate
magnitude of the free energy barrier, by analyzing the hydration
of the pocket at two different pocket-ligand distances d, right
before (d = 0.95 nm) and right after (d = 0.75 nm) the ligand
overcomes the barrier. If successful, this method would provide
a relatively inexpensive way to predict the position and
magnitude of the barrier arising from desolvation. The
WaterMap method predicts regions of high-water density
(referred to as ’hydration sites”) and rank-orders them based on
the relative free-energies of the water-clusters. The two
WaterMap snapshots depicted in Figure 6 represent the
principal hydration sites before and after the ligand overcomes
the free energy barrier, respectively.
Based on this WaterMap analysis, we find that before the

ligand passes over the intermediate barrier from the right, the

Figure 6. Snapshot from WaterMap analysis showing principal
hydration sites near the binding pocket before overcoming the free
energy barrier (corresponding to d = 0.95 nm) and after overcoming
the barrier (corresponding to d = 0.75 nm).
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water hydration sites have a total free energy of 5.5 kcal/mol,
but immediately after passing over the barrier no hydration sites
are observed in the binding pocket (at d = 0.75 nm),
independently confirming the complete desolvation observed in
the umbrella sampling simulation. The water map analysis
suggests there is a desolvation free energy cost of 5.5 kcal/mol,
in fairly good agreement with the 4 kcal/mol estimate obtained
from free energy simulation. WaterMap thus seems to provide
an inexpensive tool for semiquantitatively predicting the
existence of free energy barriers encountered by the ligand as
it approaches or leaves the binding pocket.
3.4. Does Pocket-Reorganization Contribute to the

PMF? One might wonder how much the reorganization of the
pocket contributes to the intermediate barrier seen in the PMF.
To investigate this, we have repeated the computation of the
PMF using position restraints on each of the atoms in the
binding pocket in order to prevent the pocket from
reorganizing. In Figure 7, a similar intermediate free energy

barrier appears even when reorganization of the pocket is
restrained suggesting that this intermediate barrier does not
result from pocket reorganization. Interestingly, the free energy
of the binding pose is lower for restrained pocket than for the
unrestrained pocket probably because there is less steric
hindrance to the ligand. In addition we also have found that
the radius of gyration of the binding pocket increases at most
by a few angstroms when the ligand is moved from bulk
solution to the position of the intermediate free energy barrier,
a change that is not significant. Therefore, we believe that the
major contribution to the intermediate free energy barrier
comes from the free energy of desolvation and not from
reorganization of the pocket.
3.5. A Continuum Solvent Model Does Not Give the

Intermediate Free Energy Barrier. We suspect that
continuum solvation models will not be able to account for
the intermediate free energy barrier if this barrier is due, as we
claim, to desolvation, because such models cannot account for
desolvation accurately when an atomic level description of
individual water molecules, sensitive to the size of the particles,
is important. Many popular existing drug-binding scoring
functions like MM/GBSA or MM/PBSA are based on implicit
solvent models. We repeated the computation of the PMF
using a popular continuum solvent model GBSA.34,35 Figure 8
compares the PMFs for GBSA with that of explicit water. We

find that although the position of the well corresponding to the
binding pose is essentially the same for GBSA and explicit
water, GBSA does not predict the intermediate free energy
barrier, as we suspected, and also overstabilizes the overall
ligand binding. The result is reminiscent of a previous study by
Mondal et al.46 where the implicit solvent description of free
energy of association of a pair of beta-peptides was found to be
overstabilized compared to that of explicit solvent simulation,
even though there was agreement in the location of free-energy
minima. In an earlier study, Berne and co-workers47 also found
that the continuum solvent description of a free energy
landscape of the hairpin part of G-protein overweights many
non-native configurations.The free energy profile in implicit
solvent has been verified against independent runs (Figure S5
of the Supporting Information).

3.6. Estimates of the Second-Order Rate Constant for
Ligand Binding. The kinetics of ligand binding involves the
diffusion of the ligand up to a doorway configuration followed
by transitions over one or more free energy barriers. In the
foregoing we showed that the final barrier encountered before
the ligand binds is to a large extent due to desolvation of the
pocket. We were able to estimate the activation free energy for
this transition assuming that the distance between the center-
of-mass of the pocket and the center-of-mass of the ligand is a
good reaction coordinate. We also showed that this distance is
strongly correlated with the number of pocket waters so that
strictly speaking the number of pocket water molecules should
be included in the reaction coordinate. It is of interest to see if
we can make a reasonable estimate of the second-order rate
constant for binding based on diffusion up to and activation
over this desolvation barrier. What follows is a very rough
analysis of the kinetics to provide guidance for future
theoretical models.
Consider the following simple kinetic scheme for this binding

process

+ ⇀
↽ ⎯⎯⎯

′

A B AB
k

kd

d

⇌AB P
kf

and its associated schematic free energy diagram presented in
Figure 9.
Here A is the ligand, B is the protein, P is the protein−ligand

complex in its binding pose, kd ≈ 4πκ(DA + DB)σ is the
diffusion controlled rate constant for the ligand to arrive at the

Figure 7. Comparison of free energy profile of ligand approach to the
binding pocket of kinase in the absence of restraint on the pocket
(original result) with that in the presence of restraint on the pocket.

Figure 8. Comparison of free energy profile of ligand approach to the
binding pocket of kinase in implicit solvent with that in explicit water.
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doorway state located at a separation σ with relative diffusion
constant (DA + DB), κ is a steric factor taking into account the
probability that the ligand and receptor will be correctly
aligned, kd′ is the rate constant for the doorway complex to fall
apart, and kf is the rate constant for the doorway complex to
transition to the final binding pose of the protein−ligand bound
state. Treating the doorway complex in the steady-state
approximation yields the effective second-order rate constant
for binding as

=
+ ′

=
′

+ ′
k

k k

k k

k k

k k
k

( / )

1 ( / )r
f d

f d

f d

f d
d

In this expression the rate constants kd, kd′, and kf are
respectively second-order, first-order, and first-order rate
constants.
The rate constant, kf, for the final binding step would then be

described by an activation free energy εf
‡ and frequency factor

Af and the rate constant for the dissociation of the doorway
complex, kd′, would be described by an activation free energy εd

‡

and frequency factor Ad′. Because these two rate constants
correspond to leaving the same well by two different paths, we
assume that Ad′ ≈ Af. This would be true for a simple one-
dimensional reaction coordinate in the transition state
approximation, and we assume this here. When these
approximations are substituted in the preceding equation we
find

≈
+

′

′

β ε ε

β ε ε

− −

− −

‡ ‡

‡ ‡k
e

e
k

[ 1]
r d

( )

( )

f d

f d

As might have been expected from the free energy diagram, the
overall rate constant for binding depends on the difference in
activation energies (εf

‡ − εd′‡) and not only on the activation
energy εf

‡ to go from the doorway state to the bound state.
The second-order rate constant for the binding of Dasatinib

was estimated by Shaw and co-workers.13 They simulated an
aqueous solution of one kinase molecule and four ligand
molecules (at a molar concentration of 0.007 M) and were able
to determine the time it took for a ligand to completely bind
and from this made the following rough estimate of the second-
order rate constant for binding, k2 ≈ 2 × 106 s−1 M−1. Since this
estimate is based on only one successful trajectory, it contains
significant uncertainties, and certainly experimental data is
needed to validate this estimate. Nevertheless, we shall regard it
as a reference for comparison purposes and assume that kr = 2
× 106 s−1 M−1. In order to proceed we need to estimate the

diffusion controlled rate constant kd. The expression 4π(DA +
DB)σ without the steric factor κ is for two spheres freely
diffusing until they touch, but this will considerably over-
estimate the rate constant for the molecular system where the
molecules must be correctly aligned before they can react. The
result for two spheres will thus provide an approximate upper
bound for kr. To determine this upper bound we compute the
mean square displacement of Dasatinib in water from MD
simulations, and thus find that its translational diffusion
coefficient is DA = 5 × 10−10 m2/s. Assuming that the diffusion
coefficient of the kinase is smaller, and taking σ = 10−9 m, we
estimate that kd = 3.8 × 109 s−1 M−1. Because the geometries of
most reactant encounters will not lead to successful binding
events such steric effects will reduce this estimate considerably
even by as much as 2 orders of magnitude. With estimates of kd
(omitting the steric factor) and kr we can invert the above
equation for kr and thus find that (εf

‡ − εd′‡) ≈ 4.5 kcal/mol.
However, from our PMF we estimate that (εf

‡ − εd′‡) ≈ 2.2
kcal/mol, a result consistent with the rate constant being ≈108
M−1. Taking κ = 2 × 10−2 would give kr = 2 × 106 s−1 M−1, the
result of Shaw et al. This rough estimate shows that the
desolvation barrier determined in this paper is consistent with
full scale MD simulations.

4. CONCLUSIONS
In this article, we have determined, in atomistic detail, the
existence of an intermediate free energy barrier encountered by
the kinase-inhibitor Dasatinib, a potent anticancer drug, as it
approaches the receptor src-kinase. This was accomplished by
introducing two reaction coordinates, namely the ligand-pocket
separation and the water occupation number and by perform-
ing free energy umbrella sampling simulations to determine the
free energy surface as a function of these two reaction
coordinates, we showed that the intermediate free energy
barrier is mainly a result of desolvation of the binding pocket
on the approach of the ligand to its binding pose. This barrier is
close to the position of the ligand’s native-binding pose.
Desolvation thus seems to play an important role in the
thermodynamics and kinetics of binding. Shaw and co-workers
provided a pictorial view of the entire binding process of
Dasatinib to its native binding pocket and also observed the
presence of an intermediate shell of water molecules prior to
binding to the pocket. Our study provides a free energy analysis
of the role of the water encountered by the ligand in
approaching its binding pose and shows that the free energy
cost for the ligand to move from bulk to the position of the
intermediate free energy barrier is comparable to the free
energy cost for complete desolvation of the ligand-free pocket.
Therefore, water molecules in the pocket act as a significant
barrier to ligand binding. We find that the intermediate free
energy barrier is the same for the pocket-restrained system as it
is for the restraint-free system, a result that suggests that this
barrier is not due to pocket reorganization but due to
desolvation of the pocket. A continuum model like GBSA
correctly locates the position of the free energy minimum
corresponding to the binding pose but predicts an over-
stabilized binding pose.
This paper also highlights the underlying contribution of the

desolvation free energy barrier to the kinetics of the kinase-
ligand binding. Surprisingly, a simple kinetic model for the on
rate constant in which the ligand diffuses up to a doorway state
and then surmounts the desolvation free energy barrier was
found to be consistent with microsecond long simulations of

Figure 9. Schematic of potential energy surface corresponding to this
kinetic scheme. kf and εf

‡ are the rate constant and corresponding
activation barrier for the transition from the doorway state to the final
binding pose. kd′ and εd

‡ are the rate constant and activation barrier for
the dissociation of the doorway complex into free ligand and protein.
kd is the diffusion controlled rate constant for the ligand and protein to
diffuse to the doorway state.
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the ligand binding kinetics for this system [see ref 13], despite
the fact that a rigorous treatment of the kinetics will require a
multidimensional reaction coordinate in which the state of the
cavity water is included. Nevertheless, the simple model
suggests that it may be possible to use data from free energy
analysis together with a more extensive diffusion based doorway
state model to predict on and off rate constants for ligand
binding in at least this class of protein−ligand systems. This
would greatly increase the throughput of drug evaluation
protocols and would allow the bypassing of very long computer
simulations.

■ ASSOCIATED CONTENT
*S Supporting Information
Effect of different independent initial configurations on free
energy profile as a function of ligand-pocket separation in
explicit water, in implicit solvent, pocket-water profile, one-
dimensional PMF as a function of water number in a ligand free
pocket, two-dimensional PMF as a function of water number
and ligand pocket separation, the convergence plot of pocket
water profile and the illustration of hydrogen bonding
interaction of key water molecules with the proximal amino
acid residues. Also provided the detailed parameter tables for
ligand Dasatinib as used in the paper. This material is available
free of charge via the Internet at http://pubs.acs.org.

■ AUTHOR INFORMATION
Corresponding Author
*Phone: 212-854-2186. E-mail: bb8@columbia.edu.
Notes
The authors declare the following competing financial
interest(s): B.J.B. is a consultant to Schrodinger, Inc. and is
on their Scientific Advisory Board. R.A.F. has a significant
financial stake in, is a consultant for, and is on the Scientific
Advisory Board of Schrodinger, Inc.

■ ACKNOWLEDGMENTS
This work was supported by grants from the National Institutes
of Health [NIH-GM4330 (to B.J.B.)] and by the National
Science Foundation through [via Grant No. NSF-CHE-
0910943]. We gratefully acknowledge the computational
support of the Computational Center for Nanotechnology
Innovations (CCNI) at Rensselaer Polytechnic Institute (RPI).
This work used the Extreme Science and Engineering
Discovery Environment (XSEDE), which is supported by
National Science Foundation grant number OCI-1053575.
B.J.B. is a consultant to Schrodinger, Inc. and is on their
Scientific Advisory Board. R.A.F. has a significant financial stake
in, is a consultant for, and is on the Scientific Advisory Board of
Schrodinger, Inc.

■ REFERENCES
(1) Massova, I.; Kollman, P. A. Combined Molecular Mechanical and
Continuum Solvent Approach (MM-PBSA/GBSA) to Predict Ligand
Binding. Perspect. Drug Discovery Des. 2000, 18, 113−135.
(2) Moble, D.; Dill, K. A. Binding of Small-molecule Ligands to
Proteins: ″What You See″ is Not Always ″What you Get″. Structure
2009, 17, 489−498.
(3) Gilson, M. K.; Zhou, H. X. Calculation of Protein-Ligand Binding
Affinities. Annu. Rev. Biophys. Biomol. Struct. 2007, 36, 21−42.
(4) Guvench, O.; MacKerell, A. D. J. Computational Evaluation of
Protein-small molecule Binding. Curr. Opin. Struct. Biol. 2009, 19, 56−
61.

(5) Copeland, R. A.; Pompliano, D. L.; Meek, T. A. Drug-target
Residence Time and its Implications for Lead Optimization. Nat. Rev.
Drug Discovery 2006, 5, 730−739.
(6) Young, T.; Abel, R.; Kim, B.; Berne, B. J.; Friesner, R. A. Motifs
for molecular recognition exploiting hydrophobic enclosure in protein-
ligand binding. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 808−813.
(7) Abel, R.; Young, T.; Farid, R.; Berne, B. J.; Friesner, R. A. Role of
The Active-site Solvent in The Thermodynamics of Factor Xa ligand
binding. J. Am. Chem. Soc. 2008, 130, 2817−2831.
(8) Baron, R.; Setny, P.; McCammon, J. A. Water in Cavity-Ligand
Recognition. J. Am. Chem. Soc. 2010, 132, 12091−12097.
(9) Wang, L.; Berne, B. J.; Friesner, R. A. Ligand Binding to Protein-
binding Pockets with Wet and Dry Regions. Proc. Natl. Acad. Sci.
U.S.A. 2011, 108, 1326−1330.
(10) Mondal, J.; Morrone, J. A.; Berne, B. J. How Hydrophobic
Drying Forces Impact the Kinetics of Molecular Recognition. Proc.
Nat. Acad. Sci. U.S.A. 2013, 110, 13277−13282.
(11) Setny, P.; Baron, R.; Kekenes-Huskey, P. M.; McCammon, J. A.;
Dzubiella, J. Solvent Fluctuations in Hydrophobic Cavity-ligand
Binding Kinetics. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 1197−1202.
(12) Dror, R. O.; Pan, A. C.; Arlow, D. H.; Borhani, D. W.;
Maragakis, P.; Shan, Y. Pathway and Mechanism of Drug Binding to
G-protein-coupled Receptors. Proc. Natl. Acad. Sci. U.S.A. 2011, 108,
13118−13123.
(13) Shan, Y.; Kim, E. T.; Eastwood, M. P.; Dror, R. O.; Seeliger, M.
A.; Shaw, D. E. How Does a Drug Molecule Find its Target Binding
Site? J. Am. Chem. Soc. 2011, 133, 9181−9183.
(14) Zhang, J.; Yang, P.; Ullrich, A. Targeting Cancer with Small
Molecule Kinase Inhibitors. Nat. Rev. Cancer 2009, 9, 28−39.
(15) Gschwind, A.; Fisher, O.; Gray, N. The Discovery of Receptor
Tyrosine Kinases: Targets for Cancer Therapy. Nat. Rev. Cancer 2004,
4, 361−370.
(16) Getlik, M.; Grütter, C.; Simard, J. R.; Klüter, S.; Rabiller, M.;
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