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NADH oxidase-dependent CD39 expression by
CD8þ T cells modulates interferon gamma
responses via generation of adenosine
Aiping Bai1, Alan Moss1, Sonja Rothweiler1, Maria Serena Longhi1, Yan Wu1, Wolfgang G. Junger2

& Simon C. Robson1

Interferon gamma (IFNg)-producing CD8þ T cells (Tc1) play important roles in immuno-

logical disease. We now report that CD3/CD28-mediated stimulation of CD8þ T cells to

generate Tc1 cells, not only increases IFNg production but also boosts the generation of

reactive oxygen species (ROS) and augments expression of CD39. Inhibition of NADPH

oxidases or knockdown of gp91phox in CD8þ T cells abrogates ROS generation, which in turn

modulates JNK and NFkB signalling with decreases in both IFNg levels and CD39 expression.

CD39þCD8þ T cells substantially inhibit IFNg production by CD39�CD8þ T cells via the

paracrine generation of adenosine, which is operational via adenosine type 2A receptors.

Increases in numbers of CD39þCD8þ T cells and associated enhancements in ROS signal

transduction are noted in cells from patients with Crohn’s disease. Our findings provide

insights into Tc1-mediated IFNg responses and ROS generation and link these pathways to

CD39/adenosine-mediated effects in immunological disease.
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A
daptive immune cells, inclusive of CD4þ and CD8þ T
cells, play important role in maintaining immune home-
ostasis. When perturbed, these cells become pathogenetic

and release large amounts of proinflammatory cytokines, for
example, interferon g (IFNg)1,2, which is recognized as one of the
key inflammatory mediators in human immune diseases.

Crohn’s disease, and other forms of inflammatory bowel
disease, are chronic, immune-mediated intestinal disorders,
characterized by excessive T-cell responses in genetically
susceptible individuals3. Upon activation induced by luminal
antigens, for example, from pathogenic bacteria, immune cells of
patients with Crohn’s disease produce substantial levels of
proinflammatory cytokines including IFNg, which further
provoke inflammatory responses4,5. Indeed, IFNg has multiple
proinflammatory properties, that is, triggering epithelial apoptosis
and barrier dysfunction, augmenting immune cell activation and
inducing tissue damage6,7. Inhibiting IFNg production has been
shown to improve the symptoms of Crohn’s disease6 and to
decrease inflammatory markers in some studies8,9.

CD8þ T cells are one of the major adaptive immune cells.
Type 1 CD8þ T cells (Tc1) have been reported to release high
levels of IFNg (ref. 10), and have been implicated in pathogen
clearance, immune diseases and in antitumor immunity11,12.
Recent data have shown that together with CD4þ T cells CD8þ

T cells participate in immune responses of Crohn’s disease13,14.
Intriguingly, CD8þ T cells in Crohn’s disease are also capable of
producing substantial proinflammatory cytokines including IFNg
(ref. 13).

Reactive oxygen species (ROS) have been shown to modulate
CD4þ T-cell function and proliferation15, which are likewise
considered to be key factors in pathogenesis of immune diseases
such as Crohn’s disease3. Little is known as to how ROS might
regulate CD8þ T-cell responses. Moreover, whether such cellular
signals modulate IFNg production of Tc1 cells in Crohn’s disease
remains largely unexplored.

Our prior studies indicate that murine experimental colitis is
exacerbated by deletion of CD39 and further suggest that
gene polymorphisms are associated with inflammatory bowel
disease in humans16. CD39 (also termed ecto-nucleoside
triphosphate diphosphohydrolase-1 or E-NTPDase1) is the
dominant vascular and immune cell (for example, regulatory
CD4þ T cell) ectonucleotidase, responsible for sequentially
hydrolysing extracellular ATP and ADP to AMP; the latter
is ultimately degraded to adenosine by CD73/ecto-50-
nucleotidase17,18. Adenosine is known to suppress immune
responses through type 1 purinergic receptors, chiefly the
adenosine type 2 A (A2A) receptor19,20. Recently, we have also
noted that, in humans, CD39 expression in CD4þ T cells
distinguishes regulatory T lymphocytes and other effector
memory CD4þ T-cell populations. The latter cells, seemingly
pathogenic or activated cell populations, have the capacity to
secrete proinflammatory cytokines inclusive of IFNg and
interleukin (IL)-17 (refs 21,22).

To date, the properties and functionality of CD39 on human
CD8þ T cells and patterns of expression in immune diseases,
such as Crohn’s disease, have not been fully explored, and are
therefore a further focus of this study. Here we demonstrate that
CD39 labels those CD8þ T cells, which are high-level
IFNg-producing cells, and yet also exert suppressive functions.
We also note that CD39 and IFNg expression patterns in CD8þ

T cells are regulated by CD3/CD28 signal cascades, inclusive of
NADPH oxidases (NOX)/ROS, as well as downstream compo-
nents of signalling involving c-Jun N-terminal kinase (JNK) and
nuclear factor kappa B (NFkB). We further show that regulation
of ROS signalling and heightened generation of adenosine can
limit Tc1 effector cell responses, such as seen in Crohn’s disease.

We suggest that targeting IFNg in inflammatory diseases might
be achieved by modulation of both ROS signal and purinergic
signalling in Tc1 cells.

Results
CD3/CD28-ROS signals determine Tc1 development. The
importance and role of NOX/ROS signalling in functionalities of
CD8þ T cells was first investigated. We noted that upon CD3/
CD28 activation both production of ROS and phosphorylation of
CD3/CD28 signalling components (including PI3K, Akt,
mTOR, JNK and NFkB) gradually increased in CD8þ T cells in a
time-dependent manner (Fig. 1a,b).

Furthermore, blockade of ROS signalling by NOX inhibitors
diphenyleneiodonium chloride (DPI) and VAS2870 in these cells
substantively dampened CD3/CD28 signalling transduction
(Fig. 1c), concomitant with diminished ROS generation (Fig. 1d
and Supplementary Fig. 1) and decreased IFNg and CD39
expression (Fig. 1d). Meanwhile, it was noted that upon CD3/
CD28 stimulation, CD8þ T cells expressed robust amounts of
IFNg, but minimal levels of IL-4, IL-17 and FOXP3/IL-10
(Supplementary Fig. 2). These data implicate NOX/ROS as a key
upstream component of CD3 and CD28 signalling pathways
controlling Tc1 cell development.

CD39 expression in CD8þ T cells is JNK and NFjB dependent.
Next, we studied CD39 expression on differentially stimulated
healthy CD8þ T cells in vitro. As determined by flow cytometry
and quantitative real-time PCR (qRT–PCR), CD39 expression was
induced by stimulation of CD8þ T cells with anti-CD3/CD28
antibodies, not by proinflammatory cytokines, for example, TNF
and IL-12 (Fig. 2a,b and Supplementary Fig. 3a).

To further delineate CD3/CD28-NOX/ROS signalling in CD39
expression by CD8þ T cells, specific pharmacological inhibitors
to the downstream components such as JNK and NFkB were
employed in in vitro CD8þ T-cell culture systems. We noted that
CD3/CD28-evoked CD39 induction was inhibited by either of
these inhibitors, albeit with differential potency (Fig. 2c and
Supplementary Fig. 3b).

It still remains unknown whether JNK and/or NFkB can
directly drive CD39 expression. Sequence analyses of the
promoter region of CD39 have identified a putative NFkB-
binding site and up to 16 c-Jun/AP-1-binding sites
(Supplementary Fig. 4). Chromatin immunoprecipitation analysis
has shown that after activation both NFkB p65 and JNK (via
directly binding to c-Jun/AP-1) are ‘preferentially’ enriched at the
promoter region of CD39 (Fig. 2d,e). These data infer that CD3/
CD28-NOX/ROS signalling controls CD39 expression in CD8þ

T cells through regulation of the transcriptional machinery of
NFkB and JNK.

CD39þCD8þ T cells exhibit Tc1 phenotypic responses.
Because CD3/CD28 stimulation triggered NOX/ROS signalling,
we next sought to dissect out how CD3 and CD28 signals interact
to modulate ROS signalling of CD8þ T cells. We noted that anti-
CD3 and anti-CD28 antibodies exert strong synergistic effects on
Tc1 responses, that is, ROS production (Fig. 3a), CD3/CD28
signal transduction (Supplementary Fig. 5a) and IFNg production
(Supplementary Fig. 5b). In parallel, all these CD3 and/or CD28
antibody-elicited Tc1 responses were markedly dampened by DPI
(Fig. 3a and Supplementary Fig. 5). These results indicate that
both CD3 and CD28 signals are indispensable for ROS-mediated
activation of Tc1 cells.

We next contrasted CD3/CD28/ROS signals in healthy
CD39þ and CD39�CD8þ T cells. Significantly higher levels
of CD28 expression were observed in freshly isolated CD39þ
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CD8þ T cells, when compared with CD39�CD8þ T cells from
the same individual (Fig. 3b). Upon CD3/CD28 stimulation,
CD39þCD8þ T cells exhibited heightened production of ROS
and phosphorylation of JNK and NFkB, when compared with
CD39�CD8þ T cells (Fig. 3c).

Next, we evaluated links between expression of CD39 and
IFNg on CD8þ T cells, and compared IFNg productions by
CD8þ T cells on the basis of CD39 expression. At 24 h post-
stimulation with anti-CD3/CD28 antibodies, a significant pro-
portion of CD39þCD8þ T cells was noted to be positive for
IFNg, when compared with CD39�CD8þ T cells (Fig. 3d).
Meanwhile, the relative IFNg-producing T-cell surface markers
including CD226 and CXCR3 (refs 23,24) were significantly
greater in CD39þ CD8þ T cells, when compared with
CD39� CD8þ T cells (Fig. 3e).

Collectively, these data imply that CD39þCD8þ T cells
exhibit Tc1 phenotype.

CD3/CD28-ROS signals are associated with NOX2 bioactivity.
It has been reported that JNK and NFkB are downstream com-
ponents of CD3/CD28 signalling and have been implicated in the
control of IFNg expression25,26. We have employed specific
pharmacological inhibitors to the downstream components
such as JNK and NFkB, and studied Tc1 responses regulated
by NOX/ROS signalling. We noted that CD3/CD28-evoked
NOX/ROS signalling determined Tc1 responses, as shown by
IFNg expression and is abrogated by these inhibitors (Fig. 4a and
Supplementary Fig. 6).

NOX are a group of membrane-bound enzyme complexes
regulating ROS generation, composed of several subunits27. The
quantitative PCR analysis indicated that human CD8þ T cells
preferentially expressed gp91phox (NOX2) (Fig. 5b). We have
employed two efficient lentiviral small hairpin RNA (shRNA)
sequences to knockdown NOX2 (Supplementary Fig. 7), and
further demonstrated that knockdown of NOX2 in CD8þ T cells
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Figure 1 | CD3/CD28-ROS signals modulate Tc1 development. (a,b) Representative fluorescence-activated cell sorting (FACS) analyses of ROS induction

(a) and western blotting indicating phosphorylation of intracellular CD3/CD28 downstream signalling components (b) in healthy blood CD8þ T cells

stimulated with anti-CD3/CD28 antibodies at different time points. Cells were pretreated with 4mM of H2DCFDA to allow for ROS determination.

(c,d) Healthy peripheral blood CD8þ T cells were stimulated with anti-CD3/CD28 antibodies in the presence or absence of DPI (10mM) or VAS2870

(10mM), both NOX inhibitors, followed by determination of CD3/CD28 signalling transduction at 60 min by western blot (c), ROS at 10 min and IFNg or

CD39 expression at 24 or 72 h by FACS, respectively (d). All data are representative of 3–4 independent experiments.
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result in decreased ROS production as well as decreased levels of
JNK and NFkB phosphorylation (Fig. 4c). These mechanisms
have impacts on both IFNg and CD39 expression (Fig. 4c),
indicating the control of Tc1 development and CD39 expression
by NOX2-dependent CD3/CD28-ROS-mediated signals.

Purinergic signalling modulates Tc1 responses. We have
previously demonstrated that extracellular purinergic signalling,
specifically by adenosine generated by the ectonucleotidases
CD39 and CD73, impacts CD4þ T-cell function17 and modulates
adaptive immune responses28. Conversion of extracellular ATP
ultimately to adenosine has also been shown to inhibit CD8þ

T-cell activation and cytokine production via A2A receptor
responses29,30. To study this phenomenon further, we have
investigated the specific impact of purinergic signalling on Tc1
induction.

We initially determined the expression patterns of plasma
membrane CD73 and adenosine deaminase (ADA) on CD8þ

T cells on the basis of CD39 expression. CD73 levels in both

CD39þ and CD39�CD8þ T-cell subsets were similar
(Supplementary Fig. 8a). However, ADA was specifically
expressed by CD39þCD8þ T cells (Supplementary Fig. 8b),
indicating the capacity of CD39þCD8þ T cells to degrade locally
generated adenosine into the derivative product inosine31.

NTPDase enzymatic activity of CD39þ and CD39�CD8þ T
cells was examined by studying hydrolysis of 14C-radiolabelled
nucleotides. Substantive ectonucleotidase activity was noted in
CD39þCD8þ T cells, which efficiently catalyse the conversion of
ADP to adenosine, regardless of the cell activation status (Fig. 5a).
In contrast, CD39�CD8þ T cells did not exhibit relevant
NTPDase activity or generate extracellular adenosine (Fig. 5a).
These data infer that CD39þCD8þ T cells are the major source
of extracellular adenosine among total CD8þ T cells.

Next, we determined Tc1 responses after exposure of healthy
blood CD8þ T cells to various adenosine receptor agonists and
antagonists. As shown in Fig. 5b and Supplementary Fig. 9a,
CGS21680 or adenosine, two exogenous agonists (at the A2A
receptor), diminished IFNg levels, while 8-(3-chlorostyryl)
caffeine (CSC, a specific A2A antagonist) or xanthine amine
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Figure 2 | CD39 expression in CD8þ T cells is JNK and NFjB dependent. (a,b) Healthy blood CD8þ T cells were treated with anti-CD3 (10mg ml� 1,

precoated) and anti-CD28 (5mg ml� 1, soluble) antibodies, or 10 ng ml� 1 of the cytokines: either TNF or IL-12. CD39 expression was then determined by

flow cytometry at 24 h (a) (n¼4) or by quantitative PCR at 2 h (b) (n¼4). (c) Healthy blood CD8þ T cells were stimulated with anti-CD3/CD28

antibodies in the presence or absence of VAS2870 (10mM), NAC (10 mM), JNK inhibitor II (10mM), PS-1145 (10 mM) for 72 h. CD39 expression was then

analysed by fluorescence-activated cell sorting (n¼ 3). (d,e) Chromatin immunoprecipitation analyses indicating enrichment of NFkB p65 (d) or JNK/c-Jun

(e) at the CD39 promoter region in CD8þ T cells fresh isolated (fresh) or activated with anti-CD3/28 antibodies for 24 h (activated). Data are shown as

mean±s.e.m., **Po0.001 (one-way analysis of variance), for the comparison with the other groups.
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congener (XAC, a pan adenosine receptor antagonist) restored
IFNg production generated by the CD8þ T cells. Furthermore,
combinations of adenosine with CSC or XAC completely rescued
IFNg-producing capacity of the total CD8þ T cells that had been
previously inhibited by adenosine (Fig. 5b).

We also extended these adenosine receptor studies in sorted
CD39�CD8þ T cells. IFNg production by CD39�CD8þ T cells
recapitulated the patterns of total CD8þ T cells in response to
A2A agonist treatment (Fig. 5c and Supplementary Fig. 9b).
However, either CSC or XAC alone had minimal effects on Tc1
responses in CD39�CD8þ T cells (Fig. 5c).

The functional interactions between CD39þ and CD39�

CD8þ T cells were then examined. IFNg-producing capacity of
CD39�CD8þ T cells was diminished in the presence of
co-cultured CD39þCD8þ T cells, but the inhibition induced
by CD39þCD8þ T cells was completely reversed by
co-treatment with CSC or XAC (Fig. 5d and Supplementary
Fig. 9c). These results are indicative of the involvement of A2A
receptor signalling in the paracrine-type inhibition of the CD39þ

CD8þ T cells on CD39�CD8þ T cells.

CD39þCD8þ T cells are increased in Crohn’s disease. In
immunologically mediated diseases such as Crohn’s disease,
CD8þ T-cell activation can be boosted by activated antigen-
presenting cells and this occurs, at least in part, via elicitation of
CD3/CD28 signalling32. We therefore evaluated patterns of CD39
expression by CD8þ T cells in patients with Crohn’s disease
under basal conditions and after cell activation.

As shown in Fig. 6a, the percentage of CD39þ CD8þ

T cells was significantly increased in peripheral blood of
patients with active Crohn’s disease (3.9±0.5%), as compared
with healthy donors (1.44±0.1%) or with those who had
inactive disease (2.0±0.5%). In parallel, lamina propria levels
of these CD39þCD8þ T cells in active and inactive
Crohn’s disease patients (29.6±2.9% and 24.9±4.4%) were
substantially higher than that in healthy controls (13.1±3.1%;
Fig. 6b).

CD8þ T cells in Crohn’s disease exhibit ROS signalling.
Recently, ROS have been shown to regulate immune cell function
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Figure 3 | CD39þCD8þ T cells exhibit Tc1 responsiveness. (a) Healthy blood CD8þ T cells were stimulated with anti-CD3 (10mg ml� 1) or/and CD28

(5mg ml� 1) antibodies in the presence of vehicle or DPI (10 mM), and ROS induction was determined at 30 min. (b) Flow cytometric analyses of CD28

expression was done as based on expression of CD39 on CD8þ T cells (n¼ 18); statistical analysis of percentages of two CD8þ T-cell subsets is shown in

lower panel. (c) Flow cytometry of ROS induction, phospho-JNK and phospho-NFkB p65 in CD8þ T cells, stimulated with anti-CD3/CD28 antibodies for

30 min. Cells were pretreated with 4mM of H2DCFDA for ROS determination, as before. (d) Representative flow cytometric analyses of CD8þ T cells

based on expression of CD39. CD8þ T cells were stimulated with anti-CD3/CD28 antibodies for 24 h. Statistical comparative analysis indicating different

percentages of CD8þ T cells expressing IFNg is shown in the right panel. (e) Flow analysis of CD226 (n¼ 11) and CXCR3 (n¼ 12) expression on

CD39þCD8þ and CD39�CD8þ T cells. Data are presented as means±s.e.m., **Po0.01, ***Po0.001 (Student’s t-test).
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including CD8þ T cells33, and such mediators are generated in
large amounts at sites of tissue inflammation, as in Crohn’s
disease34. We hypothesized that NOX/ROS signalling would
determine Tc1 development, and therefore evaluated the
expression of ROS signalling in CD8þ T cells of active Crohn’s
disease. We noted that levels of CD8þ T cells expressing ROS,
phosphorylated JNK and NFkB p65 were substantially higher in
lamina propria of active Crohn’s disease patients, when compared
with those cells obtained from healthy controls (Fig. 7a and
Supplementary Fig. 10).

Intriguingly, blockade of NOX/ROS by DPI markedly
abrogated IFNg production in blood (Fig. 7b) and lamina propria

(Supplementary Fig. 11a) CD8þ T cells obtained from patients
with active Crohn’s disease.

These data suggest a pivotal role of NOX/ROS signalling in Tc1
generation and in mediating the associated inflammatory
responses seen in Crohn’s disease.

Next, to evaluate the role of inhibitory A2A signalling in the
regulation of Tc1 responses, we treated CD8þ T cells of active
Crohn’s disease patients with A2A receptor agonists. As shown in
Fig. 7c and Supplementary Figs 11b,12, A2A receptor signalling
following use of adenosine or/and more specific agonists, for
example, CGS21680, decreased IFNg production of both blood
and lamina propria CD8þ T cells from Crohn’s disease patients
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in vitro. These last data suggest that immune regulation of Tc1
responses occurs via purinergic signalling, and is modulated, in
particular, via A2A receptor.

Discussion
IFNg is one of the key inflammatory cytokines that mediate
immune responses in human inflammatory disease. In the
present study, the population of CD39 expressing CD8þ T cells
in healthy controls, as well as those in Crohn’s disease, can be
shown to produce preferentially greater levels of IFNg on a per-
cell basis. These cells exhibit both phenotypic and functional
characteristics of Tc1 cells35. We note that polyclonal activation
of CD8þ T cells (by anti-CD3/CD28 antibodies) boosts CD39
expression on these cells, consistent with the increased frequency
of CD39þCD8þ T cells seen in the blood and inflamed tissues of
patients with active Crohn’s disease. We suggest that
pretreatment evaluation of CD39þCD8þ T cells might provide
insights into the mechanisms through which clinical responses to
anti-IFNg and other immunomodulatory therapies could be
determined36.

We show that stimulation of human CD8þ T cells with both
anti-CD3 and CD28 antibodies, can induce ROS generation and
enhance downstream signalling cascades. Indeed, these activation
responses exert synergistic effects on ROS signalling, IFNg
production and CD39 expression. We also show that ROS
generation and CD3 and CD28 intracellular signal cascades,
inclusive of JNK and NFkB, are modulated by NOX2 in human
CD8þ T cells.

Recently, there have been reports on the regulation of CD4þ

T-cell function and proliferation by ROS15. These ROS mediators
comprise reactive oxygen molecules, which are important in the
regulation of cell signalling and function, particularly in the
instance of immune cells37. Within cells, ROS are generated by
transfer reaction of electrons through the mitochondrial
respiratory chain, in part initiated by activation of NOX. There

is, however, extensive crosstalk involving other cellular systems
that generate ROS, such as endothelial nitric oxide synthase
and xanthine oxidase26 as well as others, inclusive of
lipoxygenases38–40. These systems all act in conjunction with
mitochondrial electron transfer reactions to both bolster and
modulate cellular ROS generation38–40. Once generated via NOX
and mitochondrial electron transport chains41,42, ROS play
important roles in mediating cell signalling responses26,42, and
thereby impact a wide variety of physiological and pathological
processes43,44.

In T cells, the NOX multicomponent electron transferase
systems that use cytoplasmic NADPH to convert molecular
oxygen to superoxide anions, appear largely responsible for
cellular ROS generation42, rather than other ROS generating
enzymes. In this present study, we have found that human CD8þ

T cells preferentially express gp91phox (NOX2). Moreover,
inhibition of NOX by inhibitors or knockdown of gp91phox
(NOX2) abrogate ROS production, further indicating the pivotal
role of NOX2 in ROS generation in human CD8þ T cells.
Specifically, the lipoxygenase systems, as mentioned above,
appear to have limited effects in these studies, as shown by
others42.

However, the exact role of ROS mediators on T-cell function
remains unclear. For example, these ROS have been reported to
contribute significantly to the dominant T-helper effector
phenotype and IL-17 production in autoimmunity45. In
contrast, other researchers have shown that NOX and ROS
deficiency results in skewed Th17 (ref. 46) and indeterminate Th1
responses47 in murine experimental models. Recently, the
inhibition of NOX activity has been reported to ameliorate
influenza virus-induced lung inflammation48, suggesting
association between NOX/ROS and CD8þ T-cell function.

Mechanistically, on stimulation, we propose that NOX2/ROS
signalling modulates CD3/CD28 intracellular signal cascades.
JNK and NFkB, as downstream signal components of CD3/CD28
activation and other key putative elements, control IFNg
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production25,26, as well as CD39 expression. These pathways
appear to involve regulation of JNK and NFkB responses in
CD8þ T cells, resulting in Tc1 deviation and heighted CD39
expression, which subsequently induce extracellular ATP/ADP
phosphohydrolysis to impact purinergic signalling.

We also show that CD39, a prominent immune cell-expressed
ectonucleotidase49, provides CD8þ T cells with the capacity to
project local inhibitory functionality. The increased levels of
CD39 induced by stimulation of anti-CD3 and CD28 antibodies
boost CD8þ T cell-mediated hydrolysis of ATP/ADP, in tandem
with CD73 (ecto-50-ectonucleotidase), to generate exogenous
adenosine. We have previously shown that such purinergic
signalling effects, that is, through generation of extracellular
adenosine, limits CD4þ T-effector cell immune responses17. This

inhibitory effect has been further confirmed in CD8þ T cells to
be also operational via A2A receptor responses29,50.

We have evaluated the role of CD39 expression in regulation of
IFNg production of CD8þ T cells. We note that CD39þCD8þ

T cells are the major source of adenosine generation, and decrease
IFNg production of other CD8þ T cells, in a paracrine manner,
at least in part, through the regulation of adenosine/A2A
signalling responses. These latter pathways have been demon-
strated in CD8þ T cells29,50, and appear comparable to the signal
regulation pathways previously mapped in CD4þ T cells51,52.

We propose that the expression of CD39 in CD8þ T cells is
induced by T-cell receptor stimulation (anti-CD3 or in
combination with anti-CD28 antibodies). In this current study,
we illustrate a possible schema of Tc1 responsiveness that could
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be regulated by CD39 expression on CD8þ T cells (Fig. 8). We
propose that upon anti-CD3 or/and CD28 antibody stimulation,
ROS generation and the linked activation of intracellular signal
cascades can be rapidly initiated. This process is followed by
induction of IFNg production and the associated upregulation of
CD39 plasma membrane expression on CD8þ T cells. Following
preferential CD28 expression and signalling, CD39þCD8þ

T cells show enhanced ROS generation with augmented
activation of signal cascades, involving both JNK and NFkB.

These CD39þCD8þ T cells also initiate purinergic signalling
and generate adenosine, which in turn can further diminish JNK
and NFkB signalling and IFNg production of CD39�CD8þ

T cells via A2A receptor51,52. We also propose that the specific
cell-associated expression of ADA might rescue CD39þCD8þ

T cells from adenosine-induced inhibition of intrinsic Tc1
responses (Fig. 8). As a consequence of these complex
signalling pathways, CD39þCD8þ T cells are able to limit
their own intrinsic responsiveness to adenosine. Such cells could
preferentially develop into IFNg-producing cells in human
immune diseases, such as Crohn’s disease.

Finally, we demonstrate that the inhibition of ROS generation
by DPI, an inhibitor of NOX, abrogates Tc1 response of CD8þ

T cells in the blood and gut tissues of Crohn’s disease. As a group
of membrane-bound oxidases, NOX are responsible for ROS
generation in a wide variety of cells and participate in regulation
of cell activation and tissue function53,54. However, overactivation
of NOX promotes excessive ROS generation and numerous
pathological responses, and has been linked with human diseases
such as granulomatous disease and cerebrovascular disease55,56.
We can show that treatment with NOX inhibitor blocks IFNg
production and diminishes Tc1 responses in Crohn’s disease,
perhaps indicating that inhibition of NOX2/ROS signalling could
be further explored as a potential therapeutic target.

In summary, we show that CD39 can be used to phenotypically
define certain CD8þ IFNg-producing cells. In addition, Tc1
responses by such cells expressing CD39 can be abrogated by
inhibition of ROS signals. CD39þCD8þ Tc1 cells also limit
IFNg production of CD39�CD8þ T cells by generating
adenosine that acts in a paracrine manner. These studies infer
that strategies to regulate purinergic signalling and boost

adenosine generation might decrease Tc1 responses in patients
with IFNg-dominant inflammatory diseases, such as seen in
Crohn’s disease.

Methods
Cells. Peripheral blood CD8þ T cells from healthy volunteers or patients with
Crohn’s disease were isolated using Human CD8þ T cell Enrichment Kit or
Cocktail kit (both negative selection, from StemCell Technologies, Vancouver,
Canada) according to the instruction with minor modification. Purities of
CD3þCD8þ T cells isolated with the two kits above were 495%, as determined
using FACSaria cell sorter (BD Biosciences, San Jose, CA, USA).

In vitro CD8þ T-cell culture and stimulation. Isolated CD3þCD8þ T cells were
cultured in complete RPMI 1640 medium (Invitrogen, Carlsbad, CA, USA) sup-
plemented with 2 mM L-glutamine, 100 U ml� 1 penicillin, 100 mg ml� 1 strepto-
mycin, 1% non-essential amino acids and 10% fetal calf serum. For stimulation,
5� 105 ml� 1 T cells were treated with coated anti-CD3 antibody (OKT3, BioLe-
gend, San Diego, CA, USA; 10 mg ml� 1) and soluble anti-CD28 antibody (CD28.2,
BioLegend, San Diego, CA, USA; 5 mg ml� 1) for indicated time.

For co-culture studies, 5� 105 ml� 1 CD39�CD8þ T cells were prestained
with carboxyfluorescein succinimidyl ester (Invitrogen, Carlsbad, CA, USA;
2.5 mM) and cultured alone or together with equal number of CD39þCD8þ

T cells in the presence of anti-CD3/CD28 antibodies. The reagents or control
vehicle were introduced to cell cultures at the beginning of stimulation.

Patients. All human studies were conducted in accordance with the Declaration of
Helsinki and were approved by the BIDMC Institutional Review Committee
(No. 2011-P-000202/8).

Patients with Crohn’s disease (57 male and 40 female; age range, 19–71 years;
who had ileocolonic or colonic disease) were recruited at BIDMC during routine
clinic visits. Amongst those patients, 25 had either received in the recent past or
were still receiving anti-TNF treatment; 11 were being treated with oral steroids, 10
had immunosuppressive treatments (inclusive of azathioprine or 6-MP) and 24
received combination treatment (5 with anti-TNF treatment and oral steroids, 15
with anti-TNF treatment and azathioprine/6-MP, 1 with oral steroids and
azathioprine, and 3 with those three drugs), while the other 27 patients were
studied at the initial presentation. Informed consent was obtained in writing from
all enrollees. The diagnosis of Crohn’s disease was confirmed on the basis of
clinical, radiological, endoscopic and histological criteria. Peripheral blood was
obtained during clinical blood draws and tissue biopsies during colonoscopies for
disease staging surveillance.

General reagents. All chemicals were purchased from Sigma-Aldrich (St Louis,
MO, USA), unless otherwise stated. All cell culture media and reagents were from
Invitrogen.

All cytokines were from R&D systems (Minneapolis, MN, USA).

Antibodies. Fluorescence-activated cell sorting studies were performed using:
FITC-, PE-, PE-Cy5, APC-Cy7, PE-Cy7, Pacific blue-, or APC-conjugated anti-
human antibodies to: CD3 (clone#: HIT3a, 1:50), CD8 (SK1 or RPA-T8, 1:20),
IL-17 (BL168, 1:20), IFNg (4 S.B3, 1:10), IL-10 (JES3-19F1, 1:10), IL-4 (8D4-8,
1:10), FOXP3 (206D, 1:10), CD39 (A1, 1:20), CD73 (AD2, 1:20), CD28 (CD28.2,
1:20), CD45RA (HI100, 1:20), CD226 (TX25, 1:20), CXCR3 (G025H7, 1:20), Tim3
(F38-2E2, 1:20), CCR6 (G034E3, 1:20), Perforin (B-D48, 1:20), Granzyme B (GB11,
1:20) and CCR7 (g043h7, 1:20) from BioLegend (San Diego, CA, USA); CD39
(BU61, 5 mg ml� 1) from Ancell Corporation (Bayport, MN, USA); Annexin V
from BD Biosciences (1:20; Franklin Lakes, NJ, USA); phospho-JNK (Thr183/
Tyr185; G9, 1:20) and phospho-NFkB p65 (Ser536; 93H1, 1:20) from Cell Sig-
nalling Technology (Danvers, MA, USA); and Isotype control antibodies from
Ancell Corporation or eBioscience (San Diego, CA, USA).

Antibodies used for western blot included the following: phospho-PI3K p85
(Tyr458; #4228, 1:800), phospho-Akt (Ser473; #9271, 1:1,000), phospho-mTOR
(Ser2448; #2971, 1:1,000), mTOR (#2972, 1:1,000), pJNK (Thr183/Tyr185; #9251,
1:1,000) and phospho-NFkB p65 (Ser536; #3031, 1:1,000), from Cell Signaling
Technology (Danvers, MA, USA); NOX2 (ab31092, 1 mg ml� 1) and b-actin
(AC-15, #ab6276, 1:40,000) from Abcam (Cambridge, MA, USA).

Purification of lamina propria mononuclear cells. Lamina propria mononuclear
cells were isolated from freshly biopsied colonic mucosa57,58. Briefly, tissues were
incubated in HBSS containing EDTA (0.75 mM) and dithiothreitol (1 mM) at 37 �C
to remove the epithelium, followed by incubation with digestion cocktails (RPMI
1640 medium containing collagenase IV (400 U ml� 1) and DNase I
(0.01 mg ml� 1)) at 37 �C. The digested tissues were filtered through a 100-mm cell
strainer and centrifuged at 1,500 r.p.m. for 5 min. Cell pellets were resuspended in
complete RPMI 1640 media and overlaid on a 40–100% Ficoll gradient (GE
Healthcare Life Sciences, Pittsburgh, PA, USA). After centrifugation, the interphase
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(lamina propria mononuclear cells) was collected and washed once for subsequent
experimentations.

Western blotting. The cells were lysed on ice in modified RIPA buffer (50 mM
Tris-HCl, pH 7.4; 1% NP-40; 0.25% sodium deoxycholate; 150 mM NaCl)
supplemented with Complete Proteinase Inhibitor Cocktails (Roche Diagnostics,
Indianapolis, IN, USA) and Phosphatase Inhibitor Cocktails (Sigma-Aldrich,
St Louis, MO, USA). The lysates were spun at 10 000g for 5 min at 4 �C.

Protein concentrations were determined by Bio-Rad DC protein assay reagent
(Bio-Rad Laboratories, Hercules, CA, USA). For western blot, 20 mg protein of each
sample was separated on 4–12% Criterion XT Bis-Tris SDS-PAGE gels (Bio-Rad
Laboratories, Hercules, CA, USA) and transferred to polyvinylidene difluoride
membrane (Cat#IPVH00010, Millipore, Billerica, MA, USA) by semi-dry
electroblotting. The latter were then probed with specific antibodies against
proteins of interest. Bands were visualized using horseradish peroxidase-conjugated
goat anti-mouse, donkey anti-rabbit, or donkey anti-sheep IgG (Thermo Scientific,
Waltham, MA, USA) and the SuperSignal West Femto Maximum Sensitivity
Substrate reagents (Cat#PI-34096, Thermo Scientific, Rockford, IL, USA) according
to the manufacturer’s instructions. Images have been cropped for presentation.
Full-size images are presented in Supplementary Fig. 13.

Chromatin immunoprecipitation. Chromatin was extracted from healthy CD8þ

T cells (1.5� 107) freshly isolated or activated with anti-CD3/28 antibodies for 24 h
according to the manufacturer’s standard protocol (Active Motif, Carlsbad, CA,
USA). Anti-JNK (#9258; Cell Signaling Technology, Danvers, MA, USA), anti-
NFkB p65 (#8242; Cell Signaling Technology, Danvers, MA, USA) and rabbit IgG
(Sigma-Aldrich, St Louis, MO, USA) as control antibody were used for the
immunoprecipitation of chromatin. Immunoprecipitated DNA was analysed by
RT–PCR with the following primer sets for NFkB p65: 50-TTTGTCTGTTTCTC
CTGCCTAC-30 and 50-GTGCGAATTACAGAATGGAAACC-30 . Ten primer sets
for JNK/c-Jun (JNK1–JNK10) were shown in Supplementary Table 1. Data were
presented as relative binding based on normalization to input DNA.

Quantitative real-time PCR. Total RNA was extracted from cells using the RNeasy
kit (Qiagen, Valencia, CA, USA) and retrotranscribed into cDNA using ABI Prism
TaqMan reverse transcription reagents (Cat#204054, Applied Biosystems, Foster
City, CA, USA). Specific primers of five NOX subsets for qRT–PCR were obtained
from Invitrogen and the sequences were shown in Supplementary Tab. 2. Primers of
CD39 were provided by Qiagen (NM_001164179, QT00081473). qRT–PCR was
then performed using Quanti Fast SYBR Green PCR kit (Cat#204054, Qiagen,
Valencia, CA, USA) on a Stratagene Fast Real Time Machine (Mx3005P) (Aligent
Technologies, Santa Clara, CA, USA). Relative expression was calculated using the
DDCt algorithm and GAPDH as an internal control.

Flow cytometric analysis. The relevant fluorescein-labelled anti-CD8, CD45 or
CD3 antibodies were used to set-up the required compensation for flow cytometric
analyses, with fluorescein-labelled isotype IgG used as a negative control in all cases
for gating. For surface marker analyses, cells were stained with antibodies diluted in
PBS containing 0.1% BSA17,59. To exclude dead cells, 40 ,6-diamidino-2-
phenylindole (DAPI, 3 mM) staining was used right after surface labelling. Lamina
propria cells were gated with respect to the CD3þCD8þ population. For
intracellular cytokine staining, cells were treated for 3 h with phorbol 12-myristate
13-acetate (50 ng ml� 1), ionomycin (500 ng ml� 1) and brefeldin A (10 mg ml� 1).
After surface staining, cells were washed by PBS, fixed by 2% paraformaldehyde
and permeabilized with 0.5% saponin in PBS, followed by incubation with
fluorescein-conjugated antibodies17,59. Fluorescence-activated cell sorting data
were acquired on a multicolour LSRII (BD Biosciences, San Jose, CA, USA) and
analysed with FlowJo software (TreeStar Inc., Ashland, OR, USA).

Small hairpin RNA. Healthy CD8þ T cells were infected separately with an empty
shRNA vector control (sh-C, pLKO.1-puro) or four different human NOX2 shRNA
(sh-1: NM-000397.2-93s1c1, TRCN0000064590; sh-2: NM-000397.2-399s1c1,
TRCN0000064588; sh-3: NM-000397.2-813s1c1, TRCN0000064591; sh-4:
NM-000397.2-1637s1c1, TRCN0000064589) lentiviral transduction particles
(Sigma-Aldrich, St Louis, MO, USA), according to the manufacturer’s instructions.
Recombinant lentiviral particles were produced by transient transfection of 293FT
cells as described60. CD8þ T cells were infected with lentiviral particles22,61.
Briefly, after stimulation with anti-CD3/28 antibodies (both 2 mg ml� 1) and
human recombinant IL-2 (R&D Systems, Minneapolis, MN, USA; 1 ng ml� 1) for
24 h, CD8þ T cells were infected by lentiviral particles by centrifugation at
2,300 r.p.m for 60 min at room temperature in the presence of polybrene
(8mg ml� 1). These cells were replaced with fresh media containing human
recombinant IL-2 (R&D Systems, Minneapolis, MN, USA; 1 ng ml� 1) for
additional 48 h, and then selected with puromycin (1 mg ml� 1) for 7–10 days. The
survival cells were selected using dead cell removal kit (Miltenyi Biotec, San Diego,
CA, USA). The selected cells were tested to confirm diminished NOX2 expression
by western blot analysis.

Reactive oxygen species detection. The cells were pretreated with 4 mM carboxy-
20,70-dichlorodihydrofluorescein diacetate (H2DCFDA; Invitrogen, Carlsbad, CA,
USA) with or without 10 mM DPI (Sigma-Aldrich, St Louis, MO, USA) or 10 mM
VAS2870 (EMD Millipore, Darmstadt, Germany) for 5 min, then further stimu-
lated with coated anti-CD3 antibody and soluble anti-CD28 antibody for indicated
time. ROS generation was determined by flow cytometric analysis or microscope.
The H2DCFDA-unstained cells were designated as the negative control.

Ectonucleotidase ecto-enzymatic activity analysis. Phosphohydrolysis of
extracellular nucleotides was analysed by thin layer chromatography (TLC), as
established in our laboratory17,62. Sorted CD39þ or CD39� CD8þ T cells
(2� 105) were freshly used or stimulated with anti-CD3/CD28 antibodies for 3 h,
and further incubated with 2 mCi ml� 1 [C14]ADP (GE Healthcare Life Sciences,
Pittsburgh, PA, USA) in 10 mM Ca2þ and 5 mM Mg2þ for indicated times. A
volume of 5 ml of aliquots were removed at each time point and analysed for the
presence of [C14]ADP hydrolysis products by TLC. [C14]ADP, [C14]AMP and
[C14]ADO incubated in PBS served as standards. The TLC glass plate was
exposed in a storage phosphor cassette for 24 h and phosphor release captured by
a Strom Scanner. Adenosine uptake by cells was blocked with channel blocker
dipyridamole at 10mM.

Statistical analysis. Results in this study are generally expressed as mean
values±s.e.m. Differences between experimental groups were assessed by one-way
analysis of variance. The two-tailed Student’s t-test was used to compare two
groups and the Tukey–Kramer multiple-comparison test was for multiple groups.
Significance was defined as Po0.05.
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