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Abstract: In this study, we optimized the geometry and composition of additive-manufactured pedicle
screws. Metal powders of titanium-aluminum-vanadium (Ti-6Al-4V) were mixed with reactive
glass-ceramic biomaterials of bioactive glass (BG) powders. To optimize the geometry of pedicle
screws, we applied a novel numerical approach to proposing the optimal shape of the healing chamber
to promote biological healing. We examined the geometry and composition effects of pedicle screw
implants on the interfacial autologous bone attachment and bone graft incorporation through in vivo
studies. The addition of an optimal amount of BG to Ti-6Al-4V leads to a lower elastic modulus of
the ceramic-metal composite material, effectively reducing the stress-shielding effects. Pedicle screw
implants with optimal shape design and made of the composite material of Ti-6Al-4V doped with BG
fabricated through additive manufacturing exhibit greater osseointegration and a more rapid bone
volume fraction during the fracture healing process 120 days after implantation, per in vivo studies.

Keywords: pedicle screw implant; additive manufacturing; bioactive glass; osseointegration;
stress-shielding effect; X-ray tomography
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1. Introduction

As the most indispensable treatment of serious spinal disorders and deformities, the pedicle
screw instrumentation, first described by Boucher [1] and reintroduced by Roy-Camille [2], has been
widely used for rigid spinal fixation and stabilization in spinal surgery [3–10]. However, the breakage
and loosening of pedicle screws are the major clinical problems that drastically affect the outcomes of
spinal surgery [5,8,11,12]. Significant approaches have been proposed for screw design modification
and screw surface treatment to obtain better mechanical binding at the bone–screw interface through
greater bone ingrowth and osseointegration [3,4,6,8,13,14]. Nevertheless, more efforts are required to
optimize the shape and material composition of pedicle screws to increase their efficacy in various
biological applications [15].

Based on the bone remodeling mechanism proposed by Wolff’s law [16], several efforts have been
undertaken to design healing chambers in terms of the shape of the threads, thread pitch [17,18], and surgical
drilling dimensions of screw implants [19,20]. In the authors’ previous work [21], a novel numerical
method was proposed to optimize the shape of the healing chamber of titanium–aluminum–vanadium
alloy (Ti-6Al-4V) screw implants under any condition to maximize the volume of the healthy
surrounding bone. Such an effective algorithm was adopted in the current work, wherein the
model of spinal implant and the corresponding loading conditions were considered. This approach
could help derive an optimal design of the healing chamber in pedicle screws fabricated using additive
manufacturing that could promote biological healing. The efficacy of this design was examined through
in vivo experiments.

Titanium (Ti)-based alloys have been employed in medical applications because of their
biocompatibility in the human body. Notably, Ti-6Al-4V is an essential component of biomedical
implants [22], and its mechanical properties have been determined to be well adapted to bone
growth [23] when examined [24,25]. Hence, additive-manufactured Ti-6Al-4V implants have garnered
attention [26,27] as biocompatible materials.

Ti-6Al-4V alloys are favorable implants for high load bearings in clinical applications because
they possess superior mechanical strength and exhibit high biomechanical performance combined
with a rapid bone remodeling process, per in vivo studies [28–31]. Upon exploring new bone-like
materials that have stiffness similar to the surrounding bone tissue to minimize the stress-shielding
effects and enrich osseointegration [32], bioactive glasses (BGs), first discovered by Hench et al. [33],
have attracted significant attention recently for their use in various medical applications, such as bone
implants [34], dentistry [35,36], and drug delivery [37,38] because of their high reactive surface areas,
excellent biocompatibility, and bioactivity [34]. BGs were observed to firmly anchor with the living
tissues through the formation of hydroxyapatite (HA) minerals, which are the major components
of mineralized mature bone responsible for enduring high loads [7,8]. Although comprehensive
research has been devoted to new composite materials of metals coupled with BG-based implants in
attaining sufficient strength and rich osseointegration, details regarding their in vivo performance are
still lacking and must be studied for clinical applications.

Based on the authors’ earlier study, the BG composition of 58S exhibited a higher growth rate of
HA and better bioactivity [39]. Therefore, we were motivated to conduct further extensive research on
bone incorporation and osseointegration performance of pedicle screw implants comprising Ti-6Al-4V
doped with BG composite material with optimal shape design of the healing chamber through in vivo
studies. Moreover, whether the addition of 58S BG to Ti-6Al-4V or the application of the novel
numerical model-based optimal healing chamber in pedicle screws fabricated using three-dimensional
(3D) printing influences bone regeneration process in vivo needed to be determined. In addition,
the in vivo osseointegration performance of 3D-printed pedicle screw implants comprising Ti-6Al-4V
doped with 58S BG composite with an optimal shape design must be assessed.

In the present study, we investigated the effects of the geometry and composition of three types
of pedicle screw implants fabricated using the selective laser melting (SLM) process and compared
them with the commercially available Ti-6Al-4V pedicle screw implants in terms of the degree of
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osseointegration and bone remodeling in a porcine model. Four types of pedicle screw implants
with commercial and optimal designs composed of Ti-6Al-4V and Ti-6Al-4V doped with BG were
prepared, namely the commercial Ti-6Al-4V, optimal Ti-6Al-4V, commercial Ti-6Al-4V doped with BG,
and optimal Ti-6Al-4V doped with BG. Imaging techniques, such as histological staining, fluorescence,
X-ray micro-computed tomography (µCT), and transmission X-ray microscopy (TXM) analyses, were
systematically conducted to evaluate the development of bone integration with the four types of
pedicle screws during the same implantation period.

2. Results

2.1. Reduced Stress-Shielding Effect through BG Doping

Figure 1 reveals the uniaxial tensile engineering stress–strain (S–S) curves of 3D-printed samples
of Ti-6Al-4V and Ti-6Al-4V doped with BG. The elastic modulus of 3D-printed Ti-6Al-4V doped with
BG was 93 GPa, which was 28% lower than that of 3D-printed Ti-6Al-4V (129 GPa), implying superior
adaptability of Ti-6Al-4V doped with BG to the bone. Notably, doping with BG effectively reduced the
elastic modulus mismatch between Ti-6Al-4V doped with BG (93 GPa) and the bone (10–30 GPa) [40],
thereby minimizing the stress-shielding effects. This crucial role of BG is expected to be beneficial in
the bone remodeling process and bone healing during the implantation period.
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Figure 1. Macroscopic engineering stress–strain (S–S) curves in the elastic regimes of titanium-
aluminum-vanadium (Ti-6Al-4V) and Ti-6Al-4V doped with bioactive glass (BG) samples. The schematic
of tensile dog-bone specimens is presented in the inset.

2.2. Highest Bone Volume Fraction in the Optimal Ti-6Al-4V Doped with BG

Through µCT, we investigated the bone volume fraction of healthy surrounding bone around
the four types of pedicle screws at 2 and 120 days after implantation, as displayed in Figure 2.
The bone volume fractions with the commercial Ti-6Al-4V, optimal Ti-6Al-4V, commercial Ti-6Al-4V
doped with BG, and optimal Ti-6Al-4V doped with BG implants after two days of implantation were
calculated to be 83.8%, 82.7%, 82.5%, and 82.7%, respectively, with a negligible difference in bone
volume fraction among the four implants. The adaptation effectiveness of the four pedicle screws
was assessed using their corresponding bone volume fractions during the same implantation period.
A significant difference was observed among the four pedicle screw implants after 120 days in terms
of the development of the surrounding bone. Notably, the commercial Ti-6Al-4V had the lowest
bone volume fraction of 73.2%, with the slowest growth of healthy surrounding bone. Higher bone
volume fractions with the other three pedicle screws imply that either doping with BG or applying
the optimal shape design accelerates healthy bone growth with the use of the 3D print–based pedicle
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screw implants. Moreover, among implants made of the same composite material of Ti-6Al-4V or
Ti-6Al-4V doped with BG, the optimal shape design evidently enhanced the bone volume fraction from
73.2 or 79.4% to 83.0% or 84.0%, probably because of the greater bone ingrowth into the optimal design
of the healing chamber. Doping with BG increased the bone volume fraction of implants owning the
same commercial shape design from 73.2% to 79.4%, however, there was a negligible discrepancy
between pedicle screws owning the same optimal shape design composed of Ti-6Al-4V (83.0%) or
Ti-6Al-4V doped with BG (84.0%). Our results suggested that the geometric effect rather than the
composition effect is more beneficial for the bone volume fraction. The combined effects of geometry
and composition led to the highest bone volume fraction in the pedicle screw of optimal Ti-6Al-4V
doped with BG, suggesting the most rapid bone growth process in this promising implant.
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Figure 2. Bone volume fraction of the commercial Ti-6Al-4V, optimal Ti-6Al-4V, commercial Ti-6Al-4V
doped with BG, and optimal Ti-6Al-4V doped with BG pedicle screws at 2 days and 120 days
after implantation.

2.3. Reliable TXM Imaging Technique for Bone Characterization

In addition to the volume fraction of healthy surrounding bone, the developing status of
immature bone and mature bone at the intact bone–implant interface is crucial in evaluating
the maximum feasible success of the pedicle screw implants in practical orthopedic applications.
We performed synchrotron-based TXM with a high spatial resolution to observe the interfacial contact
of immature bone, mature bone, and void regions with the pedicle screws at a microstructural
scale. Bone characterization analyzed using TXM was compared with that analyzed using traditional
imaging techniques.

Figure 3a–c present the microscopic images obtained using fluorescence, RBS, and TXM imaging
techniques of the bone formed around the commercial Ti-6Al-4V doped with BG pedicle screw 120 days
after implantation. The brighter green area in the fluorescence image represents only immature bone,
and the pink-stained zone exhibits only mature bone. By contrast, TXM enables the differentiation
between immature bone and mature bone through image contrast in grayscale color. The areas of
immature bone analyzed using fluorescence (32.6%) in Figure 3d and TXM (32.0%) in Figure 3e were
well matched. In addition, an excellent correlation was obtained regarding the mature bone analyzed
using RBS (70.7%) in Figure 3f and TXM (67.7%) in Figure 3g. Hence, in addition to traditional imaging
techniques, the reliability of image analysis with TXM is possibly applicable to specifying the status of
bone remodeling at the bone–implant interface during the fracture healing process.
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Figure 3. Microscopic images of healthy surrounding bone in the commercial Ti-6Al-4V doped
with BG pedicle screw obtained using (a) fluorescence, (b) Sanderson’s Rapid Bone Stain (RBS),
and (c) transmission X-ray microscopy (TXM) imaging modalities. (d) The white zones of immature
bone seen with fluorescence. (f) The white areas of mature bone obtained using RBS. The white regions
of immature bone (e) and mature bone (g) observed using TXM.

2.4. Rapid Bone Graft Incorporation in Optimal Ti-6Al-4V Doped with BG

We further conducted TXM to identify the bone remodeling status of immature bone, mature bone,
and void around the three 3D-printed pedicle screws during the same implantation period. Figure 4
displays the 2D TXM images of direct osseous apposition with pedicle screws in the 3D printing of
optimal Ti-6Al-4V, commercial Ti-6Al-4V doped with BG, and optimal Ti-6Al-4V doped with BG two
days after implantation. The three 3D-printed implants disclosed an unconnected distribution (shown
in the red marked circle) of immature bone and mature bone at the bone–pedicle screw interface.
However, more continuous distribution (shown in the blue marked circle) of mature bone was observed
with the commercial Ti-6Al-4V doped with BG and optimal Ti-6Al-4V doped with BG than with the
optimal Ti-6Al-4V after two days, which indicates the probable role of BG dopant in the improved
direct osseous apposition. The sharp contrasts in 2D TXM images of spinal specimens depend on
different absorption rates of the degree of bone calcification and only the pre-existing hard tissues of
immature bone and mature bone were observed after two days for the three pedicle screw implants.

Nevertheless, with the increase in the implantation period to 120 days, a remarkable difference was
observed regarding the remodeling status of immature bone and mature bone with the three pedicle
screw implants, as illustrated in Figure 5. The development of mature bone rather than immature bone
was more pronounced with coherent and continuous incorporation in all three 3D-printed implants,
with the most prominent among them being the optimal Ti-6Al-4V doped with BG pedicle screw.
Furthermore, since the void was observed 120 days after implantation but not 2 days after implantation,
the appearance of void was presumably attributed to the evolution of soft tissues or cartilage during
the implantation period. The combination of BG dopant and optimal shape design facilitated the
development of mature bone, thereby enriching the surface osseointegration with the optimal Ti-6Al-4V
doped with BG pedicle screw implant.
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Figure 5. 2D TXM images of bone remodeling around three 3D-printed pedicle screw implants of
(a) optimal Ti-6Al-4V, (b) commercial Ti-6Al-4V doped with BG, and (c) optimal Ti-6Al-4V doped with
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with BG; and in (f), (i), and (l) for optimal Ti-6Al-4V doped with BG.
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2.5. Most Successful Bone Remodeling with Optimal Ti-6Al-4V Doped with BG

In terms of the biomechanical properties of healthy surrounding bone tissues, it is crucial to
quantify the percentage of immature bone, mature bone, and void growth at the bone–implant interface.
Figure 6 depicts the area fraction of immature bone, mature bone, and void in the three 3D-printed
pedicle screws at 2 and 120 days after implantation.
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by the appearance of void were observed for all three 3D-printed pedicle screws 120 days after
implantation. Immature bone reduced from 47.5% to 33.0% and mature bone increased from 52.5% to
62.1% along with void of 4.9% for the optimal Ti-6Al-4V after 120 days. The commercial Ti-6Al-4V
doped with BG exhibited a slight decrease in immature bone from 37.2% to 32.0% and an increase in
mature bone from 62.8% to 67.7% after 120 days; however, a negligible presence of void of 0.3% was
noted. Compared with the optimal Ti-6Al-4V and commercial Ti-6Al-4V doped with BG, the optimal
Ti-6Al-4V doped with BG exhibited a more noticeable difference between the evolution of immature
bone and mature bone during the same implantation period. The immature bone decreased from
54.4% to 14.4%, whereas a more striking development of mature bone from 45.6% to 75.8%, along with
void of 9.8%, was obtained for the optimal Ti-6Al-4V doped with BG after 120 days. Notably, the BG
dopant facilitates the increase of constituent HA minerals resulting in the rapid development of mature
bone. During the same implantation period, the bone ingrowth process was mostly complete for the
commercial shape-based implant, whereas the bone remodeling process seemed likely to continue
in the optimal healing chamber-based pedicle screw. The synergistic combination of BG dopant and
optimal shape design pedicle screw not only hastens the development of mineralized mature bone
during the initial implantation period but also facilitates the subsequent gradual bone ingrowth for a
complete bone healing process and successful long-term spinal stabilization.

3. Discussion

The success of pedicle screws in spinal fixation undergoes a complicated biomechanical process
under various biophysical and mechanical stimuli, wherein the implants are initially stabilized, followed
by the bone regeneration and bone incorporation around the implants, and finally, incorporation
of the implants within the spinal structure as its part [41,42]. However, pedicle screw loosening
is a common problem presented by the current screw design and material. If the optimal pedicle
screw could act as a fusion material with long-lasting bone integration, it could potentially avoid
the preparation of additional fusion areas and surgical interventions, such as posterolateral fusion or
interbody fusion [43]. Nonetheless, excellent mechanical fixation and stabilization of pedicle screws
require strong bone–implant interface bonding and direct biological anchorage to the surrounding
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bone tissue [44]. Notably, the first four months after implantation are crucial for evaluating the bone
ingrowth and bone remodeling process around the implants after osseointegration.

The fracture healing process depends on the evolution of the surrounding bone tissue of fibrous
tissue, cartilage, immature bone, and mature bone [42]. The formation of immature bone originates
from the ossification of primarily constituent osteoblast cells, which regulate further nucleation and
growth of HA mineral crystals [45]. Notably, the strength of the bone is gradually enhanced with time
and is sufficiently strong to bear high loadings with the development of mineralized mature bone [46].
Therefore, superior bone ingrowth and greater bone maturity result in richer osseointegration, stronger
bone–pedicle screw interface bonding, and faster fracture healing [8,28].

OurµCT results revealed that either the geometric effect of optimal shape design or the composition
effect of the BG dopant had positive effects on the volume fraction of healthy surrounding bone;
however, the effect of geometry on the bone volume fraction was more pronounced than the effect
of the composition. Greater ingrowth of mineralized bone tissue into the well-designed healing
chamber was attributed to a faster bone volume fraction in the optimal shape design pedicle screws
than in the commercial shape ones. The combination of optimal shape design and BG dopant-based
pedicle screw fabricated using 3D printing yielded the highest bone volume fraction and the highest
amount of mature bone during the same implantation period, which strengthens the concept that
bone–implant contact bonding fastens the bone remodeling process. Our superior results on the
3D-printed Ti-6Al-4V doped with BG pedicle screw with the optimal healing chamber suggested that
new composite materials and optimal shape design should be applied simultaneously for creating
potentially feasible implants for clinical applications that can accelerate the fracture healing process.

Nonetheless, this study had limitations. The number of spinal specimens examined using µCT
were 2–4, whereas that investigated using TXM was one. Hence, a greater number of specimens
in each sample set involved in each experiment is required to achieve statistical significance and
excellent in vivo results that could help decide its feasibility for clinical applications. Furthermore,
the mechanical pull-out tests, which are beneficial in directly evaluating the mechanical binding at the
bone–pedicle screw interface, were not considered for discussion in the present study because of the
incomplete results from an insufficient number of four types of pedicle screws. Notably, the current
study focused on the developing status of bone integration and bone remodeling after spinal fusion
within an essential implantation period of four months in vivo.

4. Materials and Methods

4.1. Preparation of Pedicle Screw Implants

Additive manufacturing was performed on an Industrial Technology Research Institute (ITRI)-AM
250 machine. Laser power of 170 W, scan speed of 1150 mm/s, hatch spacing of 0.1 mm, and laser
spot size of 70 µm were used. The 3D printing of a commercial design-based pedicle screw composed
of Ti-6Al-4V doped with 0.25% (expressed in weight percent) BG was fabricated using the SLM
technique and compared with the commercially available Ti-6Al-4V pedicle screw, which was used as
a reference implant to investigate the effect of the composition. In addition, the geometric effect was
identified using two 3D-printed pedicle screws with an optimal shape design consisting of Ti-6Al-4V
and Ti-6Al-4V doped with 0.25% BG. The BG used in this study was 58S with a melting point of 1400 ◦C,
which was quite close to that of 1650 ◦C of Ti-6Al-4V. The 58S BG comprised 60 mol% SiO2, 36 mol%
CaO, and 4 mol% P2O5 [39]. Our research findings indicated that 0.25% was the most appropriate
concentration of BG for the additive manufacturing process, with the best mechanical properties.
Photographs of four types of pedicle screw implants are illustrated in Figure 7. Notably, the healing
chambers of commercial design-based pedicle screws have regular trapezoid shapes, whereas those of
optimal shape design-based pedicle screws have a thicker bottom, as illustrated in the enlarged images
of Figure 7a,d.
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4.2. Preparation of Spine Specimens

A set of four types of pedicle screws and connecting rods [47], which provided in vivo stress,
were surgically implanted in the thoracic and lumbar vertebrae of two healthy 1-year-old porcine
animals (50 kg) from standard posterior approach. The pedicle screws were inserted under fluoroscopy
guidance for confirmation of the final position. Some of the vertebrae were used explicitly for µCT,
whereas some were prepared for traditional imaging techniques and TXM analyses. We assumed that all
vertebrae could be compared with each other owing to the marginal differences between them. Animal
experiments were performed strictly according to the regulations and laws of the Institutional Animal
Care and Use Committee (IACUC) of Taipei Medical University (TMU), Taipei, Taiwan. All animal
experiments were approved by the IACUC (IACUC number: LAC-2015-0281). The two porcine
models were euthanized at pre-decided time points of 2 and 120 days after implantation following
careful surgery, and the spinal specimens, including the pedicle screw implant and surrounding bone,
were then fixed in formaldehyde and stored at −18 ◦C. The spinal specimens for imaging techniques,
namely histological staining [48], fluorescence [49], µCT [50,51], and TXM, were prepared based on
our previous protocol [28]. Histological staining, particularly RBS staining protocol proposed by
Dorn and Hart Microedge, was employed for ground section histology. The spinal specimens were
stained in acidified acid fuchsin for a clear observation of mature bone in the stained pink area under
a transmitted light microscopy. Fluorescence microscopy technique was taken under an excitation
wavelength of 467 nm and emission wavelength of 550 nm using a specific wavelength of the green filter
(ET405/40x). Tetracycline was used as fluorochrome for the fluorescence characteristics. Fluorescence
analysis allows an observation of immature bone in the brighter green fluorescence area.

4.3. Tensile Test

The in-situ neutron diffraction for tension was conducted using the VULCAN engineering
diffractometer at the Spallation Neutron Source (SNS) of the Oak Ridge National Laboratory (ORNL).
Neutron diffraction was used to characterize the structural properties, whereas the tensile test was
performed to determine the mechanical properties of the 3D-printed Ti-6Al-4V and Ti-6Al-4V doped
with BG specimens. The protocols of in-situ neutron diffraction for examination of the microstructure
evolution of the tensile specimens are archived [52–54]. The tensile specimens of Ti-6Al-4V and
Ti-6Al-4V doped with BG powders were horizontally built into dog-bone shapes by using the SLM
technique with a gauge length of 10 mm and a gauge radius of 3 mm. The samples were strained at a
strain rate of 1.2 × 10−5/min by using an extensometer for accurate strain measurement in the elastic
deformation regime.
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4.4. X-ray Micro-Computed Tomography

µCT was performed to calculate the volume of bone growth around the pedicle screws. Because
of the image contrast in grayscale color and the penetration of X-ray through only the soft tissues of
the living body [55], the hard bone and soft tissues can be distinguished as white and black regions,
respectively. The spinal specimens were scanned using Skyscan 2211 at 25 µm. An ultra high voltage
of 140 kV and a current of 155 µA were used for 360◦ scanning. Reconstructed cross section images
were reorientated, and the region of interest was selected for further analysis. Overall, 150 image slices
(corresponding to a thickness of 3.75 mm) were selected and considered as the total volume (TV) of the
bone defect region. The distribution of bone in this region was calculated as the bone volume (BV).
The ratio of BV to TV (BV/TV) was defined as the bone volume fraction.

4.5. Transmission X-ray Microscopy

We conducted TXM—a nondestructive image microscopy technique—at the wavelength of 1.54 Å
(8 keV) with a spatial resolution of 60 nm at the beam line (BL) 01B1, National Synchrotron Radiation
Research Center (NSRRC) in Taiwan. The evident contrasts of two-dimensional (2D) TXM images
provided a clear differentiation of the developing areas of immature bone, mature bone, and void to
the naked eye [28,56,57]. The surface area of bone ingrowth was determined as the ratio between the
surface area of immature bone, mature bone, or void and the total area of bone ingrowth.

5. Conclusions

The stress-shielding effects can be effectively minimized by adding an optimal amount of 58S
BG to 3D-printed Ti-6Al-4V alloy, which effectively lowers its elastic modulus of 92 GPa to be closer
to that of bone. Compared with the optimal Ti-6Al-4V and commercial Ti-6Al-4V doped with BG
pedicle screw implants, the optimal Ti-6Al-4V doped with BG resulted in superior bone ingrowth and
long-lasting bone integration in vivo owing to its salient features of high bone volume fraction and
mineralized mature bone. Our findings indicated that a combination of the optimal healing chamber
and Ti-6Al-4V doped with BG pedicle screw fabricated through additive manufacturing facilitates
osseointegration and accelerates bone healing and has the potential to be a promising implant for
clinical applications.
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Abbreviations

Ti-6Al-4V Titanium-aluminum-vanadium
BG Bioactive glass
Ti Titanium
HA Hydroxyapatite
3D Three-dimensional
SLM Selective laser melting
µCT X-ray micro-computed tomography
TXM Transmission X-ray microscopy
S-S Stress–strain
IACUC Institutional Animal Care and Use Committee
TMU Taipei Medical University
SNS Spallation Neutron Source
ORNL Oak Ridge National Laboratory
BL Beamline
NSRRC National Synchrotron Radiation Research Center
2D Two-dimensional
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