n
8 OIS

TECHNICAL NOTE

GigaScience, 10, 2021, 1-7

https://doi.org/10.1093/gigascience/giab025
Technical Note

An analysis of security vulnerabilities in container

images for scientific data analysis

Bhupinder Kaur, Mathieu Dugré, Aiman Hanna and Tristan Glatard

Department of Computer Science and Software Engineering, Concordia University, Montreal, QC H3G 1M8,

Canada

*Correspondence address. Tristan Glatard, Department of Computer Science and Software Engineering, Concordia University, 1455 De Maisonneuve
Blvd. W,, EV 3.139, Montreal, Quebec H3G 1M8, Canada. E-mail: tristan.glatard@concordia.ca © http://orcid.org/0000-0003-2620-5883

Abstract

Background: Software containers greatly facilitate the deployment and reproducibility of scientific data analyses in various
platforms. However, container images often contain outdated or unnecessary software packages, which increases the
number of security vulnerabilities in the images, widens the attack surface in the container host, and creates substantial
security risks for computing infrastructures at large. This article presents a vulnerability analysis of container images for
scientific data analysis. We compare results obtained with 4 vulnerability scanners, focusing on the use case of
neuroscience data analysis, and quantifying the effect of image update and minification on the number of vulnerabilities.
Results: We find that container images used for neuroscience data analysis contain hundreds of vulnerabilities, that
software updates remove roughly two-thirds of these vulnerabilities, and that removing unused packages is also effective.
Conclusions: We provide recommendations on how to build container images with fewer vulnerabilities.

Keywords: containers; Docker; singularity; security vulnerabilities; neuroimaging

Introduction

Software containers have emerged as an efficient solution to
deploy scientific data analyses on various platforms, owing to
their portability, ease of use, and limited overhead. Taking ad-
vantage of core Linux kernel features such as namespaces, con-
trol groups, and chroot, containers isolate processes from the
host computer and often can control the memory, CPU, network,
and file system resources assigned to them. However, containers
still share the kernel, mounted file systems, and some devices
with the host, which raises security concerns [1-3] and opens
the door to privilege escalation, denial of service, information
leak, and other types of attacks [4].

Container images typically include full operating system (OS)
distributions in addition to data analysis software and their de-
pendencies. They are rarely updated owing to concerns that up-
dated software may be incompatible or may interfere with the
results via numerical perturbations propagating in the analyses
in unknown ways [5, 6]. Images also typically include more de-

pendencies than required, to make them easier to reuse between
experiments. As a result, >30% of official images in DockerHub
have been shown to contain high-priority security vulnerabili-
ties [7], images on average contain >180 vulnerabilities [8], and
vulnerabilities are often caused by outdated packages [9].

Scientific data analyses typically involve a range of compu-
tational infrastructures, including personal workstations, labo-
ratory servers, high-performance computing clusters, and cloud
computing platforms. It is common for researchers to have ac-
cess to multiple systems through a combination of credentials
and to migrate analyses depending on their evolution. As a re-
sult, an attacker gaining access to 1 of these systems, possibly
through a vulnerable container, might be able to compromise an
extensive infrastructure and use it for malicious purposes.

In this study, we focus on the vulnerabilities present in con-
tainer images used in scientific data analysis, in particular in the
neuroimaging domain. We address the following questions:

(i) What is the current amount of vulnerabilities in container
images used in scientific analyses? Vulnerabilities are possible

Received: 26 October 2020; Revised: 1 March 2021

© The Author(s) 2021. Published by Oxford University Press GigaScience. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any

medium, provided the original work is properly cited.

http://www.oxfordjournals.org
http://orcid.org/0000-0003-2620-5883
mailto:tristan.glatard@creatis.insa-lyon.fr
http://orcid.org/0000-0003-2620-5883
http://orcid.org/0000-0003-2620-5883
http://creativecommons.org/licenses/by/4.0/

attack vectors that can seriously compromise the security of
computing systems and the integrity of user data. We report
vulnerability scans produced by 4 popular image scanning tools:
Anchore, Vuls, Clair, and Singularity.

(ii) Can the amount of vulnerabilities be reduced by updat-
ing the images? To avoid breaking software dependencies and
introducing numerical perturbations, container images used in
scientific analyses often include outdated software. We report
on the effect of software updates on the amount of vulnerabili-
ties found in images.

(iii) Can the amount of vulnerabilities be reduced by mini-
fying images? Container images often include more software
packages than necessary for a typical analysis. We report on the
impact of unused software packages on the presence of vulner-
abilities.

The remainder of this article describes the container images
and scanners used in our experiment, and our methodology for
updating and minifying images. The results section presents the
vulnerabilities detected in container images, quantifies the ef-
fectiveness of updating and minifying images, and explains the
differences observed between scanners. In conclusion, we pro-
vide a set of image creation guidelines for a more secure deploy-
ment of containers in scientific analyses.

We used container images from 2 popular application frame-
works, as well as 4 of the major image scanners.

We scanned all container images available at the time of this
study on 2 containerization frameworks used in neuroscience:
BIDS apps [10] (26 images) and Boutiques [11] (18 images), total-
ing 44 container images. At the time of the study, BIDS apps had
27 images, of which 1 was not available on DockerHub. Boutiques
had 49 images; however, only 23 unique images were listed, of
which 3 could not be retrieved and 2 were already included in
BIDS apps. All the final 26 images from BIDS apps were Docker
images, whereas the 18 Boutiques images contained 12 Docker
images and 6 Singularity images.

We compared the results obtained with 4 container image scan-
ners: Anchore, Vuls, and Clair to scan Docker images and Singu-
larity Container Tools (Stools) to scan Singularity images.

Anchore [12] is an end-to-end, open-source container secu-
rity platform. It analyzes container images and lists vulnerable
OS packages, non-OS packages (Python, Java, Gem, and npm),
and files. In our experiments, we used Anchore Engine version
0.5.0 through Docker image anchore/anchore-engine:v0.5.0 and
Anchore vulnerability database version 0.0.11.

Vuls [13] is an open-source vulnerability scanner for Linux
and FreeBSD. It offers both static and dynamic scanning and
both local and remote scanning. In our experiments, we used
Vuls 0.9.0, executed through Docker image vuls/vuls:0.9.0 in re-
mote dynamic mode.

Clair [14] an open-source and extensible vulnerability scan-
ner for Docker and OCI (Open Container Initiative) container im-
ages, developed by CoreOS (now Container Linux), a Linux dis-
tribution to deploy container clusters. We used Clair through
Clair-scanner [15] a tool to facilitate the testing of container im-
ages against a local Clair server. We used Clair version 2.0.6, ex-

ecuted through Docker image arminc/clair-local-scan:v2.0.6. For
the vulnerability database, we used Docker image arminc/clair-
db:latest, last updated on 18 September 2019.

Singularity Tools (Stools) [16] is an extension of Clair for Sin-
gularity images. Stools exports Singularity images to tar.gz for-
mat, acting as a single-layer Docker image to circumvent the
Docker-specific requirements in the Clair APL In our experi-
ments, we used Singularity Tools version 3.2.1 through Docker
image vanessa/stools-clair:v3.2.1. Because Stools uses Clair in-
ternally for scanning, the vulnerability databases used by Stools
are the same as mentioned for Clair. To scan Singularity images,
we followed the steps mentioned in the Stools documentation
[17].

Scanners refer to 2 types of vulnerability databases (Table 1).
The first is the Open Vulnerability and Assessment Language
(OVAL) database, an international open standard that supports
various OS distributions including Ubuntu, Debian, and CentOS
but not Alpine. The second is vulnerability databases from spe-
cific OS distributions, such as Alpine-SecDB, Debian Security Bug
Tracker, Ubuntu CVE Tracker, or Red Hat Security Data. In these
databases, OS distributions often assign a status to each vulner-
ability to keep track of required and available security fixes in
different versions of the distribution. Vuls uses OVAL databases
for all distributions except Alpine. On the contrary, Clair ex-
clusively refers to distribution-specific databases. Anchore uses
OVAL only for CentOS because distribution-specific databases
are assumed to be more complete. It is also worth noting that
there are no vulnerability data for Ubuntu 17.04 and 17.10 distri-
butions in the OVAL database because these distributions have
reached end of life, meaning that images with these distribu-
tions cannot be scanned with Vuls.

For CentOS images, Anchore and Clair report scanning
results using Red Hat Security Advisory (RHSA) identifiers,
whereas Vuls uses the Common Vulnerabilities and Exposures
(CVE) identifiers used in OVAL. We mapped RHSA identifiers to
corresponding CVE identifiers, to allow for a comparison be-
tween scanners.

Different vulnerabilities may be reported by scanners if scan-
ning experiments take place on different dates. To avoid such
discrepancies, we froze the vulnerability databases used by
these scanners as of 25 September 2019.

A first approach to reduce the number of vulnerabilities in con-
tainer images is to update their packages to the latest version
available in the OS distribution. To study the effect of such up-
dates, we created a script, available in the GitHub repository as-
sociated with this paper [18] (see Section “Availability and Re-
quirements”), to identify the package manager in the image, and
invoke it to update all OS packages. We updated images on 5
November 2019.

A second approach to reduce the number of vulnerabilities in the
images is to remove unnecessary packages, an operation poten-
tially specific to each analysis. Although vulnerabilities in un-
used packages could not be directly exploited when running the
analysis provided by the container image, they still increase the
risk of escalation attacks and should therefore be avoided.

Table 1. Vulnerability databases used by scanners for different OS distributions

0s Anchore

Alpine Alpine-SecDB

CentOS Red Hat OVAL Database
Debian Debian Security Bug Tracker
Ubuntu Ubuntu CVE Tracker

Vuls Clair

Alpine-SecDB Alpine-SecDB
Red Hat OVAL Database and Red Hat Red Hat Security
Security Advisories Data
Debian OVAL Database and Debian Debian Security Bug
Security Bug Tracker Tracker
Ubuntu OVAL Database Ubuntu CVE Tracker

All scanners also refer to the National Vulnerability Database for vulnerability metadata.

We used the open-source ReproZip tool [19] to capture the
list of packages used by an analysis. ReproZip first captures the
list of files involved in the analysis, through system call inter-
ception, then retrieves the list of associated software packages
by querying the package manager. We extend this list with a
passlist of packages required for the system to function, such
as coreutils and bash, and with all the dependencies of the re-
quired packages, retrieved using Debtree. Repoquery [20] could
be used in RPM-based distributions instead. Our minification
script, available in the GitHub repository associated with this pa-
per [18] (see Section “Availability and Requirements”), , installs
ReproZip in the image to minify, runs an analysis to collect a Re-
proZip trace, and finally deletes all unnecessary packages. We
had used the Neurodocker tool [21] initially, but it did not af-
fect the detected vulnerabilities as it was removing unused files
without using the package manager.

Image minification is a tedious operation because it requires
(i) creating relevant analysis examples and (ii) running these ex-
amples in the container image to identify the packages required
by the application. The resulting minified container image is
only valid for the examples selected in the minification process
because other executions might require a different set of pack-
ages.

While the Boutiques specification allows developers to spec-
ify analysis tests, we found that this feature was not consistently
used in the studied container images. Therefore, we relied on
analysis examples found in the documentation of the applica-
tions. Using this approach, we minified 5 Debian- or Ubuntu-
based BIDS app images.

Figure 1 presents our results. All the collected data are available
in our GitHub repository at https://github.com/big-data-lab-te
am/container-vulnerabilities-paper with a Jupyter notebook to
regenerate the figures.

An important amount of vulnerabilities were found in the tested
container images (Fig. 1a), with a mean of 460 vulnerabilities per
image and a median of 321. Moreover, a significant fraction of de-
tected vulnerabilities are of high severity (CVSS score >7.0) and
a few of them are of critical severity (CVSS >9.0). Remote attack-
ers could possibly exploit these vulnerabilities to execute arbi-
trary code in the container or to store arbitrary files in the sys-
tem. For instance, vulnerability CVE-2019-3462 could lead to re-
mote code execution through human-in-the-middle attacks and
vulnerability CVE-2018-1000802 could lead to arbitrary file injec-
tions in the file system through unfiltered Python user input.
Among other consequences, remote code execution and injec-
tion of arbitrary files could be leveraged to steal user credentials,

to use CPU cycles or storage space for illegitimate purposes, or
to attempt denial-of-service attacks against the system.

Images based on the Alpine distribution had the fewest vul-
nerabilities, but no significant difference in the numbers of vul-
nerabilities detected in Ubuntu, Debian, or CentOS distributions
was observed.

Unsurprisingly, a strong linear relationship is found between
the number of detected vulnerabilities and the number of pack-
ages present in the image (Fig. 1c, r = 0.82, P < 10~11). On average,
1.7 vulnerabilities are introduced for each new package installa-
tion. This observation motivates a systematic review of software
dependencies by application developers, to avoid unnecessary
packages in container images. Compared to Ubuntu and Debian
distributions, CentOS images seem to have fewer vulnerabilities
by package on average, although data are too scarce to draw con-
clusions.

Updating container images reduces the number of vulnerabil-
ities by package by a factor of 3 on average, resulting in only
0.6 extra vulnerabilities by package (Fig. 1d, r = 0.81, P < 1077).
Twelve container images are missing on this figure. Six of them
are Singularity images that we did not update, and 6 of them
could not be updated by our script owing to the following is-
sues. One image was built from base Docker image CentOS
7.1.1503, which includes package fakesystemd conflicting with
several other distribution packages: updating would require ei-
ther updating the base image or swapping package fakesys-
temd for systemd. Three images were built from Ubuntu 17.04
or Debian 8, which have reached end of life: updating would re-
quire changing the source list to make it point to old releases.
Two images could not be updated because some files previ-
ously installed through the package manager had been removed
by other means, leading to failure of the update process. Soft-
ware updates did not break the tested analyses in the remain-
ing images. We did not investigate the potential consequences
of image updates on numerical stability because it would re-
quire a full separate study. Updating packages seems to be an
efficient way to avoid vulnerabilities. It is not an ultimate solu-
tion, however, because a substantial number of vulnerabilities
remain.

Using the ReproZip-based approach described previously, we
minified 5 different images covering the spectrum of detected
vulnerabilities (Fig. 1b). We find that minification reduces the
number of vulnerabilities, albeit less systematically than pack-
age update. For some container images, such as Image S, mini-
fication removes >70% of the detected vulnerabilities. For other
images, such as Image g, it only reduces the number of vulnera-

https://github.com/big-data-lab-team/container-vulnerabilities-paper

4 | Security vulnerabilities in container images for scientific data analysis

OS distribution

Emm Centos
A EmE Debian
Severity Alpine Operation applied
[Unknown Negligible . Low Em Medium Hm High (Critical) B Ubuntu None Update B Minification Emm Update & Minification
k (1)
[1
hi 1
g
T
i
Q 9
e
H
d:
i
S
F
N d
al
z
b!
@ 3 o
Y
8 x+ &
ER £
U o
2 2s
TV K]
€0 z
o P o
o o]
v]
D [(1)
Wk)
s+
W] a
X |
E I (1)
K [T—— (1)
G []
|
M -
L (-
ux u
JE |
C
|
A
B
0 500 1000 1500 500 1000 1500
Number of vulnerabilities Number of vulnerabilities
Before update After update
[]
1600 1600
L
1400 1400
1200 1200

0

2

=

51000 1000

[

o

c

>

S

%5 800 800

o}

o

E

E]

Z 600 600)
400 400
200 200

0| 0]
100 200 300 400 500 600 700 800 900 100 200 300 400 500 600 700 800 900

Number of packages

Number of packages

Figure 1: Number of vulnerabilities detected by Anchore and Stools in container images. (a) Number of vulnerabilities by container image and severity, showing
hundreds of detected vulnerabilities per image. Images s, tx, Ux, V¥, Wx, and x* are Singularity images scanned by Stools, and others are Docker images scanned
using Anchore. High and critical vulnerabilities are represented with the same solid color and critical vulnerabilities are reported in paretheses. (b) Effect of image
minification and package update on 5 container images, showing that both techniques are complementary. (c) Number of vulnerabilities by number of packages,
showing a strong linear relationship. (d) Number of vulnerabilities by number of packages after package update, showing that software updates importantly reduce

the number of detected vulnerabilities.

bilities by <1%. The effect of minification stems from the num-
ber of packages that can be removed, which varies greatly across
images. For instance, Images g and a have a large number of
packages, but almost all of them are required by the analysis,
which makes minification less useful. In other cases, a limited
number of unnecessary packages contain a significant number
of vulnerabilities, which makes minification very effective. This
was the case in Images d, S, and U, where removing compil-
ers and kernel headers reduced the number of vulnerabilities by

an important fraction. Minification did not create any errors in
these images because all the dependencies were taken care of
properly. Common packages removed by the minification pro-
cess were compilers, unused Python packages, and unused file
compression utilities.

Combined effect of image update and minification

Package update and image minification remove different types
of vulnerabilities. The former is efficient against vulnerabilities

Anchore Clair

536
(7)

Vuls

Figure 2: Differences between vulnerabilities detected by the different scanners.
The Jaccard coefficients between the sets of detected vulnerabilities are quite
low, showing important discrepancies between the scanners: Jaccard(Anchore,
Clair) = 0.63, Jaccard(Anchore, Vuls) = 0.59, Jaccard(Vuls, Clair) = 0.80. Two
Ubuntu 17.04 images were not included in this comparison because they can-
not be scanned by Vuls.

that have been fixed by package maintainers, while the latter
targets unused software. In 2 of the 5 tested images (Images S
and U), we find that combining update and minification further
reduces the number of vulnerabilities compared to using only 1
of these processes (Fig. 1b).

Differences between scanners

The results presented so far were obtained with Anchore (Docker
images) and Stools (Singularity images). We scanned the Docker
images with 2 other tools, Clair and Vuls, to evaluate the stabil-
ity of our results. Important discrepancies were found between
scanners (Fig. 2), in particular between Anchore and the other 2
scanners, for which Jaccard coefficients as low as 0.6 were found,
meaning that scanning results only overlapped by 60%. Vuls and
Clair seem to be in better agreement, with a Jaccard coefficient
of 0.8.

We analyzed these results and explained some reasons be-
hind the observed discrepancies. Of 4,453 vulnerabilities de-
tected by Anchore only (Region 1 in Fig. 2), 4,443 are found in the
development package of the C library (linux-libc-dev in Ubuntu
and Debian). Clair detects only Debian vulnerabilities in linux-
libc-dev, whereas Vuls does not detect vulnerabilities in this
package at all. Because Anchore ignores Debian vulnerabilities
flagged as “minor”, it might either detect (Region 2) or ignore
(Region 3) the Debian vulnerabilities detected by Clair in linux-
libc-dev. The remaining 10 vulnerabilities in Region 1 are found
in sub-packages of vulnerable packages: they are correctly re-
ported by Anchore and missed by Vuls and Clair.

Many vulnerabilities in Regions 3 and 4 are from images
based on Ubuntu 14.04. In the Ubuntu CVE tracker database used
by Clair and Anchore, there are 2 entries for Ubuntu 14.04: 1 for
LTS (Long-Term Support), a Ubuntu release with 5 years of tech-
nical support, and another 1 for ESM (Extended Security Main-
tenance), a release that provides security patches beyond the

Kauretal. | 5

S years covered by LTS. Although all the scanned images are LTS,
Clair refers to the ESM database entry while Anchore and Vuls
refer to the LTS database entry. The vulnerabilities present in
Region 3 due to this discrepancy are incorrectly missed by An-
chore and Vuls: they have been detected in ESM but were already
present in LTS. The vulnerabilities in Region 4 are incorrectly
missed by Clair: they have been fixed in ESM but are still present
in LTS.

Some vulnerabilities in Region 6 are due to bugs in Anchore:
the “epoch bug” ignores vulnerabilities related to package ver-
sions that contain an epoch (:); the “out of standard bug” ig-
nores vulnerabilities that are ignored by the Ubuntu distribution.
We reported these bugs to the Anchore developers through their
Slack channel. Some vulnerabilities in Region 6 are also due to
the fact that Anchore intentionally ignores Debian vulnerabili-
ties flagged as “minor”.

Finally, 32 vulnerabilities that are flagged temporary by the
Debian distribution are reported by Vuls but not by Anchore or
Clair (Region 7). The remaining 504 vulnerabilities in this region
are all found in CentOS images. We were not able to explain why
they were detected by Vuls only.

Discussion

There is a widespread issue with security vulnerabilities in con-
tainer images used for neuroimaging analyses, and it is likely to
affect other scientific disciplines as well. As shown in our results,
it is common for container images to hold hundreds of vulner-
abilities, including several of critical severity. Container images
are affected regardless of the type of analyses that they support,
and the main OS distributions Ubuntu, Debian, and CentOS are
all affected.

Software updates remove roughly two-thirds of the vulner-
abilities found and should certainly be considered the primary
solution to this problem. However, in neuroimaging as in other
disciplines, software updates are generally discouraged because
they can affect analysis results by introducing numerical pertur-
bations in the computations [5, 6]. We believe that this position
is not viable from an IT security perspective and that it could en-
danger the entire Big Data processing infrastructure. Instead, we
advocate a more systematic analysis of the numerical schemes
involved in data analyses, which, coupled with software testing,
would make the analyses robust to software updates. As a first
step, the packages affecting the analyses could be specifically
identified and the others updated, which would largely remove
vulnerabilities.

Ultimately, software updates should even occur at runtime
rather than when the container image is built. Indeed, it is likely
that container images used for scientific data analyses are built
only occasionally, perhaps every few weeks when a release be-
comes available, which may not be compatible with the fre-
quency of required security updates. In fact, there is no definite
reason for the application software release cycle to be synchro-
nized with security updates, and security updates should not
be dependent on application software developers. Instead, we
think it would be relevant for analytics engines to (i) systemat-
ically apply security updates when containers start and (ii) run
software tests provided by application developers, including nu-
merical tests, before running analyses.

Implementing such a workflow, however, requires a long-
term endeavour to evaluate broadly the stability of data analysis
pipelines, and to develop the associated software tests. For the
shorter term, we identified the following recommendations for

application developers to reduce the number of security vulner-
abilities in container images:

i. Introduce software dependencies cautiously. Software de-
pendencies come with a potential security toll that is often
neglected. For instance, it can be tempting to add a com-
plete toolbox to implement a relatively minor operation in
a data analysis pipeline, such as a data format conversion,
while the same functionality might be available in the ex-
isting dependencies of the pipeline, albeit in a less conve-
nient way. Some package managers such as apt also sup-
port “weak” package dependencies that are recommended
but not necessarily required for installation. Installation of
such suggested packages can be avoided using specific op-
tions of the package manager (-no-install-recommends in
the case of apt). Using lightweight base OS images such as
Alpine Linux can also reduce the number of unnecessary
dependencies. However, developers should ensure that this
does not lead to installing extra dependencies without using
the package manager, as mentioned in Point (iv) below.

ii. Minify container images. Minifying container images is an-
other way to reduce software dependencies. However, the
automated minification process that we used in our study
is unwieldy for routine use because it requires capturing
execution traces with ReproZip to reconstruct the graph of
package dependencies required for the analysis. In practice,
it would be more practical for software developers to iden-
tify and remove unnecessary dependencies when they build
containers, based on their knowledge of the application.

iii. Use OS releases with long-term support. Security updates
are not provided for OS distributions that have reached end
of life. When a given release of a data analysis pipeline is ex-
pected to be used over a long period, typically several years
as is common in neurosciences, the life cycle of the distri-
bution release should be considered when choosing a base
container image. OS distributions have very different life cy-
cle durations because long and short life cycles serve dif-
ferent purposes. For instance, among Red Hat-based distri-
butions, Fedora releases a new version every 6 months and
provides maintenance for ~1 year, while CentOS releases
every 3-5 years and provides maintenance for 10 years. Sim-
ilarly, Ubuntu and Debian LTS (long-term support) distribu-
tions provide security updates for >5 years.

iv. Install packages, not files. Regardless of their support status,
base OS distributions covered by the previous recommenda-
tion rarely include scientific software. Because vulnerabil-
ity scanners detect vulnerabilities from the list of installed
packages, vulnerabilities contained in files installed with-
out the package manger remain undetected. To reduce such
occurrences, scientific software should as much as possi-
ble be linked dynamically against libraries provided by the
base OS distribution. The use of domain-specific reposito-
ries such as NeuroDebian or NeuroFedora in neuroimaging
is also useful in this respect because these distributions fa-
cilitate transparent software updates and might be covered
by image scanners in the future.

v. Run image scanners during continuous integration. Scan-
ning container images can be a cumbersome process that
could be asynchronously executed during continuous inte-
gration (CI), through tools such as Travis CI or Circle CI. In-
cluding security scans in CI also allows developers to iden-
tify vulnerabilities quickly, before new software versions are

released. The Anchore documentation includes specific in-
structions on how to do so [22]. The Stools repository also
includes a Travis CI file that can be reused for this purpose.

Describing specific attacks that would exploit vulnerabilities
in container images is out of the scope of our study. We believe
that such attacks are likely to exist given that critical vulnerabil-
ities allowing for arbitrary code execution or file injection were
found. Attacking systems through containers remains challeng-
ing owing to their relative isolation from the host system. Under
the assumption that container host users can be trusted, attack-
ers would have to be remote, either in the same network or on a
remote network. Two main types of attacks can be envisaged in
these conditions: network-based attacks, exploiting vulnerabili-
ties in network clients installed in the container; and data-based
attacks, exploiting vulnerabilities through the processing of ma-
licious data injected through third-party systems.

Several types of escalation attacks could be envisaged once
remote attackers gain access to the container, in particular re-
lated to (i) stealing user credentials; (ii) using the resources al-
located to the container for malicious use, resulting in denial of
service; and (3) attacking a host network service, e.g., a locally
accessible server or a file system daemon. Exploits in the host
kernel to break out of the container are always possible but un-
likely assuming that the host system is maintained by profes-
sional system administrators.

Most container images used in scientific data analyses con-
tain hundreds of security vulnerabilities, many of which are
critical. In the short term, application software developers can
address this issue by (i) reducing software dependencies and
(ii) applying regular security updates, which requires using OS
distributions with long-term support. In the longer term, data
analysis pipelines would benefit from in-depth stability analy-
sis to ensure that analytical results are not affected by security
updates.

This conclusion is not an alarming message urging sys-
tem administrators to ban containers from their systems. User-
controlled container images are just one of many end-user ar-
tifacts that could serve as attack vectors, and to our knowledge
no attack has been described to exploit them. More traditional
types of attacks targeting user credentials or network connec-
tions are likely to remain more common.

The data and scripts used in this study are available on GitHub
with a Jupyter notebook to regenerate the figures:

Project name: container-vulnerabilities-paper

Project home page: https://github.com/big-data-lab-team/conta
iner-vulnerabilities-paper

Operating system: Platform independent

Programming language: Python

Other requirements: Jupyter >1.0.0, Matplotlib >3.3.0, NumPy
>1.19.1, Pandas >1.0.5, SciPy >1.6.0

License: GNU General Public License v3.0

The data underlying this article are available in [23].

https://github.com/big-data-lab-team/container-vulnerabilities-paper

API: Application Programming Interface; CI: continuous integra-
tion; CPU: central processing unit; CVE: Common Vulnerabilities
and Exposures; OS: operating system; OVAL: Open Vulnerability
and Assessment Language; RHSA: Red Hat Security Advisory.

The authors declare that they have no competing interests.

BK: Investigation, Software, Methodology, Writing - Original
Draft Preparation, Validation, Visualization; MD: Software; AH:
Conceptualization, Supervision, Methodology, Validation, Writ-
ing - Review & Editing; TG: Conceptualization, Supervision,
Methodology, Validation, Writing - Review & Editing, Visualiza-
tion, Funding Acquisition.

1. Martin A, Raponi S, Combe T, et al. Docker ecosystem-—
vulnerability analysis. Comput Comm 2018;122:30-43.

2. Sultan S, Ahmad I, Dimitriou T. Container Security: Issues,
challenges, and the road ahead. IEEE Access 2019;7:52976-
96.

3. Combe T, Martin A, Di Pietro R. To Docker or not to
Docker: A security perspective. IEEE Cloud Comput 2016;3(5):
54-62.

4. Gantikow H, Reich C, Knahl M, et al. Providing security
in container-based HPC runtime environments. In: Taufer
M, Mohr B, Kunkel JM , eds. International Conference on
High Performance Computing, Frankfurt, Germany. Springer;
2016:685-95.

5. Gronenschild EH, Habets P, Jacobs HI, et al. The effects of
FreeSurfer version, workstation type, and Macintosh operat-
ing system version on anatomical volume and cortical thick-
ness measurements. PLoS One 2012;7(6):e38234.

6. Glatard T, Lewis LB, Ferreira da Silva R, et al. Reproducibility
of neuroimaging analyses across operating systems. Front
Neuroinform 2015;9:12.

7. Desikan T, Over 30% of official images in DockerHub
contain high priority security vulnerabilities, May 2015.
https://www.banyansecurity.io/blog/over-30-of-official-

10.

11.

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

22.

23.

images-in-docker-hub-contain-high-priority-security-
vulnerabilities. Accessed May 27, 2021.

Shu R, Gu X, Enck W. A study of security vulnerabili-
ties on DockerHub. In: Proceedings of CODASPY ’17: Sev-
enth ACM Conference on Data and Application Security
and Privacy, Scottsdale, AZ. New York, NY, USA: ACM; 2017:
269-80.

Zerouali A, Mens T, Robles G, et al. On the relation be-
tween outdated Docker containers, severity vulnerabilities,
and bugs. In: 2019 IEEE 26th International Conference on
Software Analysis, Evolution and Reengineering (SANER).
IEEE; 2019:491-501.

Gorgolewski KJ, Alfaro-Almagro F, Auer T, et al. BIDS apps:
Improving ease of use, accessibility, and reproducibility of
neuroimaging data analysis methods. PLoS Comput Biol
2017;13(3):€1005209.

Glatard T, Kiar G, Aumentado-Armstrong T, et al. Boutiques:
A flexible framework to integrate command-line applica-
tions in computing platforms. Gigascience 2018;7(5):giy016.
Anchore. https://github.com/anchore/anchore-engine. Ac-
cessed June 1st, 2021.

Vuls. 2021. Vuls (version 0.15.11). https://github.com/future-
architect/vuls. Accessed June 1st, 2021.

Clair. https://github.com/quay/clair. Accessed June 1st, 2021.
Clair-Scanner. https://github.com/arminc/clair-scanner. Ac-
cessed June 1st, 2021.

Singularity Tools. https://github.com/singularityhub/stools.
Accessed June 1st, 2021.

Stools Documentation. https://github.com/singularityhub/st
ools. Accessed June 1st, 2021 .

Container Vunerabilities project. 2021. https://github.com/b
ig-data-lab-team/container-vulnerabilities- paper/tree/ma
in/Scripts/minification. Accessed June 1st, 2021.

Rampin R, Chirigati F, Shasha D, et al. ReproZip: The Repro-
ducibility Packer.] Open Source Softw 2016;1(8):107.
Debtree. Repoquery. https://linux.die.net/man/1/repoquery.
Accessed June 1st, 2021.

Neurodocker. https://github.com/ReproNim/neurodocker.
Accessed June 1st, 2021.

“Secure, Container-Based CI/CD Workflows”, https://anchor
e.com/cicd. Accessed May 27, 2021.

Kaur B, Dugré M, Hanna A, et al. Supporting data for “An
analysis of security vulnerabilities in container images for
scientific data analysis.” GigaScience Database 2021. http:
//dx.doi.org/10.5524/100880. Accessed June 1st, 2021 .

https://www.banyansecurity.io/blog/over-30-of-official-images-in-docker-hub-contain-high-priority-security-vulnerabilities
https://www.banyansecurity.io/blog/over-30-of-official-images-in-docker-hub-contain-high-priority-security-vulnerabilities
https://github.com/anchore/anchore-engine
https://github.com/future-architect/vuls
https://github.com/quay/clair
https://github.com/arminc/clair-scanner
https://github.com/singularityhub/stools
https://github.com/singularityhub/stools
https://github.com/big-data-lab-team/container-vulnerabilities-paper/tree/main/Scripts/minification
https://linux.die.net/man/1/repoquery
https://github.com/ReproNim/neurodocker
https://anchore.com/cicd
http://dx.doi.org/10.5524/100880

