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Abstract

As stroke mortality rates decrease, there has been a surge of effort to study post-

stroke dementia (PSD) to improve long-term quality of life for stroke survivors. Hip-

pocampal volume may be an important neuroimaging biomarker in poststroke

dementia, as it has been associated with many other forms of dementia. However,

studying hippocampal volume using MRI requires hippocampal segmentation.

Advances in automated segmentation methods have allowed for studying the hippo-

campus on a large scale, which is important for robust results in the heterogeneous

stroke population. However, most of these automated methods use a single atlas-

based approach and may fail in the presence of severe structural abnormalities com-

mon in stroke. Hippodeep, a new convolutional neural network-based hippocampal

segmentation method, does not rely solely on a single atlas-based approach and thus

may be better suited for stroke populations. Here, we compared quality control and

the accuracy of segmentations generated by Hippodeep and two well-accepted hip-

pocampal segmentation methods on stroke MRIs (FreeSurfer 6.0 whole hippocampus

and FreeSurfer 6.0 sum of hippocampal subfields). Quality control was performed

using a stringent protocol for visual inspection of the segmentations, and accuracy

was measured as volumetric correlation with manual segmentations. Hippodeep per-

formed significantly better than both FreeSurfer methods in terms of quality control.

All three automated segmentation methods had good correlation with manual seg-

mentations and no one method was significantly more correlated than the others.

Overall, this study suggests that both Hippodeep and FreeSurfer may be useful for

hippocampal segmentation in stroke rehabilitation research, but Hippodeep may be

more robust to stroke lesion anatomy.
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1 | INTRODUCTION

According to the World Health Organization, approximately 10.3 mil-

lion people experience a stroke each year worldwide (Feigin

et al., 2017). Post-stroke dementia (PSD), defined as any dementia

occurring after stroke (including cognitive impairment, Alzheimer's dis-

ease [AD], and vascular dementia) presents in roughly 30% of stroke

survivors (Mok et al., 2017). PSD is one of the leading causes of

dependency in stroke survivors (Leys, Hénon, Mackowiak-Cor-

doliani, & Pasquier, 2005) and is of growing concern for patients, fami-

lies, and health-care providers as stroke survival rates improve

(Dichgans, 2019). Therefore, early neuroimaging biomarkers that may

contribute to PSD remain important to investigate.

The hippocampus may be an important biomarker for PSD. The

hippocampus, essential for memory function, is vulnerable to pathology

and atrophy in multiple dementia subtypes (Braak & Braak, 1991;

Braskie & Thompson, 2014; Halliday, 2017), including PSD (Gemmell

et al., 2012, 2014). The hippocampus is usually not directly impacted by

an ischemic stroke lesion (Szabo et al., 2009). However, emerging evi-

dence suggests that diaschisis, where stroke lesions can cause indirect

effects on distant brain structures, may contribute to hippocampal atro-

phy (Klingbeil, Wawrzyniak, Stockert, Karnath, & Saur, 2020). Specifi-

cally, ischemic stroke is associated with reduced hippocampal volume,

which is detectable in vivo by noncontrast MRI (Werden et al., 2017).

Robustly studying patterns of hippocampal atrophy after stroke

requires large datasets, given the vast heterogeneity of stroke lesions

in terms of lesion size, location, and presentation. This has incentiv-

ized large multicenter worldwide consortia to obtain large samples of

poststroke MRI to evaluate robust PSD hippocampal patterns. Con-

sortia around the world—such as the Cognition and Neocortical Vol-

ume After Stroke Consortium (CANVAS; Brodtmann et al., 2014) and

the Stroke and Cognition Consortium (STROKOG; Sachdev et al.,

2017)—have made significant efforts to study the role of hippocampal

volumes in the context of overall stroke recovery on a large scale. The

Enhancing Neuroimaging through Meta-Analysis (ENIGMA) Stroke

Recovery working group (Liew, Zavaliangos-Petropulu, Jahanshad,

et al., 2020) is also interested in studying the poststroke hippocampus in

the context of sensorimotor recovery. Currently, manual segmentations

are arguably the gold standard for analyzing hippocampal volume in MRI

studies (Frisoni et al., 2015), but this approach is extremely time consum-

ing and not feasible for large data sets such as these. Therefore, efforts

to develop and test automated hippocampal segmentation methods

have been undertaken to provide a more efficient way to study hippo-

campal volume on a large scale.

Current automated brain structure segmentation algorithms pre-

dominantly rely on atlas-based approaches, involving machine learning

and sophisticated image registration to a single probabilistic atlas of

prelabeled regions. FreeSurfer (Fischl, 2012; Fischl et al., 2002), a

robust method to segment both cortical and subcortical structures, is

an atlas-based approach and commonly used to study hippocampal

volume in cognitively healthy populations (Nobis et al., 2019; Ritchie

et al., 2018) as well as in people with neurodevelopmental, psychiatric,

and neurodegenerative conditions (Hibar et al., 2017; Müller-

Ehrenberg, Riphagen, Verhey, Sack, & Jacobs, 2018; Schmaal

et al., 2016; van Erp et al., 2016; Zhao et al., 2019). Recent studies by

Khlif et al. (2019a, 2019b)) compared automated hippocampal seg-

mentation methods, such as the gross hippocampal segmentation

available in FreeSurfer version 5.3, version 6.0, and the “sum of sub-

fields” segmentation available in FreeSurfer version 6.0, in stroke

populations. Khlif et al. (2019a, 2019b) reported that the FreeSurfer

version 6.0 “sum of subfields” segmentation was among the most

accurate methods for estimating hippocampal volume in healthy and

ischemic stroke populations with lesions outside the hippocampus.

FreeSurfer was specifically designed to account for structural

brain abnormalities common to AD and aging (Fischl, 2012), which

share some overlapping features with stroke populations (Mok

et al., 2017; Yousufuddin & Young, 2019); perhaps as a result, FreeSurfer

has performed relatively well in stroke studies. However, large brain

lesions are distinct to stroke patients and can introduce large alterations

to the expected spatial distribution of brain structures, presenting a sig-

nificant challenge to FreeSurfer. FreeSurfer, and most other probabilistic

atlas-based automated segmentation methods, were not explicitly

designed to accommodate significant brain injury pathology (Irimia

et al., 2012) and are more likely to fail in the presence of large lesions

(Yang et al., 2016). New methods that do not use single atlas-based

automated segmentation methods may better accommodate stroke

pathology and help improve segmentation accuracies in studies of the

hippocampus in stroke. Related to this, recently, Hippodeep, a new con-

volutional neural network-based (CNN) algorithm, emerged as a fast and

robust hippocampal segmentation method (Thyreau, Sato, Fukuda, &

Taki, 2018). Hippodeep relies on hippocampal “appearance” instead of a

single atlas-based approach. Hippodeep has better spatial agreement

with manual segmentations than FreeSurfer version 6.0 “sum of sub-

fields” segmentation in healthy aging populations but has not yet been

evaluated in a stroke population (Nogovitsyn et al., 2019).

Our study sought to expand on previous findings (Khlif

et al., 2019a; Khlif et al., 2019b; Nogovitsyn et al., 2019) and evaluate

how Hippodeep compares to previously tested methods for hippo-

campal segmentation in a stroke population. Using the Anatomical

Tracings of Lesions After Stroke dataset (ATLAS; Liew et al., 2018),

we compared Hippodeep, FreeSurfer version 6.0 gross hippocampal

segmentation, and FreeSurfer version 6.0 “sum of subfields” segmen-

tation in terms of (a) quality control (QC) and (b) accuracy when com-

pared to expert manual segmentations. QC and accuracy provide

different but complementary evaluations of hippocampal segmenta-

tion. QC was done by visually inspecting segmentations to determine

which segmentations failed to satisfy our predetermined criteria for a

good quality segmentation. We measure accuracy by calculating intra-

class correlation, which is a measure of how similar the volumes from

the automated segmentation methods are to their corresponding

manual segmentations. Overall, we hypothesized that Hippodeep's

CNN-based method would perform better on lesioned brain anatomy,

resulting in fewer segmentation failures and more accurate hippocam-

pal segmentations than either FreeSurfer method.
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2 | METHODS

2.1 | Data acquisition

For our analyses, we used the ATLAS dataset (N = 229), an open

source data set of anonymized T1-weighted structural brain MRI

scans of stroke patients and corresponding manually traced lesion

masks (Liew et al., 2018). All 229 scans were completed on 3-Tesla

MRI scanners at a 1 mm isotropic resolution, intensity normalized and

registered to the MNI-152 template space. T1-weighted MRIs, lesion

masks, and metadata are publicly available for download (Liew

et al., 2018). We analyzed the normalized data from these 229 partici-

pants as the input data to test the three automated segmentation

methods.

2.2 | Hippocampal segmentation methods

2.2.1 | FreeSurfer version 6.0

As mentioned previously, Khlif et al. (2019a, 2019b) found “sum of

subfields” segmentation available in FreeSurfer version 6.0 to be one

of the best-performing segmentation methods for the stroke data

they evaluated. FreeSurfer is an atlas-based software that employs a

Bayesian statistical approach to segment and label brain regions

(Fischl, 2012). It involves a series of data preprocessing steps, such as

intensity normalization, mapping of the input brain to a probabilistic

brain atlas, estimation of statistical distributions for the intensities of

different tissue classes, and labeling of cortical and subcortical struc-

tures based on known information on the locations and adjacencies of

specific brain substructures (Fischl et al., 2002).

FreeSurfer version 6.0 can output segmentations of 13 hippocam-

pal subregions using a refined probabilistic atlas (Fischl, 2012). This

atlas was built from a combination of ultra-high resolution ex vivo and

in vivo MRI scans, to identify borders between subregions of the hip-

pocampus (Iglesias et al., 2015). The ex vivo scans included autopsy

samples of participants with AD and controls scanned with a 7 T scan-

ner at 0.13 mm isotropic resolution that were then manually seg-

mented by expert neuroanatomists. The in vivo data consisted of

manual segmentations from 1 mm isometric resolution T1-weighted

MRI data acquired using a 1.5 T scanner from controls and partici-

pants with mild dementia. in vivo and ex vivo segmentations were

combined to create one single computational atlas of hippocampal

subfields. In this study, we combined the volumes of the individually

labeled hippocampal subfields output by FreeSurfer version 6.0 to

create a segmentation of the entire hippocampus, which we refer to

as FS-Subfields-Sum throughout our study.

FreeSurfer also outputs a separate hippocampal segmentation

using a different atlas, the Desikan-Killiany atlas (Desikan et al., 2006).

The Desikan-Killiany atlas was built using 40 T1-weighted 1 × 1 × 1.5 mm

spatial resolution MRIs acquired on a 1.5 T scanner. These 40 participants

were of ranging age and cognitive status with the intent to include a range

of anatomical variance common to aging and dementia in the atlas. This

hippocampal volume from the Desikan-Killiany atlas can be calculated

using the hippocampus labels of the aseg FreeSurfer output file.

FreeSurfer outputs segmentations to a FreeSurfer specific image

space. The FreeSurfer command, mri_label2vol, was used to transform

the segmentation back to the original MNI space used in the input for

both FreeSurfer versions segmentations. Segmentations from the aseg

output are referred to as FS-Aseg throughout our study.

Prior studies have reported an inability to run FreeSurfer on cer-

tain participants with large lesions (Bigler et al., 2013; Khlif

et al., 2019a). In an effort to generate the maximum number of seg-

mentations, scans that were not segmented on the initial FreeSurfer

analysis were run a second time through FreeSurfer.

2.2.2 | Hippodeep

Hippodeep is a recent automated hippocampal segmentation algo-

rithm that has not yet been tested in stroke populations. Hippodeep

does not warp individual images to an atlas; instead, it relies on a hip-

pocampal appearance model learned from existing FreeSurfer v5.3

labeled online data sets as well as synthetic data (Thyreau

et al., 2018). Two types of synthetic data are included in training the

Hippodeep CNN. The first synthetic data is a manual segmentation of

a synthetic high-resolution image of the hippocampus generated from

an average of 35 variations of MRI scans of a single healthy partici-

pant. The purpose of segmenting the hippocampus on a high-resolution

image (0.6 mm isotropic resolution) is to provide more detailed bound-

ary information to the CNN that might not be as clear on a lower reso-

lution image. The second type of synthetic data used to train the

Hippodeep CNN is artificially geometrically distorted versions of the

FreeSurfer v5.3 training data. Some of the distortion goes beyond

the range of clinically plausible values but remains realistic enough

to be easily delineated by a human rater. The purpose of this dis-

torted data is to provide relevant training guidance to the CNN. By

training the CNN on unconventional anatomy, Hippodeep may be

more robust to severe stroke pathology. Details on the specifics of

how the synthetic data were generated may be found in the study

by Thyreau et al. (2018).

Hippodeep outputs a probabilistic segmentation map calculated

using a loss function to allow for the uncertainty of voxels along the

perimeter of the hippocampus in native space, which can then be

optionally thresholded. The probabilistic segmentation was converted

to a binary mask of the hippocampus, as recommended by Thyreau

et al. (2018).

2.2.3 | Manual segmentations

We tested the accuracy of the automated methods by randomly

selecting 30 participants for whom all three automated segmentation

algorithms (FS-Aseg, FS-Subfields-Sum, and Hippodeep) were able to

successfully output hippocampal segmentations. Only participants with

unilateral lesions were considered. The ATLAS data was organized by
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lesion size and divided into thirds; small (range = 0.18–4.82 cm3 [cc]),

medium (range = 4.98–22.7 cc), and large (range = 23.6–291.0 cc)

lesions. From each lesion size group, five participants with right hemi-

sphere lesions and five participants with left hemisphere lesions were

randomly selected. In this way, we examined the influence of lesion size

across a broad range of lesion sizes, and with lesions equally distributed

across hemispheres. In this data sample, all lesions occurred outside the

medial temporal lobe.

Hippocampi for the subset of these 30 participants were manually

traced by an expert rater (AZP), strictly adhering to the EADC-ADNI

harmonized protocol for manual hippocampal segmentation (Boccardi

et al., 2015; Frisoni et al., 2015). Coronal slices were used to trace the

hippocampi using ITK-Snap (Yushkevich et al., 2006). The sagittal view

was used to confirm hippocampal boundaries and edit the segmenta-

tions. Hippocampi were segmented blindly based on participant ID

alone, starting with the left hippocampus, followed by the right hippo-

campus. Bilateral hippocampi were never overlaid on the T1-weighted

image at the same time to avoid using the segmentation from one

hemisphere to bias the other. The manual segmentations were

checked for quality by another expert in hippocampal neuroanatomy

(MAT). All manual segmentations are available for download here:

https://github.com/npnl/Hippocampal_Segmentation

2.3 | Analyses

2.3.1 | Quality control

We manually assessed the quality of segmentations produced by each

automated hippocampal segmentation method in the full ATLAS data

set (N = 229) using the ENIGMA Stroke Recovery QC protocol (Liew

et al., 2020). Briefly, a trained researcher (A.Z.P.) reviewed nine slices

of each brain (three coronal, three axial, and three sagittal) with the

bilateral segmentations overlaid on the T1, which were generated for

each participant (Appendix A SI). A segmentation failed QC if the seg-

mentation grossly underestimated the hippocampus (underestimated),

overestimated by including regions of the brain outside the hippocam-

pus (overestimated), missed the hippocampus entirely (miss), or failed

to output a segmentation (no output) (Figure 1).

QC was reported in two levels of stringency: (a) methods-wise

QC and (b) across-methods QC, similar to Sankar et al. (2017). For

methods-wise QC, we calculated a QC fail rate for each automated

segmentation method by dividing the total number of segmentations

that failed for each segmentation method by the total number of seg-

mentations (229 participants * 2 hippocampi = 458 segmentations).

Methods−wiseQCFail Rate = 100�#of segmentations that failedQC
229participants�2hippocampi

Across-methods QC fail rate was calculated as the total number

of participants for which all three automated algorithms failed QC on

at least one of the hippocampi divided by the total number of partici-

pants in the analysis (N = 229).

Across−methodsQCFail Rate = 100

�#of participants that failedQConat least onemethod
229participants

QC images and scores for each of the automated hippocampal

segmentation methods on the 229 participants in ATLAS are available

here: https://github.com/npnl/Hippocampal_Segmentation.

2.3.2 | Statistical analysis of accuracy

All statistical analyses were conducted in R-Studio version 1.1.463. To

promote open science and reproducibility, all statistical analyses and

code used for this study can be found here: https://github.com/npnl/

Hippocampal_Segmentation

Volume correlation analysis

We evaluated the agreement in hippocampal volume across segmen-

tation methods in the data set of 30 participants, by calculating the

Pearson's correlation coefficient (R; Pearson, 1895) and the intra-class

correlation coefficient (Shrout & Fleiss, 1979) in the ipsilesional and

contralesional hippocampi separately. We predetermined the number

of segmentation methods and we assumed no generalization to a

larger population. Therefore, we assumed fixed judges for the intra-

class correlation statistical analyses (ICC3).

3 | RESULTS

3.1 | Quality control

First, we performed a rigorous quality control analysis for the segmen-

tations generated by each automated method. This provided a sense

of how robust each method was for generating good quality segmen-

tations on the stroke data. The method-wise QC fail rate for FS-Aseg

was 30.9% (N = 144), 23.6% (N = 108) for FS-Subfields-Sum, and

3.3% (N = 15) for Hippodeep. The across-methods QC fail rate was

45.0% (N = 103). A summary of reasons for QC fails by hemisphere

for each segmentation algorithm can be found in Figure 1.

FS-Aseg did not output segmentations for 38 participants and FS-

Subfields-Sum did not output segmentations for 40 participants (the

38 that did not output from FS-Aseg plus two additional participants).

Of the 80 total hippocampi (40 participants * 2 hippocampi) that were

not segmented by either FS-Aseg or FS-Subfields-Sum, 75 of these

hippocampi were successfully segmented by Hippodeep and passed

QC. Hippodeep also successfully segmented the remaining five hippo-

campi, but these did not pass QC and were all underestimated

ipsilesional hippocampi. QC images of Hippodeep segmentations for

participants who had no output by FS-Aseg or FS-Subfield-Sum are

compiled in a file here: https://github.com/npnl/Hippocampal_

Segmentation/blob/master/Hippodeep_QC_for_no_output_FS_

scans.pdf
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3.2 | Accuracy

In the subset of 30 participants with manually segmented hippocampi,

we compared hippocampal volume between automated and manual

segmentations. All three segmentation methods overestimated both

ipsilesional and contralesional hippocampal volume, compared to the

manual gold standard (Figures 2 and 3). Hippodeep and FS-Subfields-

Sum segmentations were not significantly different in volume

(Figure 3a).

As expected, volumes from all three segmentation methods were

strongly correlated with volumes from the manual segmentations

(Table 1). Volumes from FS-Subfields-Sum had the strongest correla-

tion with manual segmentation volumes (ipsilesional ICC3 = 0.65; con-

tralesional ICC3 = 0.83). Hippodeep measures were also strongly

correlatedwithmanual segmentation volumes (ipsilesional ICC3 = 0.64;

contralesional ICC3 = 0.75). FS-Aseg was the least correlated with the

manual segmentation volumes (ipsilesional ICC3 = 0.50; contralesional

ICC3 = 0.71). Volumes from FS-Subfields-Sum and Hippodeep were

strongly correlated with each other (ipsilesional ICC3 = 0.91; contra-

lesional ICC3 = 0.90). However, upper and lower bounds for ICC3

indicated there were no significant differences among ICC3 values

across comparisons (Figure 3b). Volumes from all three segmentation

methods were strongly correlated with each other (Table 2).

4 | DISCUSSION

In this study, we compared the quality control (QC) and accuracy of

three automated segmentation algorithms (Hippodeep, FS-Subfields-

Sum, FS-Aseg) used to estimate hippocampal volume in individuals

with stroke. Our study found that Hippodeep was able to generate

the greatest number of segmentations that passed QC, while FS-Sub-

fields-Sum performed slightly higher in terms of intraclass correlations

(ICC3), although not significantly higher than Hippodeep and FS-Aseg.

This suggests that all three automated segmentation methods pro-

duce good volumetric correspondence with manual hippocampal

F IGURE 1 Hippocampal segmentations produced by automated segmentation methods (Hippodeep, FS-Aseg, and FS-Subfields-Sum) on the
229 ATLAS participants were inspected for quality according to the ENIGMA Stroke Recovery Working Group quality control (QC) protocol (Liew
et al., 2020). Segmentations failed QC for four possible reasons: (a) failing to output a segmentation entirely (no output), (b) including voxels in the
segmentation that are clearly outside of the hippocampus (overestimating), (c) underestimating the hippocampus (underestimating), or
(d) producing a segmentation that misses the hippocampus entirely (miss). In this figure, we report the total breakdown of the QC results by
hemisphere. The results are further broken down by location of lesion (LHL = left hemisphere lesion, RHL = right hemisphere lesion). Percent fail
for left and right hippocampi is calculated as the total number of segmentations that failed QC for the specified hemisphere divided by 229.
Percent fail for total is the number of segmentations divided by 458
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segmentations but Hippodeep was able to produce a significantly

greater number of total usable segmentations.

Hippodeep had the smallest methods-wise QC fail rate of the three

automated segmentations tested (3.3%). FS-Subfields-Sum had the sec-

ond lowest methods-wise QC fail rate (23.6%) followed by FS-Aseg

(30.8%). Sankar et al. (2017) report high rates of poor-quality hippocam-

pal segmentation across multiple automated segmentation algorithms,

including FS-Aseg in elderly populations. While a certain amount of seg-

mentation failure is expected for automated methods, automated seg-

mentations in stroke populations are challenged by stroke pathology. An

estimated 10–20% of FreeSurfer subcortical segmentations do not pass

quality control in the ENIGMA Stroke Recovery Working Group data

(Liew et al., 2020). In the stroke data, we used here, Hippodeep was able

to generate segmentations of adequate quality for 27.5% more hippo-

campi than FS-Aseg and 20.3% more than in FS-Subfields-Sum.

Hippodeep generated volume estimates for all of the participants whose

data could not be run through FreeSurfer in our study, and all but five

of these segmentations passed QC. Therefore, Hippodeep can poten-

tially help to maximize the number of participants included in analyses,

whose data might not run successful through FreeSurfer, potentially

boosting statistical power, and reducing the bias that can come from

excluding participants. Obtaining robust statistical power is of keen

interest to the stroke recovery field, as a recent review by Kim and

Winstein (2017) found that less than 30% of stroke recovery studies

met the appropriate sample size criteria to achieve sufficient statistical

power for predicting recovery. Our understanding of the role of hippo-

campal volume in stroke recovery will benefit from studies with larger,

more representative samples.

FS-Subfields-Sum and Hippodeep were both very competitive in

terms of their correlations with ipsilesional and contralesional volume

estimates. FS-Subfields-Sum segmentations were more highly corre-

lated with manual segmentations (ICC3) than Hippodeep, although

both were high and considered very reliable (Koo & Li, 2016). There

were no significant differences across methods in ICC3 results.

Ipsilesional FS-Aseg volume estimates had the lowest ICC3, but this

correlation was still high enough to be considered moderately reliable

(Koo & Li, 2016). For all three automated methods, as expected, con-

tralesional ICC3 was higher than ipsilesional ICC3. Hippodeep and FS-

Subfields-Sum may have performed better than FS-Aseg in terms of

volumetric accuracy because information from a high-resolution hip-

pocampus is included in both the Hippodeep and FS-Subfield-Sum

algorithms. FS-Subfields-Sum is based on an atlas generated using

manual segmentations on an ultra-high resolution atlas (0.13 mm iso-

tropic resolution; Iglesias et al., 2015). Hippodeep uses information

from a manually traced hippocampus on a synthetic high-resolution

image (0.6 mm isotropic resolution; Thyreau et al., 2018). In contrast,

FS-Aseg uses the Desikan-Killiany atlas, which was built using only

scans of 1 × 1 × 1.5 mm resolution (Desikan et al., 2006). The

Desikan-Killiany atlas was designed to segment many structures

across the brain, many of which are clearly delineated on low-

resolution scans. The accuracy of hippocampal boundary detection

improves with stronger MRI field strength and spatial resolution

(Giuliano et al., 2017). Including more detailed information on hippo-

campal boundaries that appear ambiguous on a low-resolution MRI

may improve segmentation performance. Due to these differences in

underlying MRI scan resolution used to develop each method, mild

variability in the resulting correlations with manual segmentations is

expected. Overall, further exploration of the methodological aspects

of successful automated segmentation methods may be helpful to

inform future development of methods in populations with irregular

neuroanatomy.

Beyond QC and accuracy, there are other technical aspects to

consider when comparing Hippodeep, FS-Subfields-Sum, and FS-

Aseg. Hippodeep requires less computational power than FreeSurfer

and runs within minutes, whereas FreeSurfer can take over 24 hr on a

typical CPU (Nogovitsyn et al., 2019; Thyreau et al., 2018). However,

Hippodeep only outputs estimates of the hippocampus and total

intracranial volume. In addition to FS-Subfields-Sum and FS-Aseg,

F IGURE 2 Automated
hippocampal segmentations are
overlaid, along with the manual
segmentation, on MRI data from
an example participant. Each row
shows the results of a different
automated segmentation
method. The left column shows a
sagittal view of the ipsilesional

hemisphere, the middle column
shows a coronal view of the body
of bilateral hippocampi, and the
rightmost column shows a
sagittal view of the contralesional
hemisphere
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FreeSurfer also estimates other brain measures beyond hippocampal

volume and intracranial volume, such as individual subfield volumes

(Iglesias et al., 2015), and cortical and subcortical volumes, as well as

thickness measures, and other vertex based measures and attributes

that can be used for surface-based statistical analyses (Fischl, 2012).

Additionally, FreeSurfer has an extensive archive of user questions for

troubleshooting, while Hippodeep is a recent method that is not as

extensively documented. Therefore, selection of the appropriate hip-

pocampal segmentation method should be evaluated within the con-

text of the study requirements and constraints (Table 3).

4.1 | Limitations

A key methodological limitation to consider when comparing these seg-

mentation methods is that none of these approaches were designed

specifically to accommodate severe stroke pathology. The default

atlases used in FreeSurfer, including FreeSurfer subfields, were created

based on data from cognitively healthy elderly adults and patients with

early AD pathology (Desikan et al., 2006; Iglesias et al., 2015). Stroke

pathology, such as large lesions, hydrocephalus ex vacuo of the lateral

ventricle (Nelson, 2003), and midline shifts (Liao, Chen, & Xiao, 2018),

can alter expected spatial distribution of brain anatomy. As a result,

stroke pathology can interfere with templates used by existing atlas-

based approaches, resulting in inaccurate hippocampal segmentations.

Although the CNN used in Hippodeep was not trained on data with

stroke pathology, it is trained to anticipate extreme anatomical variabil-

ity from the synthetic data. Being robust to extreme anatomical variabil-

ity may explain why Hippodeep was able to perform well in stroke

participants. Stroke-specific CNN hippocampal segmentation models

that include stroke pathology in training data may further improve auto-

mated hippocampal segmentation in this population.

5 | CONCLUSION

In this study, we compared three automated hippocampal segmenta-

tion methods in a large stroke population. While all three methods

yielded similar volumes, Hippodeep had the lowest method-wise QC

fail, suggesting it may be the most robust to poststroke anatomical

distortions. The use of more accurate automated hippocampal seg-

mentation methods may reveal clinical associations that are so far

undetected. Additionally, future work should aim to extract subfields

from the Hippodeep segmentation to further enhance our under-

standing of how the specific regions of the hippocampus are indirectly

impacted by stroke lesions. Overall, our results suggest that

Hippodeep may be an optimal method for accurate and robust hippo-

campal segmentation methods in diverse stroke populations.

F IGURE 3 (a) Mean hippocampal volume is plotted for manual
and automated segmentation methods in the 30 participants with
manually segmented hippocampi. All three automated segmentation
methods on average overestimated the manually defined
segmentation volume. This trend is consistently found for scans with
small, medium, and large lesions. Error bars represent standard
deviation. (b) Intraclass Correlation Coefficient (ICC3) was calculated
correlating volumes from each automated segmentation algorithm
with manual segmentations. The error bars indicate the upper and
lower bound of ICC3. FS-Subfields-Sum has the highest ICC3 with
manual segmentations, although none of the ICC3 results are
significantly different across automated methods

TABLE 1 Intraclass correlation coefficient (ICC3), Pearson's correlation coefficient (R), and p-values were calculated correlating hippocampal
volume from the automated segmentation methods to the manual segmentations. Correlations between FS-Subfields-Sum and Hippodeep are
also shown because the resulting hippocampal volumes were very similar

Ipsilesional Contralesional

ICC3 R p-value ICC3 R p-value

FS-Aseg versus manual 0.50 0.59 6.45 × 10−4 0.71 0.80 1.21 × 10−7

FS-Subfields-Sum versus manual 0.65 0.67 5.71 × 10−5 0.83 0.84 5.38 × 10−9

Hippodeep versus manual 0.64 0.69 2.18 × 10−5 0.75 0.75 1.91 × 10−6
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TABLE 2 Intraclass correlation coefficient (ICC3) was calculated to compare segmentations from each automated method. Upper and lower
boundaries of ICC3 are also reported. The volumes for all hippocampal segmentations are highly correlated, implying inter-algorithm consistency

Ipsilesional Contralesional

Method ICC3 Lower bound Upper bound ICC3 Lower bound Upper bound

FS-Subfields-Sum versus Hippodeep 0.91 0.83 0.95 0.90 0.82 0.94

FS-Subfields-Sum versus FS-Aseg 0.89 0.80 0.94 0.92 0.85 0.96

FS-Aseg versus Hippodeep 0.85 0.74 0.92 0.79 0.64 0.88

TABLE 3 Here we present a roadmap for using each of the automated hippocampal segmentation method tested in this article. Study
requirements and constraints should be considered when selecting which method to apply

How to run Pros Cons
Anatomical
variability

FS-Aseg https://surfer.nmr.mgh.harvard.

edu/

recon-all -s subject

Use aparc+aseg.mgz in subject/

mri/folder to extract label 17

for the left hippocampus and

label 53 for the right

hippocampus

-Widely used in the literature

-Provides brain measures

beyond the hippocampus

(cortical and subcortical

volumes and thickness, etc;

Fischl, 2012)

-Extensive support archive

(https://surfer.nmr.mgh.

harvard.edu/fswiki/

FreeSurferSupport)

-Did not output segmentations

for all of the stroke data

-Modest accuracy with manual

segmentation

-Time consuming

-Resource intensive

-Low-resolution atlas

-Atlas created on

1 × 1 × 1.5 mm

resolution scan

FS-subfields-

sum

https://surfer.nmr.mgh.harvard.

edu/

recon-all -s subject -hippocampal-

subfields-T1

rh.hippoSfLabels-T1.v10.

FSvoxelSpace_native.mgz and

lh.hippoSfLabels-T1.v10.

FSvoxelSpace_native.mgz in

subject/mri folder

-Strong accuracy with manual

segmentation

-Provides brain measures

beyond the hippocampus

(cortical and subcortical

volumes and thickness, etc;

Fischl, 2012)

-Provides information about

individual subfield volumes

(Iglesias et al., 2015)

-Widely used in the literature

-Extensive support archive

(https://surfer.nmr.mgh.

harvard.edu/fswiki/

FreeSurferSupport)

-Did not output segmentations

for all of the stroke data

-Time consuming

-Resource intensive

-Atlas created on

0.13 mm

isotropic

resolution scan

Hippodeep https://github.com/bthyreau/

hippodeep

deepseg1.sh subject_t1.nii.gz

example_brain_t1_mask_L.nii.gz

and

example_brain_t1_mask_R.nii.

gz

-Strong accuracy with manual

segmentation

-Can help maximize sample size

• Output segmentations for all

of the stroke data

• Able to produce good

segmentations for most of

the participants that could

not run through FreeSurfer-

Short run-time

-Only outputs hippocampal

segmentations and total brain

volume

-Not trained specifically on

stroke data

-Newer method with limited

support archives

-Includes a manual

segmentation

built on 0.6 mm

isotropic

resolution scan
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