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Multicompartment modeling 
of protein shedding kinetics 
during vascularized tumor growth
Gautam B. Machiraju1, parag Mallick2,3* & Hermann B. frieboes4,5,6*

Identification of protein biomarkers for cancer diagnosis and prognosis remains a critical unmet 
clinical need. A major reason is that the dynamic relationship between proliferating and necrotic cell 
populations during vascularized tumor growth, and the associated extra- and intra-cellular protein 
outflux from these populations into blood circulation remains poorly understood. Complementary 
to experimental efforts, mathematical approaches have been employed to effectively simulate the 
kinetics of detectable surface proteins (e.g., CA-125) shed into the bloodstream. However, existing 
models can be difficult to tune and may be unable to capture the dynamics of non-extracellular 
proteins, such as those shed from necrotic and apoptosing cells. the models may also fail to 
account for intra-tumoral spatial and microenvironmental heterogeneity. We present a new multi-
compartment model to simulate heterogeneously vascularized growing tumors and the corresponding 
protein outflux. Model parameters can be tuned from histology data, including relative vascular 
volume, mean vessel diameter, and distance from vasculature to necrotic tissue. the model enables 
evaluating the difference in shedding rates between extra- and non-extracellular proteins from viable 
and necrosing cells as a function of heterogeneous vascularization. Simulation results indicate that 
under certain conditions it is possible for non-extracellular proteins to have superior outflux relative 
to extracellular proteins. This work contributes towards the goal of cancer biomarker identification 
by enabling simulation of protein shedding kinetics based on tumor tissue-specific characteristics. 
Ultimately, we anticipate that models like the one introduced herein will enable examining origins and 
circulating dynamics of candidate biomarkers, thus facilitating marker selection for validation studies.

Although the search for blood-borne cancer protein biomarkers to improve diagnosis and prognosis has acceler-
ated in recent years, only a handful of candidates have reached clinical  application1–7. A major reason is that the 
relationship between protein abundance in tumor tissue and in blood circulation remains poorly characterized. 
It has proven difficult to link the cell-scale events (e.g., protein shedding into circulation) to the dynamically 
evolving tissue-scale conditions (e.g., tissue access to vasculature that is changing as a result of proliferating and 
necrosing tissue). As the cell activity (proliferation and death/necrosis) and the associated protein shedding occur 
on similar time scales, the detection of proteins in circulation presents primarily a spatial problem, as proteins 
must persist and diffuse through space from cells to blood under conditions that are continuously changing this 
space and the access to the blood.

To complement experimental efforts, mathematical modeling and computational simulation techniques 
have been applied to predict circulating biomarker levels from tissue-scale  data8–13. Previous continuum-scale 
modeling of tumor growth has considered the effects of molecular and cellular heterogeneity on tumor spatial 
progression (e.g.,14,15), but not in the context of blood-borne biomarkers. In particular, Gambhir and coworkers 
developed a 1-compartment model to simulate shedding of the secreted ovarian cancer marker CA-125 into 
blood  plasma8. Applying this compartmental approach and its assumption of tumor and healthy cell populations 
contributing uniformly to shedding, tumor tissue and its vasculature were modeled as singular homogeneous 
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entities without cellular level detail. The strength of this model lies in a small set of parameters that can be easily 
interpreted and tuned. However, the model over-simplifies the tumor growth process, neglecting intra-tumor 
heterogeneity due to inhomogeneous vascularization that directly affects marker shedding into the tumor micro-
environment and the blood circulation. Additionally, the model lacks the ability to simulate non-extracellular 
(non-EC) proteins (surface or intracellular in domain). As less than 20% of cellular proteins are  secreted16, it may 
be challenging to explore the majority of candidate biomarkers using this approach.

Building upon the work of Gambhir and  coworkers8, we present a new model that links the levels of protein 
shedding into circulation to the heterogeneous tumor spatial vascularization and the corresponding proliferating 
and necrosing cell populations. This is achieved by discretizing tumor tissue into dynamically evolving compart-
ments based on cellular distance from  vasculature17, effectively bridging from the cellular to the tissue scale, and 
thus enabling prediction of system-level effects from cellular-scale events. In this model, proteins shed by cells 
diffuse through interstitial space to reach the vasculature in order to enter the blood circulation. It is well known 
that incipient tumors begin to slow growth and require sustained angiogenesis to meet the demands of their 
growing cell  populations18. Vascularization induces gradients of oxgygen and nutrients in surrounding tissue, 
imposing cellular stresses such as hypoxia-induced necrosis, which influence shedding of both extracellular and 
non-extracellular  proteins9. Intratumoral heterogeneity is induced by cells with higher net growth rates in well 
oxygenated regions proximal to vasculature, and with lower net growth rates in hypoxic and necrotic regions 
distal to the blood  supply19. By simulating the dynamics of tumor development and the spatial variation in cell 
viability across heterogeneously vascularized tumor tissue, the shedding kinetics of a wide variety of proteins 
can be described as a function of tumor tissue characteristics. In particular, by enabling an explicit quantification 
of necrosis, it becomes tractable to model the shedding of the tens of thousands of non-extracellular proteins.

Results
A compartmental model to represent protein shedding by heterogeneously oxygenated 
tumor tissue. This study focuses on two fundamental coupled features of tumor tissue that impact protein 
shedding kinetics: cells that proliferate or die (necrose), and heterogeneous vascularization. We design a model 
to simulate proliferating and necrosing populations. Modeling these two populations distinctly allows for dif-
ferential shedding rates of extracellular proteins and non-extracellular proteins. Specifically, viable cells domi-
nantly release extracellular proteins, whereas necrosing cells dominantly release intracellular proteins through 
cell membrane decay and decreased production and secretion of extracellular proteins. Once exported from the 
cell, these proteins must diffuse through interstitial space to reach the vasculature. Heterogeneous vasculariza-
tion leads to cell subpopulations experiencing varying levels of oxygen and nutrient availability (Fig. 1A). Dif-
ferential oxygen and nutrient availability in turn impact cellular proliferation and necrosis, and the associated 
release of proteins into the interstitium. This allows modeling the difference in shedding rates between extra- 
and non-extracellular proteins from viable and necrosing cells as a function of heterogeneous vascularization.

To achieve this dynamic representation of protein shedding kinetics, the tumor model is constructed as a 
series of compartments. At any one time, we assume that each compartment acts as a source of proteins and as a 
sink for oxygen and nutrients. The whole vasculature within the tumor is represented as a source of oxygen and 
nutrients and as a sink for proteins. We assume that tumor cells can be grouped into distinct compartments in 
terms of their distance to vasculature, with each compartment having similar proliferating and necrosing char-
acteristics. Thus, the model virtually rearranges tumor tissue into a set of compartments as a function of access 
to the vasculature (Fig. 1B). The vasculature is represented as a cylindrical (tube) compartment, surrounded by 
concentric cylindrical (shell) compartments of tumor tissue. Each compartment represents the subpopulation 
of tumor cells being at any one time at the same distance from vasculature. Inner compartments represent tissue 
proximal to vasculature, while outer compartments simulate tissue distal to vasculature. Tumor and vascular 
growth are captured by longitudinally extending these compartments along the cylindrical axis as a function 
of time.

In this manner, vascular-induced intratumoral heterogeneity is represented in the model as a function of 
radial distance to proximal vasculature, which determines cellular proliferating and death rates in differing oxy-
genation conditions. It is well known that tumor cells are more proliferative in highly oxygenated conditions and 
more necrotic in hypoxic conditions, e.g., as shown by cell line data collected from non-small-cell lung cancer 
cells in vitro, which we use here to set compartmental cell birth ( kB ) and death rates ( kD)20 (Fig. 2). In turn, the 
cellular proliferation and necrosis in each compartment affects the respective shedding of extra-cellular and 
non-extracellular proteins. The proteins are shed into the centrally located vascular compartment according to 
a weight (w) representing diffusivity based on the compartment’s distance to the vasculature (Fig. 1C). With this 
compartmentalized representation of tumor vascular-induced heterogeneity and its consequences on protein 
shedding, the model can be formulated with constraints based on observable tumor characteristics. In particular, 
tissue spatial constraints, e.g., as can be observed from  histology21,22, are used here as model parameters.

The key parameters that link the spatial relationships in the simulated tumor are chosen as the following 
(Fig. 1):

Mean vessel diameter: The mean vessel diameter (MVD; denoted as d) is the average diameter of all vascular 
structures (e.g., blood vessels, capillaries, microvessels, etc.) observed across tumors. The average diameter of 
larger vessels that sprout microvessels and capillaries has been measured to be approximately 60 µ m across a set 
of histology slides of  retinoblastoma23, which is used here as a representative value. The MVD varies between 
tumors of different tissues.

Relative vascular volume: The relative vascular volume (RVV) is the ratio of vasculature volume to tumoral 
volume. This metric has been observed to remain steady during tumor development, e.g., a value of approximately 
17%24 has been measured in mammary  adenocarcinoma25,26. This value can vary based on the tumor tissue type.
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Figure 1.  Biological parameters for vascularized tumor growth and compartment model formulation. (A) 
Motivation behind modeling heterogeneous subpopulations in the tumor microenvironment. The model 
approximates tumor growth as vascularization occurs early in development (abstracting various methods of tumor 
vascularization, including angiogenesis, vasculogenic mimicry, and microvessel formation). The microenvironment 
cross-section represents any given 2D neighborhood perpendicular to the vasculature. The vessel diameter d, 
necrotic cuff ǫ , and cylindrical model radius R are parameter values derived from cellular spatial constraints 
obtained from histology  images23. The radius R of the cylindrical model is equal to the combined length of half 
the mean vessel diameter ( δ = d/2 ) and the necrotic cuff ( ǫ ). Thus, the cells in the tumor are approximated by 
the sum of all such 2D cross-sections taken over the length of the total vasculature as governed by ht . Tumor 
cell subpopulations are defined by their radial distance to proximal vasculature due to heterogeneous access to 
oxygen. This radial parameterization is discretized with compartments that correspond to each cell subpopulation. 
Tumor compartments vary in volumes and carrying capacities and are calculated with the recurrence relation of 
subvolumes from cylindrical shell and spatial constraints described herein. The kinetics of vascularization updates 
the constraints on compartmental volumes and carrying capacities at each time step. (B) Compartment diagram 
and parameters for tumor growth. Parameter σ is the uniformly partitioned thickness of each compartment, set 
at approximate single-cell diameter of 10 µ m. Compartments Ti all generate cells with their specified birth, death, 
and net growth rates ( kG,i ) based on their access to oxygen (i.e., distance to vasculature). These compartments thus 
experience proliferation and necrosis at differing rates, which subsequently leads to differing shedding behaviors. 
Cell motility with a preference toward oxygenated regions allows for added dynamism of the model (denoted as 
probabilistic terms between compartments). (C) Compartment diagram for protein shedding from tumor cells to 
plasma. Extracellular protein shedding is dependent on the net proliferative population over the compartments 
and � (per-cell active shedding rate), while non-extracellular (intracellular and surface) protein shedding is 
dependent on the instantaneous cell death over the compartments and � (per-cell instantaneous contribution due 
to turnover). Shedding to plasma, denoted as the Pl compartment, is further weighted by distance to vasculature 
with weights wi to account for heterogenous diffusion based on distance.
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Necrotic cuff: The necrotic cuff ( ǫ ) defines a region of viable cells and the space in which a gradient of cell 
proliferation exists. In situ, cells generally fail to grow beyond the diffusion distance of oxygen, approximately 
100 µm21,23,27 from proximal vasculature. This metric generally holds for all tumor tissues.

The model implements a longitudinally growing cylindrical tumor tissue of height h around a growing ves-
sel. Here, ǫ is the radius of the cross-sectional model and the MVD constrains the vascular diameter. As tumor 
vascularization progresses in response to a net release of pro-angiogenic stimuli by tumor tissue, the tissue 
carrying capacity and growth correspondingly increase. A near-constant RVV allows for the assumption that 
the MVD and ǫ of the microenvironment cross-section remain constant as the carrying capacity of the tumor 
subpopulations increases by increased vascularization.

In this framework, a growing vascularized tumor is represented by n discrete tumor compartments Ti of 
single-cell thickness that shed proteins into the vascular compartment Pl (denoting plasma) based on their tumor 
populations (proliferating or necrotic) and their distance to the vascular compartment.

Shedding Parameters: A key component of this model is its ability to capture the shedding of both extracellular 
and non-extracellular (cell membrane or intracellular) proteins. Prior models exclusively focused on extracellular 
proteins. However, experimental studies have clearly demonstrated that intracellular components are able to 
shed to the circulation. This model enables capturing the shedding kinetics of extra- and intra-cellular proteins 
from proliferating and necrotic cells in heterogeneously vascularized tumor tissue. Key parameters describing 
the shedding kinetics include � , the protein-specific contribution per cell during necrosis, and � , the protein-
specific shedding rate per cell per day. These two parameters operate in opposition to best capture the differences 
in shedding dynamics of extracellular vs non-extracellular parameters. Specifically, extracellular proteins will 
have low values of � and higher values of � that relate to secretion rate. Non-extracellular proteins will have 
higher values of � calibrated in an abundance-dependent manner, and low values of � . Variable ui(t) is defined 
as a distance-based relationship between the number of tumor cells and the corresponding compartment’s 
population and shedding values to capture the diffusion of molecules from varied parts of the tumor into the 
blood. Variable q(t) is the final summarized extracellular and non-extracellular protein mass in plasma at time t.

Model calibration. The first step to employ the model is to choose a set of parameter values that yield tumor 
growth that is biologically realistic. For this purpose, we chose to match the tumor cell proliferation shown by 
Hori et al.’s model, which has been calibrated from experimental data with ovarian cancer  cells8. To run the 
model over a range of possible parameter values, scans over a parameter set of both the maximum volumetric 
concentration of oxygen at the vasculature point ( C0 ) and the vascularization rate ( kV ) were simulated. Param-
eter C0 helps to determine the range of values for the n = 10 compartmental net growth rates kG,i , helping to 
shift the range of possible proliferation rates depending on the proliferative capacity of the particular cell type. 
Because of the large number of parameter combinations, validity cutoffs were arbitrarily defined (e.g., tumor cell 
proliferation in all n = 10 compartments, total cell population of greater than 107 cells at t := tend = 12 years) to 
identify suitable tumor growth simulations. These scanned parameter pairs are presented in Fig. 3. Tumor cell 
proliferation matching that of Hori et al.’s model was achieved given the model’s linearity and spatial constraints, 
showing it to be a reasonable spatial extension of their dimensionless model. Using the subset of suitable results, 
the simulation with maximum growth was selected to evaluate protein shedding profiles.

Sensitivity of tumor growth and protein shedding to variation in parameter values. Next, the 
sensitivity of the calibrated model to variation in its parameter values was evaluated. Running these analyses 
over the full set of parameters introduced by the model, the influence of each parameter on tumor growth 
(Fig. 4) and protein shedding (Fig. 5) was evaluated for both non-extracellular (non-EC) and extracellular (EC) 
proteins. These studies examined how stable the model was to variations in or mis-estimations of parameters. 
For tumor growth, great sensitivity is seen to maximum oxygenation concentration C0 and vascularization rate 

Figure 2.  Tumor compartment birth and death rates. Extrapolated rates are derived from cells exposed to 
varying levels of hypoxic  stress20. The net growth rates ( kG,i ) are equal to the birth rates ( kB,i ) minus the death 
rates ( kD,i ). A nonlinear relationship can be observed as a function of compartment number (related to distance 
from proximal vasculature).
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kV . Parameter C0 modulates the slope of total tumor growth since the parameter set of local net growth rates 
is shifted by the interpolation function as described in Methods. As a result, constituent compartments are 
assigned local net growth rates that are shifted accordingly. Parameter kV appears to enforce a ceiling function 
for the total tumor population after it outpaces vascularization and necrosis occurs at higher rates. For protein 
shedding, t1/2 (protein half life in blood), C0 , and � or � all carry early influence on model performance by large 
orders of magnitude given realistic ranges specific to each parameter. One may consider both kV and C0 hyper-
parameters tuned to a particular tumor, with considerations such as cell and tissue type, while � or � and t1/2 are 
parameters that can be estimated a priori for a shedding protein of interest. 

For these analyses, the performance of simulated non-extracellular and extracellular proteins was compared. 
Non-extracellular trajectories tended to be lower and start later than extracellular protein trajectories. This dif-
ference stems from the source of non-extracellular proteins being dominated by necrotic cells. Accordingly, the 

Figure 3.  Tumor growth dynamics over time and uniformly-selected simulations over a valid parameter space. 
(A) Selection of biologically-realistic tumors. This surface utilizes both of the parameters kV (vascularization 
rate) and C0 (maximum volumetric concentration of oxygen in the tumor, located at vasculature) to form a 
coordinate mesh along the x- and y-axes. The z-axis represents the final proliferative population at the user-
defined maximum iteration for simulation, tend . Each tile on the surface represents a simulation with the 
corresponding parameters on the x- and y-axes. If the value of kV is large and C0 is too small, cells primarily 
stay in compartments near vasculature due to large carrying capacities and little outgrowth. If the value of kV is 
too small and C0 is large, carrying capacity is not increased quickly enough and tumor cells die off too quickly 
to reach distant compartments. Accordingly, valid tumors are defined as those supporting heterogeneous 
subpopulations and a large overall population. Arbitrary cutoffs were defined to help select for such tumors: 
those that experience growth in all n = 10 compartments (indicated by the color bar) and grow to a population 
of at least 107 cells (represented by translucent plane) at the set maximum iteration of tend = 12 years. Tumors 
used for downstream simulation were both above the 107 population plane and with n = 10 populated 
compartments, but were also chosen for having the smallest population sizes given the aforementioned selection 
criteria to select for more necrotic tumors. A sample of five trajectories were taken to generate the lines seen 
in panels (B), (C), and (D). The trajectory that exceeded the arbitrary cutoffs while maintaining the smallest 
popuation size was used in all subsequent experiments and figures. (B) Valid simulations of tumor proliferation. 
Simulations are similar to that of Hori et al’s tuned model, but face a slowdown (i.e., greater cell death) in later 
stages due to unmet demands in vascularization. (C) Valid simulations of cell deaths per day. Daily cell death 
is largely caused by hypoxia-induced necrosis and begins nearly after t = 4 years when the tumor reaches 
approximately 104 cells. (D) Valid simulations of necrotic fraction represent the ratio of cumulative cell death to 
the total number of cells accounted for (cumulative cell death and current proliferative population). The necrotic 
fraction spikes starting at t = 6 years when an uptick in cell death occurs at the same time, as seen in (C). This is 
an emergent property of the currently used model parameters, as is the case with the trajectories of (B) and (C).
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relatively small size of the necrotic population, as compared to that of the proliferative population (Fig. 3), early 
in tumor development leads to a lag in the shedding of non-extracellular proteins. Despite this lag, our analysis 
showing overlapping trajectories confirms that non-extracellular proteins can be accessible in the circulation 
and may reach abundances that exceed those of some extracellular proteins.

protein shedding as a function of tumor cell proliferation and necrosis. Next, we evaluated the 
capability of the model to simulate tumor proliferative and necrotic population evolution in time and the cor-
responding protein outflux. A goal of the proposed model is to provide a mechanistic understanding of the 
shedding kinetics of tumor cell subpopulations. Figure 6 shows the per-compartment populations of both pro-
liferative and necrotic cells. In panel (B), an inflection at approximately six years of simulation time is noted. 
This is due to necrotic cell populations outpacing the rate of vascularization. Spatially, and in the context of the 
presented model, cells begin to occupy more necrotic compartments (distal to vasculature) due to the linear 
vascularization function. Figure 7 shows a similar effect for the cell subpopulations’ marker outflux and contri-
butions to overall shedding. Changes in rate for both panel (A) and (B) can be seen at approximately 105 and 102 
cells respectively, indicating that the simulated tumor reaches a steady-state in marker shedding at later stages.

Model validation. As an initial validation, the model-simulated protein shedding was compared to that 
of Hori et al.’s experimentally tuned model (Fig. 8). The results show that the proposed model can be used as 
a spatial extension of one-compartment models, indicating similar trajectories between the proposed model 
and the Hori shedding model for an extracellular marker such as CA-125. However, there is a notable differ-
ence in late-simulation behavior due to the linear vascularization function growing too slowly for the total 
tumor population. This slowdown causes increased necrosis and increased non-extracellular shedding, which is 
a model-derived hypothesis to be tested in vivo. With the selected extracellular protein features from CA-125, 
hypothetical non-extracellular protein shedding trajectories were generated. The comparison against this extra-
cellular marker was performed via parameter scanning over possible values of protein-specific parameters � , uH 
(healthy cell influx rate of protein mass), and t1/2 . The colored regions show the dynamic range of trajectories for 
each value of uH , which effectively sets the basal mass that the growing tumor builds upon. The dynamic range 
is determined by the other two protein-specific parameters controlling plasma influx ( � ) and elimination (as 
determined by t1/2 ). Overall, this analysis indicates that non-extracellular proteins may outperform an extracel-
lular protein for blood-based detection given boosted parameter values, highlighting the need for increased 
study of non-extracellular proteins for cancer biomarker discovery.

Discussion
This study implements a novel spatial modeling approach that enables in silico simulation of extracellular and 
non-extracellular protein shedding by proliferating and necrosing cell populations in vascularized tumors. The 
model may be useful for describing the origins of non-extracellular biomarkers in the blood, and creating a scal-
able framework for asking questions about the impact of environmental heterogeneity on biomarker shedding. 
These questions are critical, as accessing non-extracellular biomarkers opens up the possibility for thousands of 
additional proteins to be potential biomarkers. In addition, prior to the development of this model, to the best 

Figure 4.  Sensitivity analysis for tumor growth. Parameter values for (A) vascularization rate ( kV ) and (B) the 
maximum volumetric concentration oxygenation at vasculature ( C0 ) interpolated were chosen at five uniformly-
spaced values between their respective domain’s hypothesized minimum and maximum values, depending 
on the parameter of interest. The necrotic population trajectories are colored in black, while the proliferative 
population trajectories are colored in gray. For each plot, the parameter not undergoing analysis is fixed. 
Sensitivity of kV operated on a fixed value of C0=16 and varied values of kV . Sensitivity of C0 operated on a fixed 
value of kV=0.1005 and varied values of C0 . The summary of parameter values used for sensitivity are specified 
in Table 1, where fixed values are in the Value(s) Simulated column. It should be noted that boosting the C0 value 
shifts the range of kG,i to more positive values, resulting in faster tumor growth. The inflection in the necrotic 
population (B) shows the uptick in cell death after the vascularization rate is outpaced by the growing cell 
population, causing more cells to experience hypoxic conditions.
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of our knowledge there has been no straightforward way to link variation in tumor vascularization to marker 
shedding. A key potential utility of the model will be in comparing the behavior of different candidate markers 
to each other for the purposes of selecting which markers to carry forward into validation studies. While the 
identification of such putative markers is beyond the scope of this study, we demonstrate in Fig. 8, that there could 
be non-extracellular proteins whose circulating abundance can exceed that of extracellular proteins. Individual 
proteins represent trajectories within these windows that can be directly compared.

Hori &  Gambhir8 proposed a general model to evaluate biomarkers shed by tumor and host tissue, without 
distinction as to their intra- or extra-cellular origin, in order to determine the limits of tumor detection from 
biomarker levels in blood circulation. The model does not consider tumor-specific characteristics, such as vas-
cularization parameters, which can greatly influence the amount and type of biomarker outflux into circula-
tion. Similar to Hori & Gambhir’s model, this study employs a mono-exponential function to simulate tumor 
growth. Unlike their study, here we are interested in evaluating both non-extracellular and extracellular protein 
shedding kinetics during this growth, as a function of the tumor tissue characteristics. The model can be tuned 
by evaluation of histology data, including relative vascular volume, mean vessel diameter, and distance from 
vasculature to necrotic tissue. This information is used to simulate the dynamic interaction between tumor tissue 
and vascularization, which determines biomarker outflux into circulation.

The model discretizes cell populations sharing similar oxygenation as a function of distance to vasculature 
into interconnected compartments. To bypass the spatiotemporal complexities of vascularization, these compart-
ments are in the model assigned increased carrying capacities as the tumor grows. The spatial representation is 
achieved through the use of concentric cylindrical compartments and, correspondingly, use of the cylindrical 
parameterization of radial distance to a central vascular compartment. Due to this multi-compartment approach, 
approximate solutions to difference equations are utilized because (i) smaller granularity than at the single day 
level is not needed, (ii) the time-scales of interest are large, and (iii) cellular proliferation in the tumor microen-
vironment is highly dynamic. For a given tissue type and its corresponding growth rates, the model can compute 

Figure 5.  Sensitivity analysis for protein shedding. Parameter values for (A) kV , (B) C0 , (C) per-cell influx ( � 
or � depending on the population), (D) half-life t1/2 , and (E) the healthy cell shedding influx uH , were chosen 
at five linear- or log-ordered points between their domain’s hypothesized minimum and maximum values, 
depending on the parameter of interest. The non-extracellular (non-EC) shedding trajectories are colored in 
black, while the corresponding extracellular (EC) shedding trajectories are colored in gray. For each plot, the 
parameter not undergoing analysis is fixed to a hypothetical set ( t1/2=6.4, �=0.00045 or �=0.00045 depending 
on population, and uH=456) acting as baselines for both marker types. The summary of parameter values used 
for sensitivity are specified in Table 1. This analysis emphasizes the importance of all parameters in shedding of 
both EC and non-EC makers, as seen by their visibly large log-fold changes in protein mass. Namely, parameter 
uH controls the immediate uptick in the trajectory, while parameters t1/2 and � or � control the slope of the 
trajectory after proliferative growth slowdown and the emergence of the necrotic population. Parameter t1/2 also 
controls the initial surge in marker mass before reaching steady state due to controlling the rate of elimination. 
It should be noted that varying either kV and C0 alone in the specified parameter ranges does not visibly benefit 
non-EC shedding since cell death is the source of markers.
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Figure 6.  Compartmental contributions toward tumor growth. Stack plot of the per-compartment (A) net 
proliferative and (B) necrotic populations over time. The tumor growth run used was programmatically selected 
for having both moderate tumor growth and necrosis, with the process of model selection seen in Fig. 1. The 
original exponential trajectory seen from 0–6 years slows down at approximately 6 years into the simulation 
due to vascularization failing to keep up with the growing metabolic demands of the tumor. This inflection is an 
artifact of the model’s assumed linear vascularization rate, i.e., the coupled mono-exponential growth models 
are limited by a linear ceiling. The majority of cells live and die in oxygenated compartments. However, there is 
a relatively larger contribution to cell death (B) from more distant compartments due to their very high death 
rates.

Figure 7.  Compartmental contributions toward protein shedding. Stack plot of the per-compartment outflux 
(or vasculature influx) of (A) extracellular (EC) and (B) non-extracellular (non-EC) protein mass over time. 
The slowdown occurs due to the compartmental populations experiencing a limit in carrying capacity (based 
on vascularization) after the proliferative population reaches approximately 105 cells. Shedding was simulated 
on the same tumor growth run used for Fig. 6, which was programmatically selected for having both moderate 
growth and necrosis. The parameter values of the simulated proteins were kept entirely identical, where 
specifically healthy cell influx ( uH ), and half-life ( t1/2 ) are the same. Furthermore, parameter values of � = � 
were also assumed in this setting for ease of comparison. Once again, the relatively larger ratio of distant cell 
contribution to non-EC shedding (B) due to higher rates of cell death is visible here. The overall trajectory is 
near-linear (on log-scale) for both protein localizations.
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population trajectories along with the corresponding shedding kinetics for a number of proteins of interest. 
Consequently, this approach enables the comparison of the shedding kinetics of multiple proteins at once given a 
tumor simulation calibrated to particular tissue characteristics. The implementation is computationally low-cost, 
providing for spatial modeling without the need to solve coupled partial differential  equations21 or to represent 
individual cellular  agents28. Due to the model’s assumption of coupling between tumor (proliferative and dead) 
cell populations and plasma protein concentration, as well as an assumed lack of feedback from the plasma and 
tumor compartments, the tumor growth and protein shedding systems of equations can be computed in series. 
This computationally efficient methodology leverages local behavior of intratumoral dynamics to simulate the 
protein shedding dynamics of whole tumors. Accordingly, the proposed model offers a novel framework for rapid 
simulations of tumor shedding with large-scale comparisons between proteins of interest, with the potential to 
provide insight into patient-specific tumor conditions.

For simplicity, the model employs a standard mono-exponential growth function to describe compartmental 
growth, yielding relatively small parameter sets both when generating estimators and when calibrating the model. 
Other growth functions could be explored. Moreover, dying cells (e.g., via necrosis or apoptosis) at each time step 
do not take up physical space towards the capacity of the compartment and, instead, are instantaneously cleared 
out of the system. Future tuned parameter sets of net growth rates will need to account for this assumption of 
space availability. Further, the model parameterization scheme presents certain limitations. The model assumes 
that cell are sourced from oxygenated compartments at time t = 0 , but in reality there is some a priori structure 
for populations before new vasculature enters the system through angiogenesis or vascular recruitment. Addition-
ally, cell death is not solely caused by necrosis; while increased death rates in less oxygenated compartments imply 
hypoxia-induced necrosis, the proportion of cell death caused by necrosis as opposed to scheduled cell death is 
unknown. Furthermore, the vascularization function is currently assumed linear with respect to time. While a 
density dependent function would reflect angiogenic factors having a role in angiogenesis, a simpler model was 
chosen. Figure 8 corroborates the need for density-dependent vascularization and faster tumor growth at later 
stages, as shown by the discrepancy of the presented model and the tuned model by Hori et al. This choice of 

Figure 8.  Parameter scanning for non-extracellular proteins. Scans over protein parameters identifies cases 
when non-extracellular proteins outperform extracellular ones. Hypothetical extracellular (EC) and non-
extracellular (non-EC) proteins are simulated and denoted by the lines embellished with diamonds and squares, 
respectively. Combinatorial scans over the parameters � , uH , and t1/2 are calculated. As discussed further in 
Fig. 5, parameter uH (set to values 4.56e+00, 4.56e+02, 4.56e+04) appears to control the immediate uptick in 
the trajectory, which can be interpreted as the initial levels of protein mass in circulation. Parameters t1/2 (set 
to values 0.64, 20.24, 640) and � (set to values 1.423e−02, 2.531e+00, 4.500e+02) appear to control the slope 
of the trajectory, which is especially visible after tumor growth slowdown and emergent necrotic population 
uptick. The minimum and maximum trajectories are taken for each value of uH scanned, resulting in shaded 
regions that define the operating dynamic range of shedding for the scanned parameter space of the other two 
parameter values. Specifically, the lavender-tinted, orange-tinted, and yellow-tinted regions are the dynamic 
ranges operating on varying the aforementioned t1/2 and � values along with set uH=4.56e+00, uH=4.56e+02, 
uH=4.56e+04, respectively. Due to a monotonic increase in protein mass with respect to t1/2 and � , given a set 
value of uH , the lower and upper bounds of dynamic ranges are always achieved with the smallest and largest 
values of t1/2 (0.64 and 640) and � (1.423e−02 and 0.423e−02), respectively. The crossover of dynamic ranges 
(tinted regions) indicates parameter operating regions where the initial boost in protein mass from uH is made 
up by the other parameters. Results are presented (A) with respect to time and (B) tumor population. The solid 
black line represents the Hori et al tuned shedding (using its underlying population growth model), while the 
line marked EC represents the shedding by the model proposed in this study, with the same parameter values as 
the Hori model. The end-behavior discrepancy between the two trajectories is most likely due to the differing 
tumor growth equations and associated assumptions.
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function controls the rate at which cells can proliferate due to increased carrying capacity. Tuning is required to 
ensure that the function is not too fast (i.e., large-scale necrosis is delayed) nor too slow (i.e., the tumor fails to 
achieve a large enough population over time).

Values for the model parameters were primarily chosen from the literature (Table 1). In particular, net tumoral 
growth, birth, and death rates were tuned to previously-obtained experimental data by us and by  others18, serv-
ing as order of magnitude approximations. The MVD (and resulting volume of vasculature) was chosen as an 
approximate baseline. Additionally, kV was itself tuned to achieve a similar growth trajectory as presented in Hori 
et al. These tumor-specific values should be tuned to a particular tissue type of interest. In order to further tune 
and validate the proposed model, future work will aim to grow in vivo xenografts composed of cell types that shed 
selected proteins of interest. Known protein tumor kinetics will need to be used to validate model predictions 
and to verify its utility in order to bring it closer to clinical application. With repeated blood sampling and serial 
measurements (similar to studies such as Li et al.29), the shared tissue-specific model parameters (e.g., growth 
and vascularization rates) can be tuned to the desired tissue type. After such tuning, protein-specific parameters 
( � , � , uH , and t1/2 ) can either be estimated using approaches that average over sampling time or calculated via 
mass-balance equations once xenografts have nearly reached carrying capacity and steady state is assumed. Lastly, 
future work will seek to build statistical learning models to predict protein-specific  parameters30,31 from prot-
eomic features, publicly-available  datasets32, and steady state values in order to fully enable large-scale viability 
studies and prioritization of candidate biomarkers.

Methods
proliferative and necrosing cell populations. To describe proliferation of a tumor cell population in 
vivo, a simple mono-exponential growth model is employed:

where, P(t) is proliferative population at time t ∈ R≥0 and 0 ≤ kG ≤ 1 is net tumoral growth rate (Table 1). For 
model flexibility and cellular dynamics at each time step, difference equations are used at �t: = 1 day intervals 

(1)
dP(t)

dt
= kG · P(t)

Table 1.  Model parameters U denotes arbitrary units. It is assumed that � is multiple orders of magnitude 
larger than � . Original ranges signify those found in the literature before any interpolation. Key: * Values/
ranges simulated for valid tumor growth grid search (Fig. 3). & Values/ranges simulated for tumor growth 
sensitivity analyses (Fig. 4). + Values/ranges simulated for marker shedding sensitivity analyses (Fig. 5). # 
Values/ranges simulated for parameter scan comparisons between EC and non-EC shedding (Fig. 8). $ Values/
ranges simulated for CA-125 shedding simulations (Fig. 8).

Parameter Description (units) Value(s) simulated Range(s) simulated References

�t Approximation time step (day) 1 - -

kG,i
Net tumoral growth rate of compartment Ti 
(day−1)

See Eq. (17) Calculated from kB,i and kD,i –

kB,i Tumoral birth rate of compartment Ti (day−1) See Eq. (17) [7.8e−4, 8.2e−3] as original range 18

kD,i Tumoral death rate of compartment Ti (day−1) See Eq. (17) [0, 1.6e−3] as original range 18

P0 Initial number of proliferating tumor cells (cell) 1 – –

EC Cellular localization of protein {0, 1} – –

wi
Distance-based diffusion weight for compart-
ment Ti

See Eq. (13) – –

� Protein-specific contribution per cell (U/cell) 4.5e-4#$ [1.4e−2, 4.5e2]$ , [4.5e−4, 4.5e−1]+ –

�
Protein-specific shedding rate per cell (U cell−1 
day−1)

4.5e−4# , 4.5e−6$ - 8

t1/2 Blood half-life of protein (day) 6.4 [0.64, 6400]+ 8

kE Elimination rate of protein from plasma (day−1) – Calculated from ln(2)/t1/2 8

C0
Maximum volumetric concentration of oxygen in 
the tumor (%) 16& 12,20∗+& 18

uH ,t
Healthy cell basal shedding influx; assumed 
constant (U/day) 4.56e2, 4.56e3$ [4.56e1, 4.56e5]+ 8

kV Vascularization rate (day−1) 0.101& [1e-3, 2e-1]∗+& –

p Percent of total tumor volume occupied by tumor 
cells 0.2 – 8

ρ Tumor cell density (cell/mm3) 1e6 – 8

σ
Partitioning resolution, or width, of compart-
ments ( µm) 10 – –

ǫ Necrotic cuff ( µm) 100 – 15,19,20

d Mean vessel diameter (MVD) ( µm) 60 – 19

r1/2 Radial distance half-life of oxygen 0.018 – 18
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to form the Malthusian expression, Pt+1 = Pt +�P . Through this use of a sufficiently small �t , Eq. (1)’s dif-
ferential equation is converted to Eq. (2) via a forward Euler finite difference approximation:

where Pt is the net proliferative population at discrete time point t ∈ N and �t = 1 day is the time step taken 
for this approximation. The initial condition is set to Pt := 1 to signify the number of tumor cells that initiate 
tumorigenesis. In order to approximate cell death at time t, the net tumoral growth rate kG is decomposed into 
its constituent birth rate kB and death rate kD:

Using the above definition of net growth rate, the terms in Eq. (2) are expanded to define Bt and Dt , the amount 
of cell birth and death at time t, respectively:

where Dt is the instantaneous cell death at discrete time t, encapsulating both regularly-timed cell death (i.e., 
apoptosis) and death by injury (e.g., hypoxia-induced necrosis). However for simplicity, Dt is used an approxi-
mation of intratumoral necrosis, since this phenomenon governs much of the cell death in hypoxic  regions33. 
This formulation for mono-exponential tumor growth and corresponding cell death will be used to describe the 
growth kinetics of each compartment’s subpopulation, as described below.

tumor compartmentalization by radial distance to vasculature. We introduce a cross-sectional 
representation of the tumor microenvironment into compartments of shared tumor growth based on radial 
distance to proximal vasculature. With this radial dimension, a cylindrical model extends the cross-section to 
represent the growing tumor, as discussed later. The oxygen gradient maintained radially from the vasculature 
is parameterized and discretized to compute the numerical solution. The discretized regions define tumor cell 
populations with the same proliferative and dying potentials, defining n tumor cell compartments Ti , each with 
its own growth rate kG,i as a function of distance to vasculature (Fig. 1). These compartments form a coupled 
system of linear ordinary differential equations. It should be noted that parameter σ , or the partitioning resolu-
tion, is the compartment thickness of the radially-partitioned oxygen gradient. To model subpopulations at the 
highest resolution, σ is set to approximate a single-cell diameter at 10 µ m. Along with a necrotic cuff of 100 µ m, 
this discretization yields n = 10 distinct compartments or tumor regions. The following formulation is used to 
define the radial relationship between compartments and their growth rates:

Definition 1 The level set corresponding to compartment Ti of a real-valued function f of m variables is defined 
as a set of the form:

where i ∈ Z.

In order to parameterize the system, points in R3 are mapped to cylindrical coordinates, giving rise to the 
spatial dimension of radial distance to proximal vasculature, r. Accordingly, the net tumoral growth rate kG is 
defined as a function of r:

where the coordinate (x, y, z) is a point in R3 and r �
√

x2 + y2 is a point along the now parameterized radius. 
By using the above parameterization, Definition (1), and the assumption that cells will share a similar growth 
pattern locally, the system is descretized by level sets that define distance-based oxygenation regions of the 
microenvironment cross-section’s constituent tumor regions and central vessel:

where ⌈·⌉ is the ceiling function and f is a discretizing function that maps cells of a radial distance to a discrete 
region, or concentric shell of the tumor. As discussed in more detail in the following sections, the ith tumor 
cell compartment ( Ti ) is assigned a level set that defines its corresponding volume vi and net growth rate kG,i . 
Together, these parameters encode for the distinct tumor regions to form a multi-compartment system of tumor 
growth. With this discretization, the net growth rate is defined as a discrete function rather than its continuous 
counterpart in Eq. (5). Thus, parameter kG,i is referred to as the local net growth rate:

(2)

dP(t)

dt
= kG · P(t)

Pt+1 − Pt

�t
≈ kG · Pt

=⇒ Pt+1 ≈ (1+ kG�t) · Pt

(3)kG � kB − kD

(4)

Pt+1 ≈ (1+ kG�t) · Pt = [1+ (kB − kD)�t] · Pt
≈ Pt + kB�tPt︸ ︷︷ ︸

Bt

− kD�tPt︸ ︷︷ ︸
Dt

=⇒ Dt ≈ kD�t · Pt

Ti(f ) = {(x1, x2, . . . , xm) | f (x1, x2, . . . , xm) = i}

(5)kG,(x,y,z) = kG(x, y, z) = kG(r) = kG,r

(6)Ti(f ) = {r | f (r) = i} s.t. f = ⌈
r

σ
⌉
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where si is the radial midpoint of cylindrical compartment Ti . The following mapping for si is used to calculate 
all compartmental rate constants and shedding weights:

This mapping is used to define compartmental rates and shedding weights based on the corresponding radial 
midpoint.

compartmental volumes. The radial parameterization and discretization of space in the microenviron-
ment into compartments also requires a spatial definition to encode heterogeneous population growth and shed-
ding. With a radial dimension, a cylindrical representation defined around vasculature is used. The previous 
subsection introduced the level set formulation to assign compartmental rates to each subpopulation based on 
distance to proximal vasculature; this subsection introduces geometric definitions of cylindrical shells to define 
compartmental volumes. These two ideas together delineate constraints for both the tumor cell subpopulations 
and the vasculature (denoted as Pl in Fig. 1).

Definition 2 The volume V of a cylinder with radius R is:

Definition 3 The core C of a cylinder is defined as the sub-cylindrical region starting at the origin with radius δ.

Definition 4 The ith concentric shell (corresponding to compartment Ti ) of a cylinder has a volume Vi of:

Definition 5 A cylinder with radius R and core C is said to contain n equidistantly concentric shells if its radius 
is uniformly partitioned by σ = R

n . Namely, σ is the thickness of each cylindrical shell (i.e., associated with 
compartments Ti ∀i = 1 . . . n ), where the ith concentric shell has radius:

Furthermore, the shell subvolumes of vi (∀i = 1 . . . n) s.t. 
∑n

i=1 vi = Vn = V  are computed in the following 
manner:

Proposition 1 For a cylinder with radius R and equidistantly concentric shells, the following recurrence relation 
and solution describe corresponding subvolumes vi:

Given that the MVD (d) has been measured at approximately 60 µ m in some tissue types, the radius of the 
average vasculature in contact with the proposed microenvironment cross-section is approximately 30 µ m. This 
latter distance is denoted as the cylindrical model’s core, described as δ in Definition  3. Thus the radius of the 
cylindrical model is R = δ + ǫ , where ǫ is the aforementioned necrotic cuff. Refer to Fig. 1 to see a summary of 
spatial constraints. Using Proposition  1, subvolumes vi of cylindrical shells associated with compartments Ti 
are calculated:

The height of the cylindrical system ht , or level of tumor vascularization, is defined as a function with respect to 
time. The following linear vascularization function is assumed to simulate a slow-growing tumor:

with kV denoting the rate of vascularization.

(7)kG,i = kG(si)

(8)si =
(
2 · f (r)− 1

2

)
· σ =

(
2i − 1

2

)
· σ .

V � πR2h.

Vi = πR2
i h s.t. Ri � R, ∀i = 1 . . . n where Vn = V .

Ri =
i∑

j=1

σj + δ = iσ + δ s.t. Rn = R.

v1 = V1 = πR2
1h = π(σ + δ)2h

v2 = V2 − V1 = π(R2
2 − R2

1)h = π [(2σ + δ)2 − (σ + δ)2]h = π(3σ 2 + 2σδ)h

...

vn = Vn − Vn−1 = π(R2
n − R2

n−1)h = π [(nσ + δ)2 − ((n− 1)σ + δ)2]h = π [(2n− 1)σ 2 + 2σδ]h.

vn =
[
(2n− 1)σ + 2δ

(2n− 3)σ + 2δ

]
· vn−1

vn = π [(2n− 1)σ 2 + 2σδ]h
∀n ∈ N and basis case: v1 = V1 = πR2

1h = π(σ + δ)2h.

vi = π
[
(2i − 1)σ 2 + 2σδ

]
h.

ht = kV · t
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compartmental carrying capacities. The compartmental volumes vi help determine a compartment 
Ti ’s associated physical capacity, Ki,t . This can also be thought of as a numerical cell limit before cells begin out-
growth into the next compartment, i.e., being advected towards lower-pressure necrotic regions away from the 
vascular source by the oncotic pressure exerted by better oxygenated, proliferative cells. This relationship can be 
calculated by the following expression, using parameters measured from solid tumor cellular densities:

where ρ is the approximate tumor cell density (cells/mm3 ) of a solid tumor, and p is the percent of total tumor 
volume occupied by tumor  cells8 (Table 1). Differing compartmental volumes account for differing carrying 
capacities. As briefly mentioned earlier with the introduction of a vascularization function ht , the volume and 
subsequent carrying capacity of a compartment changes over time. In effect, ht extends compartmental carrying 
capacities as blood vessels are recruited to increase tumor vascularization.

compartment dynamics during tumor growth. The previous subsections fully defined tumor cell 
compartments Ti with their own (1) effective rates of growth and shedding, (2) volumes, and (3) carrying capaci-
ties to define constraints for their subpopulations. This subsection introduces cell motility and aggregate tumor 
outgrowth into more distant regions. For simplicity, cell metastatic migration is neglected in this process, and 
cells dying at each time step do not occupy physical space toward the capacity of the compartment. Additionally, 
some amount of cellular movement is allowed between the compartments to account for multi-directional cell 
proliferation and death. With a lack of data available for cell motility, the following probabilities (and resulting 
fractions) of compartment or subpopulation movement are used:

where inward movement is slightly favored due to higher oxygenation. These probabilities were manually tuned 
via the tumor growth model performance.

This multi-compartment system accounts for the self-interacting dynamics between subpopulations. Due to 
the addition of radial distance as a dimension, one must account for cellular growth that expands outward into 
a neighboring compartment, or oxygenation region, of the tumor. In the model, as cell populations reach their 
compartment’s carrying capacities, they proliferate into more necrotic compartments under the assumption that 
the oncotic pressure decreases towards necrotic regions. Accordingly, the index notation i = 1 . . . n is employed 
to signify the ith tumor compartment Ti and its corresponding proliferating population Pi,t . Outgrowth into the 
i + 1th compartment from the neighboring ith compartment depends on the local spatial capacity of the ith com-
partment, which is denoted as Ki,t . More precisely, the ith compartment’s proliferating population must exceed 
that of its own capacity such that Pi,t > Ki,t . If this condition holds true, excess cells created in the current time-
step t are henceforth contributing to the proliferating population of the i + 1th compartment, Pi+1,t (Table 2). 
This outgrowth (i.e., compartment overflow) at day t, Oi+1,t , is defined as a recursive difference equation:

This outgrowth term is added to Pi,t+1 , compartment Ti ’s proliferative population at time t + 1 to yield a recur-
sive definition of proliferative tumor population per compartment Ti . With this spatiotemporal dynamism, each 
compartment is also governed by its corresponding local net growth rate kG,i:

(9)Ki,t = vi · ρ · p

P(inward movement) := 0.10

P(outward movement) := 0.05

P(outward movement | 10-fold difference) := 0.10

(10)Oi+1,t : = �>1(i + 1) · �>Ki,t (Pi,t) · [Pi,t − Ki,t ]

(11)Pi,t+1 ≈
[
(1+ kG,i�t) · Pi,t

]
+ Oi,t+1

Table 2.  Model variables.

Variable Description

Pi(t) Proliferative population of compartment Ti at continuous time t (cell)

Pi,t Proliferative population of compartment Ti at discrete time t (cell)

Di,t Dead cell population of compartment Ti at discrete time t (cell)

Oi,t Cell overflow from compartment Ti to Ti+1 (cell)

ht Height of compartments (and cylindrical model) at discrete time t

Ki,t Carrying capacity of compartment Ti at discrete time t (cells)

ui(t) Protein outflux from compartment Ti at continuous time t (U/day)

ui,t Protein outflux from compartment Ti at discrete time t (U/day)

q(t) Protein mass in plasma at continuous time t (U)

qt Protein mass in plasma at discrete time t (U)
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Heterogeneous intratumoral protein shedding. Consistent with previously established  approaches8, 
protein shedding is represented as a relationship directly proportional to the number of cells in the system. 
Accordingly, the ith compartmental outflux at time t, ui(t) , is defined as a distance-based relationship between 
the number of tumor cells and the corresponding compartment’s population and shedding values:

where Di,t/�t is the dead tumor cell population for tumor compartment Ti per day t, EC is the cellular localiza-
tion of the protein ( EC = 1 denotes the extracellular domain and EC = 0 denotes the non-extracellular domain), 
� is the protein-specific contribution per cell during necrosis, � is the protein-specific shedding rate per cell 
per day, and wi is the distance-based weight for the ith tumor compartment, Ti (Table 1). Note that ui,t is the ith 
compartment’s protein influx into the plasma at discrete day t. For the sake of simplicity, wi is approximated as 
a 1-dimensional diffusivity relationship with distance from vasculature:

Finally, extracellular protein shedding is accounted for by active shedding from proliferating cells, while non-
extracellular protein shedding is directly proportional to the instantaneous necrotic population at time t.

Heterogeneous plasma protein influx. Extracellular and non-extracellular protein mass in plasma, q(t) 
or qt , is modeled with the following ordinary difference and differential equations:

where kE is the elimination rate of protein from the plasma, which encompasses protein degradation, excretion, 
clearance, etc. Equation (14) is approximated numerically as a difference equation in Eq. (15) using the Euler 
method. Parameter q0 is the basal plasma protein mass, and relatedly, uH is the daily rate constant of influx of 
protein mass from healthy cells. It should be noted that when multiplied by �t , the rate uH becomes an influx 
value at each time step. Furthermore, in experimental settings with tumor xenografts in mouse models, uH is 
assumed to be zero-valued since the generated human proteins of interest are non-endogenous.

estimation of model parameter values. In order to build mappings between distance to vasculature r 
and net growth rate kG,i , data from both oxygen diffusion in tissue and in vitro tumor cell birth and death rates 
under varying oxygen conditions are  used20. A compartment Ti ’s tumor growth parameters kG,i , kB,i , and kD,i is 
assumed linear with respect to oxygen concentration and estimated with the following equations:

where C0 � C(0) is the volumetric concentration of oxygen at vasculature, r1/2 is the distance half-life of oxygen, 
m is the slope describing the change in rates over the change in oxygenation, and b is the minimum measured 
rate value. Equation (16) assumes an exponential decay  relationship20 mapping radial distance from a proximal 
vasculature point r, to the volumetric concentration of oxygen C, thereby creating a concentration gradient 
over the domain r ∈ [0, ǫ] . Equation (17) assumes a linear relationship that maps the volumetric concentration 
of oxygen C to the net growth, birth, or death rate. Specifically, a linear interpolation is employed on birth and 
death rate data collected from cell cultures exposed to 1% and 20% oxygen to estimate n sets of birth, death, and 
net growth rates for the compartments midpoints si as seen in Eq. (8) with the level set formulation. The result-
ing rates can be found in Table 1. A visualization of the birth, death, and net growth rates can be found in Fig. 2.

Software implementation. The model was simulated using Python. Due to the coupled nature of tumor 
growth and protein shedding, these two phenomena were simulated in series, each with its own sets of param-
eters. The parameter set corresponding to tumor growth relies on the cell or tissue type, while the parameter set 
corresponding to protein shedding relies on the proteins of interest.

Source code availability
The source code for the model is available at https ://githu b.com/gmach iraju /Multi compa rtmen tTumo rs.
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(12)
{
ui,t ≈ wi� · Di,t

�t ifEC = 0
ui(t) = wi� · Pi(t) ifEC = 1

(13)wi =
1
√
si

(14)
dq(t)

dt
=

n∑

i=1

ui(t)+ uH − kE · q(t)

(15)=⇒ qt+1 ≈
n∑

i=1

ui,t�t + uH�t + (1− kE�t) · qt

(16)C(r) � C0 · 0.5r/r1/2

(17)k̂{·},r := m{·} · C(r)+ b{·}

https://github.com/gmachiraju/MulticompartmentTumors
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