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Abstract: One of the problems of modern medical science is cardiovascular pathology caused by
atherosclerotic vascular lesions in patients with autoimmune rheumatic diseases (ARDs). The similar-
ity between the mechanisms of the immunopathogenesis of ARD and chronic low-grade inflammation
in atherosclerosis draws attention. According to modern concepts, chronic inflammation associated
with uncontrolled activation of both innate and acquired immunity plays a fundamental role in
all stages of ARDs and atherosclerotic processes. Macrophage monocytes play an important role
among the numerous immune cells and mediators involved in the immunopathogenesis of both
ARDs and atherosclerosis. An imbalance between M1-like and M2-like macrophages is considered
one of the causes of ARDs. The study of a key pathogenetic factor in the development of autoimmune
and atherosclerotic inflammation-activated monocyte/macrophages will deepen the knowledge of
chronic inflammation pathogenesis.

Keywords: autoimmune rheumatic diseases; M1-like macrophages; M2-like macrophages; inflammation;
atherosclerosis

1. Introduction

Autoimmune rheumatic diseases (ARDs) are immune-mediated diseases affecting
connective tissues and include rheumatoid arthritis (RA), systemic lupus erythematosus
(SLE), systemic sclerosis (SSc), and Sjögren’s syndrome. The high risk of untimely death in
these diseases has been found to be associated with the severity of the immunoinflammatory
process that leads to irreversible damage to vital organs and systems with the development
of a wide spectrum of comorbidities (infections, interstitial lung disease, malignant tumors,
etc.). Among them, cardiovascular diseases hold a central position [1–5].

The risk of cardiovascular complications in ARD patients is high, despite the advances
in diagnosis and therapy of the disease and positive trends in the reduction of cardio-
vascular risk in ARD patients and in the general population over the past decades [1,2].
Cardiovascular diseases (CVDs) account for a third of deaths in ARD patients [6–8].

In ARD patients, CVDs are mostly caused by early development and accelerated pro-
gression of atherosclerotic coronary lesions [3,9–12]. The prevalence of subclinical and clin-
ical manifestations of atherosclerosis in immunoinflammatory diseases is 30–59% [13–15].
Most often, CVD and its complications develop in ARD patients with low or moderate
cardiovascular risk, but with high clinical activity of the disease. In particular, it was shown
in the longitudinal study that the progression of subclinical carotid atherosclerosis was
more pronounced in the group of patients with active disease according to the modified
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Disease Activity Score-28 that included CRP level [16]. Moreover, it is currently unknown
which factors play a major role in the development of severe atherosclerosis in ARD pa-
tients. In general, a combination of traditional and non-traditional risk factors, including
dyslipidemia and inflammation, contributes to the development of CVD in autoimmune
diseases [5].

According to modern concepts, chronic inflammation, which develops due to un-
controlled activation of both innate and acquired immunity, plays a fundamental role
in all stages of ARDs and atherosclerotic processes, and can cause the development of
CVD and higher mortality from cardiovascular complications [9,17]. The suggested im-
munopathological processes underlying chronic inflammation are the same for ARDs and
atherosclerosis [17,18]:

- The systemic effect of proinflammatory cytokines: interleukin (IL)-1β, IL-6, tumor
necrosis factor (TNF)-α, and interferon (IFN)-γ;

- Increased adhesion of activated neutrophils, monocytes, and platelets to the vascular
endothelium under the influence of neutrophil chemokine (C-X-C motif) ligand 8
(CXCL8) or IL-8 and monocyte chemokine (C-C motif) ligand 2 (CCL2) or monocyte
chemoattractant protein 1 (MCP-1);

- Further activation of platelets by neutrophils/monocytes via proteinase-activated
receptors (PARs) 1 and 4 and anticitrullinated protein antibodies (ACPAs);

- Activation of vascular endothelial PAR-1 by adherent neutrophils/macrophages,
exacerbating systemic inflammation and endothelial dysfunction;

- Chronic low-grade inflammation contributing to proatherogenic oxidized low-density
lipoprotein (ox-LDL) modification;

- Neutrophil effect on activated platelets with the intravascular formation of a neu-
trophil extracellular trap (NET), which maintains intravascular proinflammatory
potential through the expression of tissue factor, endothelium-activating proteases,
and histones.

Modern studies of cellular and molecular markers of inflammatory and anti-inflammatory
processes common to ARDs and atherosclerosis, in particular, functional disorders of
macrophages, are aimed to specify the pathogenesis of these diseases and determine their
clinical significance in patients with ARDs. This review attempted to determine the current
status of the databases PubMed and Scopus (until January 2022) to highlight current ideas
on the potential role of macrophage dysfunction in the inflammatory mechanisms of various
ARDs and atherosclerosis.

2. Macrophage Polarization

Various types of macrophages are involved in the development of autoimmune inflam-
mation in ARD. These resident cell types remain relatively quiescent in the healthy tissue
and become activated after antigen damage, along with infiltrating monocytes/macrophages
recruited as a result of proinflammatory signaling [19]. Macrophages become activated
in response to endogenous and exogenous stimuli. In particular, macrophages can be
activated to the proinflammatory phenotype by the microbial component lipopolysaccha-
ride; in response to interferons (IFNs), toll-like receptor (TLR) engagement, or IL-4/IL-13
signaling, macrophages undergo M1-like or M2-like activation [20,21]. Macrophage ac-
tivation is accompanied by a significant change in the gene expression profile and the
formation of a cellular phenotype specific for each type of stimulus. Historically, two
types of activated macrophages were first discovered. By analogy with Th (helper)1/Th2
cells, they were called M1-like and M2-like macrophages. Depending on the pathway
of macrophage activation, these cells are divided into two types: classically activated
type I macrophages (M1-like) (proinflammatory phenotype) and alternatively activate
anti-inflammatory macrophages (M2-like) (immunomodulatory and tissue remodulating
phenotype) [22,23].

The main functions of M1-like macrophages are pathogen elimination and induction of
inflammatory response by secretion of proinflammatory mediators. M1-like macrophages
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express receptors to IL-1, TLR, and co-stimulatory molecules, thus providing induction of
the inflammatory response [24]. M1-like macrophages produce proinflammatory cytokines
(IL-1, IL-6, TNF-α, IL-12, IL-23, and IL-13) and cytotoxic molecules (reactive oxygen species
and nitrogen metabolites). They can also be repolarized by Th2 or Th1 cytokines [25,26].
M1-like macrophages are known to synthesize not only the key cytokine of the cell-
mediated immune response IL-12, but also the anti-inflammatory cytokine IL-10 [27].
M1-like macrophages are characterized by a high IL-12/IL-10 ratio [28]. The described
reparative properties of M1-like macrophages are associated with the secretion of vascular
endothelial growth factor (VEGF), which stimulates angiogenesis and granulation tissue
formation in case of damage [29].

Alternative activation of M2-like macrophages is carried out by their stimulation by IL,
glucocorticoids, immune complexes, TLR agonists, etc., contained in particular in exosomes
derived from mesenchymal stem cells [30]. M2-like macrophages have a more pronounced
capacity for phagocytosis compared to M1-like macrophages. M2-like macrophages ex-
press a greater number of receptors for phagocytosis, such as: CD36, a scavenger receptor
for apoptotic cells; CD206, a mannose receptor; CD301, a receptor for galactose and N-
acetylglucosamine residues; and CD163, a receptor for the hemoglobin/haptoglobin com-
plex [27]. M2-like macrophages induce Th-2 cytokines (IL-4, IL-10, and IL-13), chemokine
CCL18, and stimulate proliferation and angiogenesis processes [25]. M2-like macrophages
are characterized by a low IL-12/IL-10 ratio [27].

3. Macrophage Dysfunction in Atherosclerosis

The role of macrophages in the progression of atherosclerotic vascular lesions is the
most studied [31,32]. Macrophages in atherosclerotic vascular diseases play a central
role in the development of plaques. Macrophages, presumably the M1-like phenotype,
can induce recruitment and activation of additional macrophages, T and B cells, and
dendritic cells, thereby supporting inflammation and progression of the atherosclerotic
plaque. Intravascular lipid accumulation leads to recruitment of monocytes in the area of
atherosclerosis development, their differentiation into macrophages, followed by metabolic
reprogramming of macrophages due to atherogenic stimuli in the plaque microenvironment,
such as modified lipoproteins, hypoxia, and damage-associated molecular patterns. The
upregulation of anabolic pathways such as glycolysis, the pentose/phosphate pathway,
and fatty acid synthesis, which appear to facilitate atherogenesis, is a general hallmark of
activated immune myeloid cells in the focus of atherosclerotic plaque formation [33].

On the other hand, M2-like macrophages secrete anti-inflammatory and profibrotic
mediators and limit inflammation, thus inhibiting the progression of atherosclerosis [33].
Early regression of atherosclerosis is caused by increased apoptosis of cholesterol-laden
macrophages and subsequent uptake of these cells by neighboring macrophages [34]. A re-
cently discovered activator protein (transcription factor MafB) promotes anti-inflammatory
M2-like macrophage polarization and cholesterol efflux in macrophages [35]. Hyperexpres-
sion of signal transducer and activator of transcription 6 (STAT6) in vitro can also activate
M2-type macrophage polarization [36]. There is evidence that STAT6-dependent polariza-
tion of macrophages to the M2 state leads to suppression of atherosclerotic inflammation
and plaque regression by newly recruited Ly6Chi monocytes [37].

M1-like and M2-like macrophages have different effects on atherogenesis. M2 macrophages
have a greater effect on fatty acid oxidation, while M1-like macrophages increase glycoly-
sis [38]. M1-like macrophages predominate in the unstable atherosclerotic plaques, whereas
M2-like macrophages predominate in the collagen-rich fibrous part of the plaque. This
indicates that atherosclerotic plaque instability may be caused by an imbalance between
M1-like and M2-like macrophages [39].

Further research should be undertaken to identify regulators of macrophage pheno-
type and function and to reconcile how divergent macrophage phenotypes (i.e., M1, M2)
contribute to atherosclerotic plaque stability. Understanding the basis of metabolic and epi-
genetic reprogramming of macrophage polarization is expected to lead to the development
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of new therapeutic options to promote regression of the atherosclerotic process and reduce
the residual inflammatory risk [31].

Meanwhile, M1-like and M2-like macrophages play essential roles in the pathology
of multiple diseases in tumor growth, infectious diseases, obesity, insulin resistance, and
autoimmune disorders [40,41].

4. Macrophage Dysfunction and Autoimmune Rheumatic Diseases

Numerous experimental data indicate the role of M1/M2 macrophage dysregulation in
the development of autoimmune inflammation [42]. Classically activated M1 macrophages
are induced by IFN-γ, lipopolysaccharide (LPS), granulocyte/monocyte colony-stimulating
factor (GM-CSF), and TNF-α, whereas alternatively activated M2-like macrophages are
induced by IL-4, IL-10, IL-13, M-CSF, immune complexes, and glucocorticoids [27,30]. Possi-
ble mechanisms of M1/M2 macrophage dysregulation in various ARDs are being studied.

4.1. Macrophage M1/M2 Polarization in Rheumatoid Arthritis

Macrophages in RA are predominantly of the M1-like phenotype, which contributes
to RA progression by releasing various inflammatory cytokines (TNF-α, IL-1, IL-6, IL-12,
and IL-23) in the synovial tissue of affected joints [43]. Macrophages produce cytokines
that support inflammation by recruiting new immune cells (monocytes), polarizing T cells,
and activating fibroblasts. Activated fibroblasts secrete receptor activator of nuclear factor
kappa-B (NF-κB) ligand (RANKL) and macrophage colony-stimulating factor 1 (M-CSF),
which induce osteoclast differentiation, which is enhanced by TNF and other cytokines.
The formed autoimmune complexes, in turn, activate macrophages. Macrophages are also
affected by cytokines produced by T cells, fibroblasts, and innate immune cells (Figure 1).
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Figure 1. Involvement of macrophages in the development of rheumatoid arthritis. Macrophages
produce cytokines that support inflammation by recruiting new immune cells (monocytes), polarizing
T cells, and activating fibroblasts. Activated fibroblasts secrete receptor activator of nuclear factor
kappa-B (NF-κB) ligand (RANKL) and macrophage colony-stimulating factor 1 (M-CSF), which
induce osteoclast differentiation, which is enhanced by TNF and other cytokines. The formed
autoimmune complexes, in turn, activate macrophages. Macrophages are also affected by cytokines
produced by T cells, fibroblasts, and innate immune cells.
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The activity and expression level of IL-23 and SIRT proteins that modulate gene ex-
pression and is involved in the regulation of proinflammatory cytokines in RA patients was
found to be impaired alongside an increase in apoptosis of peripheral blood mononuclear
cells [44]. Monocytes in RA were shown to be able to penetrate the synovium and be acti-
vated to release cytokines, autoantibodies, and matrix metalloproteinase (MMP), leading
to bone and cartilage destruction [45]. Figure 2 demonstrates that M1-like macrophages
induce bone resorption and participate in the formation of bone erosion, while M2-like
macrophages can secrete IL-10 and transforming growth factor-beta (TGF-β), inhibiting
bone resorption [45].
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Figure 2. Effect of macrophages on bone resorption. M1-like macrophages can secrete TNF-α and IL-
1β, inducing bone resorption. M1-like macrophages can differentiate into osteoclasts and participate
in the formation of bone erosions. M2-like macrophages can secrete IL-10 and transforming growth
factor-beta (TGF-β), inhibiting bone resorption.

Moreover, the involvement of M1-like and M2-like macrophages in the pathogenesis
of RA is associated with their regulation of specific signaling pathways (c-Jun N-terminal
kinase (JNK), IκB kinase alpha (IKKα), Notch signaling pathway) and with the activation
of NF-κB [46]. It should be noted that there is a disequilibrium in the subsets of synovial
macrophages of RA patients: the M1/M2 ratio is higher in patients with RA compared to
healthy donors [47].

Levels of cytokines and their receptors (receptor antagonist IL-1β, IL-6, IL-1, TNF-
α, IFN-γ, eotaxin, GM-CSF, M-CSF), chemokines (monocyte chemoattractant protein 1
(MCP1), and macrophage inflammatory protein 1α (MIP-1α)) were elevated in the blood of
RA patients even before the development of the disease in contrast to healthy individuals
and were the highest in ACPA and rheumatoid factor (RF)-positive patients [48]. Autoanti-
bodies are very important for ARD diagnosis because of their ability to predict the severity
of the disease [49]. The protective effect of ACPAs on the formation of proinflammatory
M1-like macrophages was revealed by activating interferon regulatory factor 5 (IRF5) [50].
Kang et al. [51] showed that IFN-γ can stimulate macrophage polarization in the M1 phe-
notype. The imbalance of the M1/M2 ratio seems to be related to the number of osteoclasts
(OCs) in ACPA-positive RA patients. Along with ACPAs, erythrocyte sedimentation rate
(ESR) and C-reactive protein were found to correlate with the M1/M2 ratio. Thus, the
M1/M2 ratio was the only significant factor affecting the number of OCs [47]. After ex-
posure of macrophages isolated from the blood of RA patients to ACPA, the interaction
between CD147 and integrin beta-1 (ITGB1) was enhanced in these cells, leading to ac-
tivation of the downstream Akt/NF-κB signaling pathway and subsequent induction of
NLR family pyrin domain-containing 3 (NLRP3) and expression of pro-IL-1β. In addition,
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ACPA can activate pannexin channels, leading to adenosine triphosphate (ATP) secretion
and subsequent activation of NLRP3 inflammasome [52].

On the contrary, induction of the CD163 gene in macrophages during inflammation
can lead to the preferential formation of the anti-inflammatory M2 phenotype in vitro [53].
Activated macrophages are believed to be able to affect the polarization of T-helper CD4
cells towards Th1/Th17 and vice versa. CD4 + T-effector cells can activate monocytes,
and CD4 + T regulatory leukocytes can have an immunomodulatory effect on these cells,
thereby inducing their anti-inflammatory properties [54]. There are data on the effect
of less known proteins on the differentiation of macrophages. In particular, it has been
shown that semaphorin 3A (Sema3A), a protein capable of stimulating osteoblasts, can
promote IL-4-induced polarization of M2-like macrophages in vitro [55]. In vivo studies (in
a mouse model) have demonstrated that administration of Sema3A reduces articular tissue
damage and the severity of experimental arthritis [56]. In another experimental study,
peptidyl-prolyl isomerase cyclophilin-A (CypA) promoted macrophage polarization in
the proinflammatory M1 phenotype by NF-κB activating transcription, which exacerbated
collagen-induced arthritis [57]. Monocytes from healthy controls, patients with RA and
SLE that differentiated into monocyte-derived macrophages in the presence of circulating
microparticles immune complexes (MP-IC) showed a proinflammatory (M1) profile, which
was more evident using MP-IC from patients with RA than from patients with SLE [58].

4.2. Macrophage Dysfunction in Systemic Lupus Erythematosus

Macrophages can play different roles in pathological processes in SLE patients, often
counteracting each other [59]. The role of M1-like inflammatory macrophages in SLE devel-
opment is reported in many articles [60,61]. A number of researchers have demonstrated
the relationship between monocyte/macrophage dysfunction and SLE activity. In particu-
lar, M1-associated genes were far more frequent in data sets from active versus inactive SLE
patients [60]. Although both M1-like and M2-like macrophages contribute to the patho-
genesis of lupus nephritis, several studies suggest that the M2 phenotype is the dominant
subpopulation. It was shown in the study using immunohistochemical analysis of renal
biopsies that M2c-like CD163+/CD68+ cells dominated in all classes of lupus nephritis [62].
In lupus-prone mice with spontaneous chronic glomerulonephritis, M2-like macrophages
played the most important pathogenic role and correlated with proteinuria status [63]. In
mouse SLE models, short-term ischemia/reperfusion injury of convoluted tubule epithelial
cells has been shown to induce colony-stimulating factor 1 (CSF-1) production and cause
an M1/M2 macrophage imbalance with a predominance of proinflammatory phenotype
(M1-like) in lupus-resistant mice (MRL-Faslpr) and M2-like phenotype in lupus-susceptible
mice (Sle 123), resulting in impaired tissue regeneration and accelerating the progression of
lupus nephritis [64].

Schaper et al. [65] demonstrated that monocytes from peripheral blood of SLE patients
have lower expression of CD163 expression and higher mRNA of IL-6 and IL-10, and
differentiation of M2-like phenotype towards an M1-like phenotype reduces phagocytosis
of apoptotic cells. Mediators secreted by activated macrophages, such as cytokines and a
protein from the group of nuclear nonhistone proteins 1, can distort macrophage polariza-
tion towards the proinflammatory phenotype and reduce the phagocytosis of apoptotic
cells underlying the pathogenesis of SLE. In the ex vivo research of macrophage changes in
SLE patients caused by apoptotic cells, one of the possible mechanisms of disease patho-
genesis is defective macrophage efferocytosis [66]. MP-IC from patients with systemic
autoimmune diseases promotes polarization of macrophage proinflammatory differentia-
tion by monocyte-derived macrophage microparticles into a proinflammatory profile that
stimulates T-cell activation and additionally induced B-cell activation and survival. Thus,
the effect of MP-IC in mononuclear phagocytes may be an important factor in modulating
adaptive responses in SLE [67]. Understanding this role is of great importance because
a deep knowledge of the relationship between macrophages and SLE could elucidate its
pathogenesis and lay the development of macrophage-targeted therapeutic approaches [68].
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4.3. Macrophage Dysfunction in Systemic Sclerosis

SSc is characterized by obliterative vasculopathy and tissue fibrosis. Peripheral vascu-
lar and arterial access is poor in SSc, and the vasculature is fibrosed [69]. Microvascular
lesions in SSc, including endothelial damage and migration of smooth muscle cells into the
vessel intima, have certain similarities with the atherosclerotic process.

There is strong evidence that macrophages play an important role in the pathogenesis
of SSc [70]. It has been described in SS, that macrophages produce cytokines that support
inflammation by engaging new immune cells (monocytes, neutrophils), polarizing T cells,
and activating fibroblasts [71,72]. It has been hypothesized that M2-like macrophages are
profibrotic. Due to their potential profibrotic and proinflammatory properties, macrophages
are at the core of key SSc pathogenic processes and associated manifestations. Sequencing
of the transcriptome from skin biopsies of SSc patients has allowed obtaining the full
volume of RNA transcripts of the cell population. M2-like macrophages underlie molecular
processes in the skin of SSc patients, with subsequent activation of interferon, activation
of adaptive immunity, remodeling of the extracellular matrix, and cell proliferation [73].
Thus, macrophages are potentially important sources of fibrosis-inducing cytokines such as
TGF-β [74]. In mesenchymal cells, TGF-β functions as a powerful stimulator of fibrogenesis
by increasing collagen synthesis, as well as its proliferation, migration, adhesion, and
transdifferentiation into myofibroblasts [75]. Indeed, the number of cells positive for M2-
like macrophages markers, CD163þ and CD204þ, is increased in the skin and blood of SSc
patients compared to control patients [72]. Furthermore, SSc patients have been reported to
have higher circulating profibrotic macrophages in their blood [76]. Recently, it was found
that skin fibrosis in mice with conditional IRF8 knockout (Irf8flox/flox; Lyz2Cre/þ), specific
for myeloid cells, leads to increased mRNA levels of extracellular matrix components and
increased bleomycin-induced skin fibrosis. Altered regulation of IRF8 in monocytes and
macrophages may be involved in SSc pathogenesis [77].

It has been shown that a higher percentage of circulating M1/M2 mixed mono-
cytes/macrophages is associated with interstitial lung disease, systolic pulmonary artery
pressure (sPAP), and positive topoisomerase antibodies in SSc [78]. Beyond the conventional
M1/M2 paradigm of macrophage subpopulations, new subpopulations of macrophages
have been recently described in skin and lung biopsies from SSc patients. Notably, single-
cell ribonucleic acid sequencing has provided evidence for SPP1+ lung macrophages or
FCGR3A+ skin macrophages in SSc. Impaired proresolving abilities of macrophages, such
as efferocytosis, may also be involved in inflammatory and autoimmune processes in
SSc [79].

4.4. Macrophage and Sjögren’s Syndrome

There are very few studies on the role of macrophages in the development of Sjögren’s
syndrome. Aota et al. showed that increased production of CXCL9 and CXCL10 from
ductal cells of lip salivary glands led to the migration of CXCR3+ macrophages [80]. There
was an inverse correlation between these two parameters: the number of CXCR3+CD163+
macrophages decreased as the degree of lymphocytic infiltration increased. Although
CXCR3 is expressed in all innate immune cells, CXCR3+CD163+ M2-like macrophages may
contribute to anti-inflammatory functions in primary Sjögren’s syndrome lesions.

SLE and Sjögren’s syndrome, diseases with anti-Sjögren’s syndrome A (anti-SSA/Ro)
autoantibodies, are associated with an upregulation of IFN and IFN-stimulated type I genes, in-
cluding sialic acid-binding Ig-like lectin 1 (Siglec-1), a receptor on monocytes/macrophages [81].
Therefore, researchers have recently focused on the potential role of IFN and IFN-stimulated
genes in the pathogenesis of congenital heart block (CHB) [82]. Links between IFN, IFN-
stimulated genes, and the inflammatory and possibly fibrosing components of the af-
fected fetal cardiac tissue with CHB have been identified. This positions Siglec-1-positive
macrophages as an integral part of the CHB process [83].



Int. J. Mol. Sci. 2022, 23, 4513 8 of 15

5. Macrophages and Accelerated Atherosclerosis in ARDs

Accelerated atherosclerosis has been observed in ARDs [3,10,11]. The molecular
mechanisms that explain the acceleration of cardiovascular disease are not well understood.
The differences in the pathway of atherosclerosis progression in patients with and without
ARDs remain unclear.

Innate immune cells, including macrophages, are known to produce proinflammatory
cytokines and chemokines that sense lipids species such as saturated fatty acids and ox-
LDL [84]. However, the contribution of these cells to the development of autoimmunity and
atherosclerosis requires clarification. Defects in cellular cholesterol in the hematopoietic
stem and progenitor cells (HSPCs) were found in circulating monocytes in RA [85]. It is
possible that the regression of the disrupted atherosclerotic lesion observed in mice with
inflammatory arthritis may be initiated by early lineage-limited changes in cholesterol
metabolism. Daughter monocytes can then enter the lesion with elevated cellular choles-
terol, exacerbating the formation of foam cells [86]. Deficiency of ATP-binding cassette
transporters A1 and G1 macrophages has been found to increase macrophage lipid accu-
mulation, atherosclerosis, and inflammation in atherosclerotic lesions [87]. This phenotype
is much more pronounced when these transporters are removed in HSPCs. It has also been
found that inflammatory arthritis enhances atherogenesis by increasing the penetration of
Ly6-Chi monocytes into atherosclerotic lesions, causing an increase in macrophage loading
in RA [85].

In turn, changes in lipid metabolism can affect antigen presentation and cytokine
production by innate immune cells. Accumulation of cholesterol crystals in a mouse
model of atherosclerosis promotes caspase-1 activation via the NLRP3 inflammasome,
triggers IL-1β maturation, and induces pathogenic Th17 differentiation [88]. Stimulation of
TLR4 by palmitate causes reprogramming of macrophage metabolism and inflammatory
responses [89]. On the other hand, liver X receptor (LXR) expression in macrophages
has a negative effect on inflammatory responses through the regulation of NF-κB signal-
ing [90]. Polymorphisms of LXR are found in patients with SLE, and LXR deficiency in
mice leads to lupus-like phenotypes [91]. LXR promotes phagocytosis by upregulating
MERTK expression, which controls self-tolerance and pathogenesis of SLE, and inhibits the
induction of proinflammatory genes through repression of NF-κB-dependent inflammatory
pathways [92].

The results of studies in mice and humans suggest that persistent inflammation caused
by RA may be a causal factor in determining the severity of atherosclerotic lesions [83,84].
Zeisbrich et al. [93] reported that macrophages from patients with RA or coronary artery
disease (CAD) share a common molecular phenotype of mitochondrial hyperactivation,
which is mechanistically linked to glycogen synthase kinase 3b (GSK3b) deactivation. In
this study, data were obtained on the restructuring of macrophage metabolism in patients
with RA and CAD, leading to unhindered oxygen consumption and, ultimately, to exces-
sive production of tissue degrading enzymes. In macrophages from patients with RA and
CAD, mitochondria consumed more oxygen, generated more ATP, and built tight interor-
ganelle connections with the endoplasmic reticulum, forming mitochondria-associated
membranes. Immunostaining of atherosclerotic plaques and synovial lesions confirmed
that most macrophages had inactivated GSK3b. The underlying molecular defect relates to
the deactivation of GSK3b, which controls mitochondrial fuel influx and, as such, represents
a potential therapeutic target for anti-inflammatory therapy.

6. Antirheumatic Drugs and Macrophages

Functional disorders of macrophages and their mediators are important for under-
standing both the development of the disease itself and possible therapeutic interventions
for ARDs [94]. The data on the effect of antirheumatic drugs on the development of
atherosclerosis and its complications are of great interest to scientists. The concept of the
role of macrophages in the development of subclinical inflammation formed the basis for
studying the atheroprotective effect of antirheumatic drugs. Based on the CANTOS [95],



Int. J. Mol. Sci. 2022, 23, 4513 9 of 15

CIRT [96], and COLCOT studies [97], several new anti-inflammatory and anticytokine
agents are expected to be developed for the treatment of atherosclerosis [98].

A convincing “antiatherosclerotic” effect was demonstrated by the Canakinumab
Anti-inflammatory Thrombosis Outcomes Study (CANTOS) on the use of a monoclonal
antibody to IL-1β in patients with severe atherosclerotic vascular lesions [94]. CANTOS
helped to define the inflammatory pathway from IL-1 to IL-6 to CRP as a central target for
atheroprotection. IL-1β is known to be synthesized by macrophages under the influence
of various pathogenic patterns (pathogen-associated molecular and damage-associated
molecular patterns) that interact with membrane-like receptors (TLR and cytoplasmic
nucleotide-binding oligomerization domain-like receptors).

The involvement of IL1β in atherogenesis is needed for the adherence of monocytes
and leukocytes to the vascular endothelium, the vascular smooth muscle cell growth, the
synthesis of inflammatory mediators, nitric oxide, and prostaglandins, and its “proco-
agulant” activity [99]. “Proatherogenic” factors such as NETs, cholesterol and calcium
phosphate crystals, and ox-LDL in macrophages induce IL-1β synthesis by activating
NLRP3 inflammasomes (nucleotide-binding domain, leucine-rich-containing family, pyrin
domain-containing 3, or NOD-like receptor protein 3) [100]. There is evidence that the pro-
duction of NLRP3-IL-1β may contribute to the development of accelerated atherosclerosis
in clonal hematopoiesis [101].

Another study, CIRT [95], examined the risk of cardiovascular events during methotrex-
ate therapy. The antiatherogenic effect of methotrexate is associated with the suppression of
IF-γ-induced transformation of macrophages into foam cells, activation of the ATP-binding
cassette transporter-A1, which is involved in reverse cholesterol transport, and a decrease
in the expression of endothelial adhesion molecules [102]. Reiss et al. [103] showed on
cell culture (human THP1 monocytes/macrophages) that activation of the A2A adenosine
receptor by methotrexate enhances reverse cholesterol transport and reduces the trans-
formation of “foamy” cells. The proinflammatory effects of methotrexate on secretion of
cytokines IL-1, IL-6, and TNF-α have been demonstrated in human monocyte/macrophage
cell cultures [104].

The success of TNF-α inhibitors therapy in RA patients may also indicate the in-
volvement of macrophages in the development of RA [105]. Anti-TNF agents may induce
alternative functions in macrophages activated in inflammatory conditions, with an inhibi-
tion of inflammatory cytokines (TNF-α, IL-6, IL-12) and an increase in phagocytosis [106].
These results were associated with increased early production of IL-10, responsible for
higher STAT3-dependent control of inflammation [107]. As shown in a mouse model
of colitis, the therapeutic response to anti-TNF depends on IL-10 signaling in mucosal
macrophages [108]. The FcγR-mediated effect of IL-10 on the macrophage phenotype
induced by anti-TNF monoclonal antibodies may be of less importance in ARDs such as
RA. At the same time, there is evidence that IL-10 inhibits the expression of IL-17 and
retinoid-related orphan receptor γt (RORγt) in macrophages and suppresses macrophages
of the “proinflammatory” phenotype M1 [109].

Based on current advances, it seems clear that macrophage dysfunction is one of the
important components of accelerated atherosclerosis in ARDs. Further research is needed
to advance interdisciplinary research between the immune system and atherosclerosis to
develop novel therapeutic strategies targeting autoimmune inflammation.

7. Conclusions

Collective evidence shows that changes in the macrophage differentiation, polarization,
and activation at the sites of inflammation can play a decisive role in the pathogenesis
of a wide variety of ARDs and atherosclerosis. Due to their pro- and anti-inflammatory
properties, macrophages are at the intersection of the key pathogenetic processes of ARDs
and atherosclerosis. Considering the accelerated atherosclerosis development and increased
risk of CVD in patients with ARD, further study of macrophages activation in ARD patients
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will clarify their role in the maintenance of autoimmune inflammation and progression of
atherosclerosis in rheumatic diseases.
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Abbreviations

ACPAs anticitrullinated protein antibodies
ARDs autoimmune rheumatic diseases
ATP adenosine triphosphate
CAD coronary artery disease
CCL2 chemokine (C-C motif) ligand 2
CHB congenital heart block
CRP C-reactive protein
CSF-1 colony-stimulating factor 1
CTGF connective tissue growth factor
CVCs cardiovascular complications
CVDs cardiovascular diseases
CVR cardiovascular risk
CXCL8 chemokine (C-X-C motif) ligand 8
ESR erythrocyte sedimentation rate
GM-CSF granulocyte/monocyte colony-stimulating factor
GSK3b glycogen synthase kinase 3b
HC healthy controls
HSPCs hematopoietic stem and progenitor cells
IFN-γ interferon-gamma
IKKα IκB kinase alpha
IL interleukin
IRF5 interferon regulatory factor 5
ITGB1 integrin beta-1
JNK C-Jun N-terminal kinase
LPS lipopolysaccharide
LXR liver X receptor
M1 classically activated macrophages
M2 alternatively activated macrophages
MCP-1 monocyte chemoattractant protein 1
M-CSF macrophage colony-stimulating factor
MDM monocyte-derived macrophages
MIP-1α macrophage inflammatory protein 1 alpha
MMP matrix metalloproteinase
MP-IC microparticles immune complexes
NET neutrophil extracellular trap
NF-κB nuclear factor kappa-B
NLRP NLR family pyrin domain-containing 3
OA osteoarthritis
OC osteoclast
Ox-LDL oxidized low-density lipoprotein
PAR proteinase-activated receptors
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RA rheumatoid arthritis
RANKL receptor activator of nuclear factor kappa-B (NF-κB) ligand
RF rheumatoid Factor
Sema3A semaphorin 3A
Siglec-1 sialic acid-binding Ig-like lectin 1
SIR1 silent information regulator 1 proteins
SIRT sirtuins
SLE systemic lupus erythematosus
sPAP systolic pulmonary artery pressure
SSc systemic sclerosis
STAT6 signal transducer and activator of transcription
TGF-β transforming growth factor-beta
Th T-helper
TLR toll-like receptor
TNF-α tumoral necrosis factor-alpha
VEGF vascular endothelial growth factor
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