
REVIEW
published: 23 November 2021

doi: 10.3389/fvets.2021.715406

Frontiers in Veterinary Science | www.frontiersin.org 1 November 2021 | Volume 8 | Article 715406

Edited by:

Alessia Libera Gazzonis,

University of Milan, Italy

Reviewed by:

Daniel A. Abugri,

Alabama State University,

United States

Laura Rinaldi,

University of Naples Federico II, Italy

*Correspondence:

Katia Denise Saraiva Bresciani

katia.bresciani@unesp.br

Specialty section:

This article was submitted to

Parasitology,

a section of the journal

Frontiers in Veterinary Science

Received: 26 May 2021

Accepted: 19 October 2021

Published: 23 November 2021

Citation:

Inácio SV, Gomes JF, Falcão AX,

Martins dos Santos B, Soares FA,

Nery Loiola SH, Rosa SL, Nagase

Suzuki CT and Bresciani KDS (2021)

Automated Diagnostics: Advances in

the Diagnosis of Intestinal Parasitic

Infections in Humans and Animals.

Front. Vet. Sci. 8:715406.

doi: 10.3389/fvets.2021.715406

Automated Diagnostics: Advances in
the Diagnosis of Intestinal Parasitic
Infections in Humans and Animals
Sandra Valéria Inácio 1, Jancarlo Ferreira Gomes 2,3, Alexandre Xavier Falcão 3,

Bianca Martins dos Santos 2, Felipe Augusto Soares 2, Saulo Hudson Nery Loiola 2,

Stefani Laryssa Rosa 2, Celso Tetsuo Nagase Suzuki 3 and Katia Denise Saraiva Bresciani 1*

1 São Paulo State University (Unesp), School of Veterinary Medicine, Araçatuba, Brazil, 2 School of Medical Sciences,

University of Campinas (UNICAMP), Campinas, Brazil, 3 Institute of Computing (IC), University of Campinas (UNICAMP),

Campinas, Brazil

The increasingly close proximity between people and animals is of great concern for

public health, given the risk of exposure to infectious diseases transmitted through

animals, which are carriers of more than 60 zoonotic agents. These diseases, which

are included in the list of Neglected Tropical Diseases, cause losses in countries with

tropical and subtropical climates, and in regions with temperate climates. Indeed, they

affect more than a billion people around the world, a large proportion of which are infected

by one or more parasitic helminths, causing annual losses of billions of dollars. Several

studies are being conducted in search for differentiated, more sensitive diagnostics

with fewer errors. These studies, which involve the automated examination of intestinal

parasites, still face challenges that must be overcome in order to ensure the proper

identification of parasites. This includes a protocol that allows for elimination of most

of the debris in samples, satisfactory staining of parasite structures, and a robust image

database. Our objective here is therefore to offer a critical description of the techniques

currently in use for the automated diagnosis of intestinal parasites in fecal samples, as

well as advances in these techniques.
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INTRODUCTION

Parasitic infectious diseases pose an important public health problem, particularly in developing
countries, where basic sanitation services are often poor, and diseases are aggravated by
environmental factors such as temperature, type of soil, seasonal precipitation and overall climate
in each geographic region (1).

The increasingly close proximity between people and their pet animals, which are kept for
companionship, entertainment and emotional support, also increases the risk of exposure to
infectious diseases, since animals are carriers of more than 60 zoonotic agents (2). Despite
advances in tools for the management and control of parasitic diseases, veterinarians and other
health professionals still consider the occurrence of intestinal parasites in pet animals very
important (3–6).

These diseases are included in the list of “Neglected Tropical Diseases,” causing losses in
countries with tropical and subtropical climates and in regions with temperate climates and
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affecting more than a billion people, one sixth of the world
population, a large proportion of which are infected by one
or more helminths, causing billions of dollars in losses every
year (7).

The agents responsible for amebiasis, ascariasis, hookworms
and trichuriasis are among the ten most prevalent infectious
parasites in the human population worldwide. However,
although their mortality rate is low, complications are common
and many cases require hospitalization (8).

Malabsorption, diarrhea, hemorrhage, impaired work
capacity, reduced growth rate and impaired cognitive skills
are serious health and social problems linked to intestinal
parasitic infections that cause serious economic burdens on
populations (8).

Gastrointestinal parasites are common in dogs and cats and
can cause major damage to the gastrointestinal tract, although
some animals may be asymptomatic (9–13). The most common
endoparasites of dogs and cats, which can be a source of
transmission to humans and are considered zoonotic and of
concern for public health (10), are Giardia spp., Toxocara spp.,
and Ancylostoma spp. (4, 9, 10).

Giardiasis can be asymptomatic, but it can also cause acute
or chronic diarrhea, in addition to delayed growth in humans
and animals, as well as decreased cognitive functions and
chronic fatigue. It can also lead to post-infectious functional
gastrointestinal disorders, such as irritable bowel syndrome and
functional dyspepsia (14).

Parasites of the genus Toxocara cause infections that are often
asymptomatic, but when their larvae migrate from the small
intestine into the bloodstream, they reach the tissues and cause
the syndrome called Visceral Larva Migrans (VLM), which can
migrate to the eyes and result in Ocular Larva Migrans (OLM)
syndrome. Other pathologies associated with this parasite are
neurotoxocariasis and covert toxocariasis (15, 16). Commonly
affected organs are liver, lungs, heart, brain and eyes, causing an
intense inflammatory response, eosinophilia, and high levels of
total IgE (15, 17–20).

Furthermore, parasites of the species Ancylostoma braziliense
and Ancylostoma caninum can cause Cutaneous Larva Migrans
(21), with infective larvae penetrating the skin and moving to the
dermis, causing inflammation with severe pruritus (13, 22, 23).

Helminth larvae in dogs are present in the intestine, where
they produce thousands of eggs that are excreted in feces and
contaminate the environment. Transmission occurs through
contaminated water, ingestion of poorly washed or cooked greens
and vegetables, and through ingestion by children who play on
contaminated soil and touch their mouths with dirty hands.
Thus, helminth eggs, cysts and oocysts of protozoa are excreted
in the feces of infected animals, contaminating the environment,
which is the main source of infections in animals and humans
(8, 24).

To detect the presence of parasites in the stool, it is necessary
to make use of parasitological laboratory techniques. The
techniques most frequently used are Flotation in Saturated
Sodium Chloride Solution (25), Centrifugal Flotation in
Saturated Zinc Sulfate Solution (26) and Spontaneous
Sedimentation (27). These techniques are used mainly due

to their low cost and because they are practical and direct
(13, 28–32).

Notably, the literature reports that the diagnostic sensitivity
of the above-mentioned analytical techniques may be low to
moderate. This limitation may be attributed to differences these
in techniques, from sample collection to laboratory processing.
The interpretation of laboratory analyses may be impaired if
performed by a professional with little experience in identifying
the wide variety of existing parasites (30, 33–35). These
challenges must be overcome so that a more precise technique
with specific results, involving a wide variety of parasites, can be
developed (36).

Such good results can be achieved by using a new technique
known as the TF-Test (Three Fecal Test), which has performed
well, showing good sensitivity in studies with fecal samples
from humans, cattle, sheep and dogs. This can be accomplished
by means of triple sampling, suitable preservatives in sample
collection tubes, transport, homogenization and an appropriate
protocol (29, 30, 33–35, 37–39).

An extensive scientific and technological study for automated
diagnostics is under development, aiming to reduce the types
of errors described above. The system consists of a parasitology
protocol, personal computer, and a microscope coupled to a high
resolution digital camera equipped with an appropriate optical
tube and platinum motorized dome (40, 41). This new system
is called “Automated Diagnosis of Intestinal Parasites” [DAPI]
(Figure 1) (37, 40, 41).

In the field of veterinary medicine, this new protocol has
shown good performance in the diagnosis of intestinal parasites
in dogs. This justifies the continuing development of automated
diagnostics, which requires a protocol to obtain a cleaner slides,
free of impurities and debris, enabling the computer system to
more accurately identify parasite structures (38).

Immunological and molecular techniques, which are widely
used in epidemiological surveys, scientific research and for the
description of parasite species, are expensive, thus restricting
their use in laboratory routines (33, 35).

FIGURE 1 | Image courtesy of Laboratory of Image Data Science (LIDS)-

Unicamp. Techniques commonly used in routine laboratory procedures and

the tendency toward automated diagnostics.
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FIGURE 2 | Techniques commonly used in routine laboratory procedures and

the tendency towards automated diagnostics.

Therefore, we emphasize the importance of an initial protocol,
i.e., one that enables parasite structures to be more clearly
visible in order to assist the automatic identification system.
Traditionally accepted techniques widely published in the
literature leave behind a lot of debris and impurities that end up
hindering this identification. Hence, a technique that includes an
initial protocol aimed at reducing these problems is ideal for this
identification through good software programs. Our objective is
therefore to critically describe the techniques currently in use for
the automated diagnosis of intestinal parasites in fecal samples,
as well as advances in these techniques, thus demonstrating the
necessary requirements for their automation (Figure 2).

ARTICLE RETRIEVAL METHOD

The articles were retrieved from the SciELO, ScienceDirect,
and Google Scholar databases, and were selected after reading
their contents.

DEVELOPMENT

Advances and Limits of Computational
Diagnostic Techniques for the
Identification of Intestinal Parasites
Several studies are being conducted to devise differentiated,
more sensitive diagnostics with fewer errors. These studies,
which involve the automated examination of intestinal parasites
(Table 1), still face challenges that must be overcome in order
to ensure the proper identification of parasites. This includes a
protocol for the preparation of microscope slides containing less
debris, good staining of parasite structures, as well as a robust
image database (38).

Over the last decade, researchers have been working on
digital image processing models and pattern techniques for the
automatic recognition of parasite eggs in microscopic images.
The main objective is to reduce human errors that occur in

the diagnosis of fecal parasites, and to produce faster and
highly accurate results. These research efforts clearly illustrate the
crucial importance of the automated identification of intestinal
parasites in producing efficient and reliable results (43).

Intestinal parasites are considered of great interest in the
implementation of algorithms for automated identification based
on diagnostic imaging, because these organisms have stages of
development with well-defined and reasonably homogeneous
morphology (44).

Notably, the use of automated diagnostic techniques to
identify and count eggs, cysts, and oocysts of helminths and
protozoa is also very important. Moreover, with regard to
the volume of samples processed in a short time, automated
diagnostics offer high precision in the identification of host
positivity and parasite load, allied to less fatigue and less time
spent counting eggs on a computer screen when compared to the
traditional microscope process (45).

Given the increasing use of computational technologies, the
production and storage of visual and textual databases is essential.
This means that an effective and efficient tool is needed to
obtain such information to satisfy automation requirements
(46, 47). Thus, image annotation methods have been based on
several types of supervised classifiers (48), Bayesian classifier (49–
51), Support Vector Machines (SVM) (52, 53), Artificial Neural
Networks (ANNs) (66, 67), k-nearest neighbor (k-NN) (68, 69),
Decision Tree (DT) (51, 52, 60), and Optimum-Path Forest
(OPF) (61, 62).

ANNs implement algorithms to reproduce the processing
functions of neural networks, in which neurons are arranged in
layers (each neuron being connected to all the other neurons
in the preceding layer) and process the information. The
information is applied to an activation function and passes
on signals to other neurons within the system. Using this
structure of interconnected neurons, neural networks undergo
a training procedure in which they “learn” how to discern
patterns in data (63, 64). Backpropagation, a common learning
algorithm employed by ANN, involves two steps. The first
step is direct processing of input data through the neurons,
which produce a predicted solution, while the second step
involves the correction of weights within the layers of neurons
to minimize the errors of the predicted solution relative to the
true solution (63).

Initial studies on automated diagnostics involved the analysis
of fecal samples from cattle (56, 65, 70) and pigs (71, 72). These
studies of fecal samples from livestock differentiated the parasite
eggs based on their characteristics (56, 65, 70–72). The use of
the parameter of texture, which is the variation of the gray
level in digital image processing, has also been investigated, and
improves the classification result when used together with the
characteristics of shape and size (70).

In a preliminary study to detect helminths using digital
image processing techniques (73) and an artificial neural network
(ANN) system (74), 82 images of seven human parasites were
acquired. This study achieved an execution and identification rate
of 84% and 83% respectively, and proved the applicability of the
developed algorithms to the fully automatic examination system
(75). This same ANN system was used in immunofluorescence
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TABLE 1 | Articles pertaining to the automatic identification of gastrointestinal parasites according to the computational techniques employed.

Preparation Protocol No. of

Parasites

Software Image input devices %

Accuracy

%

Sensitivity

Authors/year

Centrifugation-

sedimentation

4 SCILAB Computational platform Optical microscope (Dialux

Leitz Weitz) and camera

(Olympus C-3030)

– 99–100% (42)

Not described 16 MATLAB (MathWorks, Natick,

MA)

Kansas State University

Database

NA NA (41)

Not described 1 Gimp Adobe Photoshop Optical microscope (Nikon

Eclipse E800) and camera

(Nikon Coolpix 4500)

85.75 % – (43)

Saturated flotation fluid 7 Leica Quantimet 500 MC Not described 93% – (44)

Not described 15 MATLAB (MathWorks, Natick,

MA)

Not described 93.49% – (45)

Not described 2 AnalySIS (Olympus Soft Imaging

Solutions)

Olympus BX41TF-FL_CCD

Microscope, Olympus XC50

camera

93–94% – (46)

Not described 2 Diagnosis Support System (DSS) Nikon Eclipse E200

microscope

81.86% – (47)

Ethyl acetate technique 4 MATLAB (MathWorks, Natick,

MA)

MoMic digital microscope

scanner and camera

module

(CM6787-O500BA-E,

TRULY Optoelectronics)

– 83.3–100% (48)

TF-GII/Dog technique 4 Automated Diagnosis of

Intestinal Parasites System

(DAPI)

Automated Diagnosis of

Intestinal Parasites (DAPI)

– 80.88% (38)

Ethyl acetate sedimentation

(SED-CONNECT

concentration kits)

13 SediMAX System Cuvette-based automated

microscopy analyzer

(sediMAX 1)

– 91.66–100% (49)

Ethyl acetate sedimentation

(SED-CONNECT

concentration kits)

7 sediMAX System Cuvette-based automated

microscopy analyzer

(sediMAX 2)

– 100% (50)

Not described 7 MATLAB (MathWorks, Natick,

MA)

Carl Zeiss AxioLab A1

optical microscope and

Imaging Development

Systems UI-1480LE USB2

color camera

– 80–90% (51)

McMaster flotation

technique

6 MATLAB (MathWorks, Natick,

MA)

Portable automated

microscope

92–96% 72–100% (52)

Saturated flotation

technique—Mini Parasep®

and Ovassay®

(spontaneous and

centrifuge)

4 VETSCAN IMAGYST MoticEasyScan One® digital

slide scanner (Motic,

Kowloon Bay, Hong Kong)

93–94% 75.8–100% (53)

Ethyl acetate sedimentation-

centrifugation technique

(TF-Test®)

15 Automated Diagnosis of

Intestinal Parasites (DAPI) system

Automated Diagnosis of

Intestinal Parasites (DAPI)

87.8–

94%

– (54)

Not described 15 Not described Customized motorized

microscope with digital

camera to capture images

from slides

82–98% – (55)

Not described 15 Not described Not described 99–99% 40–99% (56)

Not described 15 Not described Public and private clinical

laboratory (databases

available online)

100% – (57)

Immunofluorescence assay

(IFA)

2 BrainMaker Professional

(California Scientific Software)

Microscopes: Olympus

BH-2, Zeiss Axioplan 2, or

Olympus BX-50

91–99% – (58)

(Continued)

Frontiers in Veterinary Science | www.frontiersin.org 4 November 2021 | Volume 8 | Article 715406

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Inácio et al. Automated Diagnosis Evolution Diagnosis

TABLE 1 | Continued

Preparation Protocol No. of

Parasites

Software Image input devices %

Accuracy

%

Sensitivity

Authors/year

Not described 7 MATLAB (MathWorks, Natick,

MA)

Olympus microscope, JVC

Video camera

86–90% – (59)

Not described 9 Helminth Egg Automatic

Detector (HEAD)

Microscope: Carl Zeiss

AxioLab A1; Imaging

Development Systems

UI-1480LE-C camera

96% (51)

Standard trichrome staining 8 Pannoramic Viewer software

(3DHISTECH Ltd.)

Pannoramic 250 Flash III

(3DHISTECH, Budapest,

Hungary)

98–98% – (60)

Salt-sugar flotation and

Wisconsin sugar flotation

technique

1 Image analysis package Ks400

(Carl Zeiss Vision, Germany)

Coolpix 950 digital camera

(Nikon) equipped with a

Nikon binocular eyepiece

tube (SMZ800)

– – (61)

Modified McMaster, and

Mini-Flotac techniques

1 ImageJ software (National

Institute of Health, Bethesda,

MD, USA)

Smartphone prototype 32% 94% (62)

Sugar flotation technique

(saturated solution of

sodium chloride with

glucose)

5 GIPS® TAR 4.11 (Image House,

Copenhagen, Denmark) (Vision

Research, Copenhagen,

Denmark)

Leitz Laborlux D microscope 81% – (63)

Flotation in saturated

sodium chloride solution

1 ImageJ software (National

Institute of Health, Bethesda,

MD, USA)

Nokia Lumia 1020 mobile

phone (Microsoft Corp.,

Auckland, New Zealand)

NA NA (64)

Commercial fluorescent

monoclonal antibody

staining kit

(Cryptosporidium/Giardia IF

Test; TechLab, Blacksburg,

Va.)

1 Neural Network Approach

program (BrainMaker

Professional; California Scientific

Software, Nevada City, Calif.)

BH-2 Olympus microscope;

color digital camera (SPOT

CCD; SP100; Diagnostic

Instruments, Inc., Sterling

Heights, Mich., USA)

81–97% – (65)

NA, Not available.

staining (76) and 4′,6-diamidino-2-phenylindole [DAPI] (77) to
identify the protozoan Cryptosporidium spp. in order to solve
errors in mechanical identification resulting from factors such as
technician fatigue and inexperience (77, 78).

The study generated from automated diagnostics has also
evolved to the counting of bovine parasitic nematode eggs. The
work in question involved a comparison of two techniques, Salt-
Sugar Flotation (SSF) andWisconsin Sugar Flotation (WSF). The
former technique proved to be significantly better than the latter,
since it allows a larger number of samples to be processed and
provides a high degree of precision. Although these techniques
use solutions that are close to saturation, they were diluted in the
research in question (45).

Another study involved working on images of the protozoa
Cryptosporidium spp. and Giardia spp. taken from slides stained
with fluorescein-labeledmonoclonal antibodies. The images were
taken with a color digital camera, and the color information
was discarded through dither filtering. These two protozoans
were detected using Artificial Neural Networks (ANN), which
correctly identified 91.8 of the images of the Cryptosporidium
oocyst and 99.6% the Giardia cyst, respectively, indicating that
it can be extremely useful in automated diagnostics (66). The
above-mentioned techniques have several limitations, such as the
difficulty of quantifying morphological characteristics, allied to
the high complexity of the algorithms (44).

The purpose of image analysis is to classify and recognize
objects of interest in digital images. This can be done in several
ways, e.g., by identifying the colors, textures, shapes, movements
and position of the objects in the images (44). Thus, different
species of Eimeria found in farmyard chickens were included
in the study of automated identification. This involved working
with three groups of features, namely, characterization of the
curvature, size, and symmetry of the internal structure, and
quantification, i.e., its morphology studied over the multiscale
curvature, geometry and texture (44). The image identification
process carried out in this study included three components,
which are image pre-processing, feature extraction and pattern
recognition. The features were extracted automatically and used
to compose a 3-dimensional feature vector for each oocyst
image. Various problems were identified during this study,
such as out of focus images, improperly positioned oocysts,
compromised morphological structures, and the presence of
debris and bacteria, which can make these variables difficult to
use in the segmentation of the objects in question, impairing the
identification of parasites (44).

Eimeria species are difficult to differentiate because of their
highly similar morphology. However, a study using the Bayesian
classifier was found to produce more accurate results than the
SVM (Support Vector Machines). In fact, the Bayesian classifier
presented 99.21% correct identification of Eimeria maxima,
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although Eimeria necatrix was incorrectly identified as Eimeria
acervulina (6.10%) and as Eimeria tenella (9.94%). Moreover,
12.53% of E. necatrix was also mistaken for E. acervulina, 10.94%
was mistaken for Eimeria praecox, and 12.22% for E. tenella.
These results indicate that E. necatrix and E. praecox are the
species most frequently identified, because their morphological
similarity makes it difficult to differentiate them from each other
and from other species. Nevertheless, in general, 85.75% of the
parasites identified belonged to the genus Eimeria (44).

Researchers made a study based on Moment Invariants (MI)
and a classifier of the Adaptive Neuro-Fuzzy Inference System
(ANFIS) for the identification of 16 helminth parasite eggs in
humans. This MI-ANFIS system consists of four stages: pre-
processing, feature extraction, classification and testing. The
ANFIS method, a more elaborate model of ANN, is considered
a hybrid fuzzy logic algorithm and ANN. Therefore, the ANFIS
classifier has all the advantages of these systems. The feature
extraction stage uses Hu’s seven moment invariants. The MI-
ANFIS system showed a 93.49% correctness rate, and the main
reason for incorrect classifications was the similarity in the
shape of eggs, indicating the need for future advances in the
technique (67).

TheMulti-Class Support Vector Machine (MCSVM) classifier
was tested in a study of 16 human parasites, which resulted in
a 97.70% success rate. However, the same problem occurred as
in the preceding study, i.e., the incorrect identification of similar
shaped eggs. The pre-processing stage was considered the most
important part of this proposal (68).

To improve the efficiency of existing conventional automated
methods, a study was conducted using the MATLAB image
processing toolbox (46). This study proposed a technique able to
detect the presence ofAscaris lumbricoides andTrichuris trichiura
parasites in a few seconds per image; however, this research was
carried out only on these two parasite species (69).

In a routine laboratory parasitology diagnosis, debris, fecal
impurities (41) and similarities in parasite structure (67, 68)
pose real challenges for automated image analysis. Research
has focused on the automatic segmentation and classification
of microscopy images containing fecal impurities, and has
detected the 15 most common species of protozoa, eggs
and helminth larvae in Brazil. These species comprise A.
lumbricoides, Enterobius vermicularis, Ancylostomatidae, T.
trichiura, Hymenolepis diminuta, Hymenolepis nana, Taenia
spp., Schistosoma mansoni, Strongyloides stercoralis, Entamoeba
histolytica and Entamoeba dispar,Giardia duodenalis, Entamoeba
coli, Endolimax nana, Iodamoeba butschlii, and Blastocystis
hominis. Comparisons have been made of the performance of
the OPF, ANN-MLP and SVM classifiers, with and without
Bagging and AdaBoost, which are methods for building classifier
committees. This evaluation demonstrated that the OPF classifier
was the most suitable for the species in question, achieving
90.38% sensitivity, 98.32% specificity and 98.19% efficiency, with
κ equal to 0.79 (41). For this study, a fecal sample processing
technique was employed, called the TF-Test, which facilitates
the concentration of parasite structures and help eliminate fecal
impurities (41). In a later study, Suzuki et al. (41) proposed a
complete solution for the diagnosis of intestinal parasites, with

automated image acquisition from microscope slides and faster
algorithms to reduce image processing time, and processed fecal
samples using the TF-Test Modified technique (79). This study
used an image base with 6,068 impurities and 1,791 parasites, and
attained an average sensitivity of 93.00%, average specificity of
99.17% and average κ of 0.84 (80).

Based on a software program developed using morphometric
analysis, area, perimeter and circularity, information on
morphological specificity and characteristics of the parasites,
81.86% of the parasites were correctly identified. In that study,
85 images of A. lumbricoides and 54 images of T. trichiura were
used. However, one of the main limitations of the automated
technique is linked to debris and impurities from fecal samples
left on microscope slides. This may explain the fact that the
percentage of parasites not identified by automated means
was 18.13%, which was attributed to the large amount of such
impurities found in the evaluated samples (81).

Pattern classifiers are usually trained using a parasite
image database annotated by a specialist. The automated
reading of microscope slides can generate a large number
of images to be annotated, rendering the process of manual
annotation time-consuming and subject to errors. To facilitate
this process, an active learning technique was developed
whereby a specialist checks a small set of images, enabling
the resulting classifier to automatically annotate the rest of
the database. The proposed technique, called RDS (Root
Distance-Based Sampling), organizes the dataset only once,
as a pre-processing procedure, and adequately balances the
diversity of classes as well as the sample uncertainty for the
selection of useful samples during the learning process of a
classifier, requiring verification of only a small part of the
dataset (42).

A study of intestinal parasites was conducted using a cuvette-
based automatedmicroscopy analyzer, registered under the name
of sediMAX 1 R©, which was developed for urine analysis. This
equipment consists of a microscope, camera and high quality
image processing software that can detect and classify particles
in urine (82, 83). In this study, the equipment was used to
automatically capture images from fecal samples, although the
detection of parasites was performed by visual inspection. This
device provides a practical way to store images for educational
purposes, including the training of technicians in the detection
of intestinal parasites (84).

In a study involving wastewater, a system was developed to
identify and quantify up to seven species of helminth eggs. Images
were captured manually using a microscope and color digital
camera, and the system analyzed each image in<60 s. As in other
studies of fecal samples, this study also came up against problems
with debris and impurities that hindered the identification of
eggs. Therefore, it is advisable to dilute concentrated sediment in
tap water in a proportion of 1/1 or 1/2 (v/v). The system showed
a detection specificity of 99% and its sensitivity varied from 80 to
90% (85).

The use of technology in the identification of intestinal
parasites continues to expand rapidly and even involves mobile
phones applications, as was the case with a study focusing on A.
lumbricoides. In the study by Sowerby et al. (86), samples were
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processed by the flotation technique in saline solution and then
identified using a mobile phone. Much still remains to be studied
in the future, particularly the expansion of diagnostics for other
parasites, the problem of impurities, and other challenges (86).

Using simple multivariate logistic regression, an algorithm
was developed in the open-source program SCILAB to identify
Taenia spp., Fasciola hepatica, T. trichiura, andDiphyllobothrium
latum in stool smear images. The algorithm achieved sensitivity
and specificity rates of 99.10 and 98.29% for Taenia spp., 99.15
and 98.18% for Fasciola hepatica, 100 and 98.38% for T. trichiura,
and 100 and 98.13% for D. latum. A total of 200 samples were
processed using rapid sedimentation (centrifugation) (87).

Aiming to provide automated treatment of gastrointestinal
parasites in rural areas, a study was developed using a total of
30 microscope slides stained with iodine and containing eggs of
A. lumbricoides, T. trichiura and hookworm species, in addition
to four slides containing Schistosoma haematobium. These slides
were digitized using a reference slide scanner and a mobile
microscope. This new method aims to perform the diagnosis in
less time but with high quality and accuracy, and at low cost.
This proof-of-concept study demonstrates that the image of an
inexpensive digital microscope suffices for a reliable diagnosis
of the four helminth species that were worked on. Nevertheless,
further studies are needed for improvement in order to overcome
the challenges mentioned earlier herein (88).

Another analysis using the sediMAX R© 2 was performed to
compare the improvement achieved in the detection of protozoa
in stool samples when compared with the sediMAX R© 1. In this
study, improvements were found in total reading time, which
decreased from the original 10min to about 5min. SediMAX R©

2 also allows amoebae to be differentiated by species, according
to the number of nuclei present in the cells, as its focus is
adjusted by hand. However, advances are still needed for an
adequate diagnosis, such as the development of software for
automatic image analysis, and to capture more than 15 images
per sample (89).

Smartphones were also used in research to identify parasites,
which are studied and analyzed for diagnostics in veterinary
medicine. This research was based on Strongylus eggs found
in horses, and an initial analysis indicated that the technique
showed limitations in the identification of two eggs positioned
close to each other or overlapping, and eggs covered by debris,
making their identification difficult. This method was compared
with the MiniFLOTAC and McMaster techniques, and was
considered more sensitive than specific, generating false positive
results; hence, further studies are still needed to improve this
technique (90). A smartphone was also used in a study of three
helminths that infect humans (A. lumbricoides, T. trichiura and
hookworms), using Kankanet, an artificial neural network-based
object detection smartphone application. The authors of the
study reported sensitivity and specificity rates of 66.7 and 85.7%
for T. trichiura, of 100 and 87.5% for A. lumbricoides, and of 100
and 100% for hookworms (91).

The use of automated diagnostics in the detection of intestinal
parasites in various host species, such as sheep, canines, primates,
and others was also developed for use in places where there
are few resources. This is a portable method involving the

McMaster flotation technique, which makes it low cost, fast and
without requiring a trained professional to identify parasites. This
technique attained good results, presenting an overall accuracy
of 92 or 96% for Eimeria in the counting of one or four grids,
respectively, and 100% for nematodes using one or four grids.
In this study, debris was not a limitation, since the software was
trained to recognize it (92).

Two classifiers were used in a study to identify eggs
of the parasite Ascaris spp. in pigs, namely, the Multiclass
Support Vector Machine (MC-SVM) and Artificial Neural
Network (ANN). In this study, the parasite eggs were counted
automatically. The accuracy rate of Ascaris spp. identification
using the MC-SVM and ANN classifiers was ∼95 and 93%,
respectively (43).

In another study based on edge detection, image segmentation
and recognition patterns, the detection and extraction of
parasites in microscope images were fully automated, using the
image pixel as a descriptor. This research made great strides
in the detection of 15 human intestinal parasites, achieving an
identification rate of 100% (93).

Staining also makes a significant difference in automated
analysis for the more accurate identification of parasites. Thus,
a convolutional neural network (CNN or ConvNet) model was
developed to detect intestinal protozoa in human fecal samples
stained with trichrome. However, this study showed limitations,
such as the scantiness of some species. Even so, data from this
study revealed that image capture using a slide scanner and
Artificial Intelligence (AI) software allows for a 98.88% positive
agreement [95% Confidence Interval from 93.76 to 99.98%], and
98.11% negative agreement [95% Confidence Interval from 93.35
to 99.77%] when compared to the correctness rates achieved with
manual microscopy (94).

The performance of the VETSCAN IMAGYST system for the
detection of parasites in dogs and cats was evaluated in another
study, in which 100 fecal samples were analyzed, 84 from dogs
and 16 from cats. The study revealed several limitations of the
system, such as the lack of examination of the edges or outside
the cover slip due to the reading area, and the study involved a
low number of fecal samples, especially samples of Trichuris spp.,
Toxocara spp. and Taeniidae, which also limited the assessment
of the system’s diagnostic sensitivity and specificity (95).

In order to improve the diagnostic accuracy of the DAPI
system (41) without compromising its efficiency and cost, a
hybrid approach was proposed that combines two decision-
making systems for the classification of images obtained from
microscope slides. The study combines a simple system based
on rapid extraction of characteristics from the images and SVM
classifier, and a more complex system based on a deep neural
network. The proposed system reached an average Kappa of 94.9,
87.8, and 92.5% in helminth eggs, helminth larvae and protozoan
cysts, respectively (96).

A protocol designed to create a cleaner slide free of impurities
contributed to a significant advance in the automated diagnosis of
gastrointestinal parasites in the field of veterinary medicine. This
technique was tested in a study involving four genera of canine
intestinal parasites of high prevalence in an endemic region of
the state of São Paulo, Brazil. Fecal samples from 104 dogs
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were collected to test this new protocol, which reached a Kappa
index of 0.7636. It was therefore concluded that the new Prototic
Coproparasitological Test for Dogs (PC-Test Dog) allows for a
clearer view of parasite structures and presented a favorable result
for the automated diagnosis of intestinal parasites in dogs (38).

More recently, Cringoli et al. (97) developed a portable
versatile low-cost Kubic FLOTAC microscope (KFM) for
students of veterinary medicine. The authors of the study
prepared slides of bovine feces using the Mini-FLOTAC or
FLOTAC method. Moreover, they stated that the KFM can be
used to quantify parasite structures, and that the results were
highly successful (97).

FINAL REMARKS

Fecal samples in which parasite structures are easily detectable
make microscope slides easy to analyze (43). That is why
most researchers use microscope images of fecal samples
and use digital processing of technical images to eliminate
fecal impurities and detect the presence of parasite structures
(43). However, debris, impurities and parasite load are major
limitations in the development of automated diagnostics.

Most of the studies described in this paper do not include
an adequate protocol for the preparation of slides for use
in automated diagnostics, which is a crucial aspect in the
identification of intestinal parasites (96). To ensure the successful

advance of automated parasitological diagnosis, a holistic view
of the entire procedure must be adopted, from sample collection
to identification on computers. In other words, samples must
be collected and stored carefully, a processing technique
should be used that reduces impurities and concentrates the
parasites, as well as a suitable dye and a proper software
program. These steps will undoubtedly be helpful in the
advancements of automated diagnostics in both human and
veterinary medicine.
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