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Abstract: Mechanical cues are crucial for survival, adaptation, and normal homeostasis in virtually
every cell type. The transduction of mechanical messages into intracellular biochemical messages
is termed mechanotransduction. While significant advances in biochemical signaling have been
made in the last few decades, the role of mechanotransduction in physiological and pathological
processes has been largely overlooked until recently. In this review, the role of interactions between
the cytoskeleton and cell-cell/cell-matrix adhesions in transducing mechanical signals is discussed. In
addition, mechanosensors that reside in the cell membrane and the transduction of mechanical signals
to the nucleus are discussed. Finally, we describe two examples in which mechanotransduction
plays a significant role in normal physiology and disease development. The first example is the
role of mechanotransduction in the proliferation and metastasis of cancerous cells. In this system,
the role of mechanotransduction in cellular processes, including proliferation, differentiation, and
motility, is described. In the second example, the role of mechanotransduction in a mechanically
active organ, the gastrointestinal tract, is described. In the gut, mechanotransduction contributes to
normal physiology and the development of motility disorders.

Keywords: mechanotransduction; plasma membrane; cytoskeleton; cancer; gastrointestinal

1. Introduction

Organisms necessarily respond to their environment for survival and adaptation. At
the cellular level, cells respond not only to chemical messages, such as hormones, but also
to mechanical messages. The transduction of mechanical messages into intracellular bio-
chemical messages is termed mechanotransduction and is necessary for an organism/cell
to respond adequately to its environment. Virtually every cell type responds to mechanical
cues for survival, adaptation, and normal homeostasis. Mechanical messages can include
shear stress, pressure, stiffness/compliance, or stretch. Just as the localization, concentra-
tion, and timing of biochemical messages modulate their effects, the magnitude, direction,
and spatial and temporal aspects of mechanical signals modulate their effects [1]. Mechani-
cal cues from the extracellular matrix, cell membrane, and cytoskeleton all participate in
two-way communication with biochemical signaling within the cell. On one hand, me-
chanical stimuli result in intracellular biochemical responses altering signaling pathways
that can extend even to the nucleus, where mechanical signals can induce gene expression
changes [2]. On the other hand, intracellular biochemical signals modulate mechanical
signals via altered extracellular matrix, cytoskeletal proteins, and cell membrane proteins.
In addition, cells are capable of generating force and, thus, modulating the mechanical
signaling of surrounding cells and the extracellular matrix. Thus, physical forces in the
cellular cortex and plasma membrane and intracellular biochemical signaling cooperate in
complex two-way communication to sense and adapt to mechanical signals [3,4].

Significant advances in our understanding of molecular signaling pathways have been
made in the last several decades. However, the contributions of mechanotransduction to
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cellular responses are poorly understood and often overlooked. Mechanotransduction
plays crucial roles in a wide variety of cellular processes and disturbances in these pro-
cesses lead to disease development. Furthermore, cellular responses to drug treatments
can be affected by the biomechanical properties of tissues [5]. Therefore, understand-
ing the role of mechanotransduction in cellular processes is important in understanding
disease development.

In this review, we will discuss basic cellular biomechanics and the role of interactions
between the cytoskeleton and cell-cell/cell-matrix adhesions in transducing mechanical sig-
nals in mammalian cells. In addition, we will discuss mechanosensors that reside in the cell
membrane. Finally, we will describe examples of two systems where mechanotransduction
plays a significant role in disease development. The first is the role of mechanical signals
in cancerous cells. In this system, the role of mechanotransduction in cellular processes,
including proliferation, differentiation, and motility, is described. In the second example,
the role of mechanotransduction in a mechanically active organ, the gastrointestinal tract,
is described. In the gut, mechanotransduction contributes to normal physiology and the
development of motility disorders.

2. An Overview of Cellular Biomechanics

Mechanical signaling is involved in virtually all physiological processes. Cells are
required to sense a wide variety of mechanical signals, which are defined by the magnitude,
direction, and spatial and temporal variations of the signals. Moreover, cellular responses
to the variety of mechanical signals are distinct, depending on the cell type, composition,
and conditions, i.e., different cell types may respond differently to the same signal and the
same cell may respond differently depending on the conditions and intracellular regulatory
signaling pathways active at any one moment.

Cellular responses to mechanical signals are dependent on the viscoelastic proper-
ties of cells, which are largely dependent on the highly dynamic cytoskeleton [6,7]. The
viscoelastic properties of the cytoskeleton arise from the properties and dynamic interac-
tions of actin, microtubules, and intermediate fibers [8]. Intermediate filaments are the
most elastic (i.e., the least stiff) and the microtubules are the stiffest component of the
cytoskeleton. These three cytoskeletal elements self-organize into heterogeneous highly
dynamic networks and bundles with the help of cross-linkers and motor proteins; the
mechanical properties of this combined network lies between rigid rods and highly flexible
coils [9]. The ability of the cell to sustain and respond to mechanical stress is dependent,
not on the individual filament properties, but on the properties of the complex cytoskeletal
network, which is constantly adapting in response to both chemical and mechanical cues
in the cell’s environment [10]. The cytoskeleton can generate tension and transmit tension
throughout the cell, including the nucleus. Unlike simple polymers like polyacrylamide,
this complex cytoskeleton becomes stiffer in response to deformation [9]. Moreover, many
mechanosensors, such as mechanosensitive ion channels, reside on or in association with
the cell membrane. Transmission of cellular stress to the fluid membrane is dependent
on the coupling of the cell membrane with the cytoskeleton, at cell-cell or cell-matrix
adhesions [11]. Interaction of the cytoskeleton with cell-cell and cell-matrix adhesions is
necessary for sensing, transmitting, and responding to mechanical signals.

3. Role of the Cytoskeleton in Mechanotransduction
3.1. Microtubules

Microtubules are the stiffest of the three cytoskeletal components [12]. Microtubules
can span the length of a eukaryotic cell and can withstand high compressive loads to
maintain cell shape [13]. Microtubules can switch rapidly between stably growing and
rapidly shrinking processes to reorganize quickly [14]. Microtubules consist of tubulin
heterodimers organized into cylindrical structures, and the organization and dynamics
are significantly influenced by tubulin isotypes [15]. The role of microtubules in mechan-
otransduction is not well understood; however, a few studies highlight the importance
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of the microtubule network in mechanotransduction. Rafiq et al. showed that micro-
tubules modify both focal adhesions and podosomes via KANK proteins to regulate the
actomyosin cytoskeleton [16]. In a breast cancer model, matrix stiffening promoted glu-
tamylation of microtubules to affect their mechanical stability [17]. Joca et al. showed
that increased stretching of cardiomyocytes induced microtubule-dependent changes in
NADPH oxidase and reactive oxygen species [18]. Mechanical stimulation of Chinese
hamster ovary cells induced rapid depolymerization of microtubules at the indentation
point and slow polymerization of microtubules around the perimeter of the indentation
point [19]. Tension stabilizes microtubule coupling with kinetochores in yeast [20]. Over-
all, these studies show that microtubules can sense and respond to mechanical cues to
participate in mechanotransduction.

3.2. Intermediate Filaments

Intermediate filaments are shorter than microtubules and actin fibers, are highly flexi-
ble and extensible, and exhibit strain-induced strengthening [21,22]. These properties of
intermediate filaments make them sensitive to mechanical stress and convey mechanical
resistance to cells [22,23]. Like the other cytoskeletal components, the formation of inter-
mediate fibers is regulated in a cell- and context-dependent manner [24]. Intermediate
filaments are assembled from a group of well-conserved proteins that share a common
structure: a central a-helical domain flanked by two variable non-helical domains, which
account for the functional diversity of intermediate fibers [24]. Like the other two cytoskele-
tal components, intermediate filament assembly is dynamic. Interestingly, the precursor
pools are detected mostly at the periphery or protrusions of cells [25].

Intermediate fibers interact with cell-cell and cell-matrix adhesions [24]. Due to their
elasticity, intermediate fibers transmit mechanical signals via cell-surface adhesions to the
intracellular space and neighboring cells to control cell stiffness. For instance, fluid shear
stress induces rapid reorganization of intermediate fibers in endothelial cells [26]. Mechani-
cal stress induces phosphorylation of the regulatory heads of intermediate fiber proteins to
regulate intermediate fiber reorganization and cell stiffness in epithelial cells [27,28]. Thus,
intermediate fibers play a crucial role in sensing and transducing mechanical signals.

3.3. Actin Filaments

Actin filaments not only transmit force through the cell but can also generate force
through polymerization [29]. The non-covalent polymerization of actin supports a variety
of non-muscle cell movements, such as cell migration and division [30]. The basic building
blocks of actin filaments are the actin monomers, which assemble into double-stranded
helices [31]. Therefore, actin exists in two pools, filamentous actin (F-actin) and free actin, re-
ferred to as globular actin (G-actin). Actin filaments are semiflexible and dynamic, enabling
cells to rapidly change shape and respond to intracellular and extracellular forces [10].
Actin filaments are semi-flexible on the scale of the cell length (10 µm). Therefore, shorter
filaments behave as rigid rods and longer filaments can bend [32]. Actin filament bending is
accompanied by twisting due to the helical structure of actin filaments [33]. Actin filaments
sometimes form bundles that can withstand higher compression forces [34]. Changes in
actin fiber tension are transmitted across the cell and to cell-cell and cell-matrix adhesions.
Actin cross-linking proteins play an important role in the formation of actin networks and
bundles and, thus, play an important role in the mechanical properties of cells.

As mentioned previously, the actin network is highly dynamic, and the actin cytoskele-
ton is highly responsive to mechanical cues. Several examples of mechanosensing by actin
filaments are shown in Figure 1. One mechanism by which actin filaments sense tension is
through altered binding to other proteins in response to altered tension/force. Hayakawa
et al. showed that the cofilin binding rate decreased and actin severing was delayed when
the tension of single actin filaments was increased using optical tweezers (Figure 1A) [35].
Mei et al. showed that increased tension of actin filaments increased α-catenin binding
(Figure 1B) [36]. Hosseini et al. showed that increased tension increases binding of the actin
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cross-linker, α-actinin-4, to actin [37]. LIM domain proteins, including members of the
zyxin, paxillin, and FHL families, accumulate on mechanically stimulated actin via their
LIM domains; increased binding of FHL prevents nuclear localization (Figure 1C) [38].

Figure 1. Examples of mechanosensing by actin filaments. (A) Increased tension of actin filaments decreases cofilin
association, resulting in delayed actin filament severing. (B) Increased actin filament tension, within the cellular range,
results in increase α-catenin binding either at the cell cortex or intracellularly. (C) Increased actin filament tension increases
the binding of FHL2-containing proteins, excluding these proteins form the nucleus. (D) MAL binds to actin monomers
in both the cytoplasm and the nucleus. Stimulation of cells with serum increases actin polymerization and decreases the
availability of actin monomers. MAL then becomes available to bind to the SRF complex.

Interestingly, changes in F-actin regulate the Hippo signaling pathway. The mam-
malian Hippo pathway, which plays a key role in cellular differentiation and proliferation
responses to mechanical signaling, consists of a kinase cascade of the mammalian sterile
20-like kinase (MST)1/2 and large tumor suppressor (LATS)1/2 and an adaptor protein
(SAV1). When phosphorylated, MST1/2 and LATS1/2 prevent yes-associated protein
(YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) (YAP and TAZ have
overlapping redundant functions) from entering the nucleus and activating genes regu-
lating cell survival and proliferation; phosphorylated YAP is retained in the cytoplasm
and degrades [39]. Increases in F-actin induce nuclear translocation of YAP. F-actin may
also modulate YAP activity through Hippo-independent pathways. Actin polymeriza-
tion affects transcriptional regulation by serum response factor (SRF) signaling. MAL, a
SRF coactivator, binds to nuclear actin monomers, which prevents MAL interaction with
the SRF transcriptional complex. When cells are stimulated with serum, increased actin
polymerization decreases the availability of actin monomers and MAL binds to the SRF
complex (Figure 1D) [40].

3.4. Cell Cortex

The cytoskeleton underlying the plasma membrane, called the cell cortex, plays an
important role in mechanotransduction. The specialized cytoskeleton of the cell cortex
is the interface between the cytoskeleton and the plasma membrane and regulates not
only cell shape, but also plasma membrane organization [41]. Like other parts of the cell,
the cytoskeleton at the cell cortex is dynamic, allowing it to sense and respond to both
biochemical and mechanical signals. The plasma membrane interacts with cytoskeletal
actin at the cell cortex in a mechanosensitive manner through a variety of binding motifs,
including the α-actinin [42] and calponin homology binding domains [43], and/or linker
proteins, such as ezrin, radixin, moesin, and filamin A [44–46]. The ERM proteins (ezrin,
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radixin, and moesin) contain amino-terminal FERM domains, which interact with the cell
membrane, and carboxyterminal F-actin-binding domains [47]. ERM proteins participate
in crosstalk between mechanosensitive plasma membrane proteins, such as TREK1 and
TRPV6, and the actin cytoskeleton [48,49]. Filamin A binds to actin at the N-terminal and
interacts with a variety of membrane and submembrane proteins, such as integrins and
FilGAP, via cryptic sites that change depending on the mechanical deformation [50].

Cortical actin below the plasma membrane surface plays a significant role in orga-
nizing membrane proteins and participates in mechanotransduction. Gawrishankar et al.
demonstrated that short dynamic actin filaments interact with plasma membrane proteins
containing actin-binding motifs to organize nanoclusters [51]. Membrane tension influ-
ences cortical actin and vice versa [52]. Alterations in ERM proteins or filamin A both alter
membrane tension [53,54].

Interestingly, force can be directly and rapidly transmitted from the cell cortex to the
nucleus, resulting in epigenetic or transcriptional changes. A mechanical link between the
cell membrane and the nucleus was demonstrated by Maniotis et al. [55]. This mechanical
link requires integrin, actin, intermediate filaments, and microtubules [56]. The nuclear
Linker of Nucleoskeleton and Cytoskeleton (LINC) complex consists of nesprins in the
outer nuclear membrane and SUN proteins in the inner nuclear membrane. The LINC
complex responds to mechanical changes in the extracellular matrix via integrins and
cell-cell contacts via cadherins [57,58].

4. Role of Cell Membrane Proteins in Mechanotransduction

The mammalian cell membrane is easily deformed by mechanical forces and mechanosen-
sitive proteins in the cell membrane are crucial players in mechanotransduction. Proteins
residing in the cell membrane are subjected to local changes in force and transduce these
mechanical cues into changes in intracellular signaling. The most well-known and widely
studied mechanosensors are mechanosensitive ion channels; however, GPCRs and other
mechanosensitive proteins have also been discovered recently.

4.1. Ion Channels

Mechanosensitive ion channels are expressed in a wide variety of cell types in vir-
tually every physiological system. Mechanosensitive channels, by definition, span the
plasma membrane and are directly activated by mechanical stress; the mechanical stress is
converted to an electrochemical signal by ion channels and eventually leads to changes
in downstream signaling. The mechanism by which mechanosensitive ion channels are
activated is poorly understood for the most part; however, tethering to the extracellular
matrix or the intracellular cytoskeleton, the direct effects of plasma membrane expan-
sion, and/or interactions with lipid rafts or other membrane lipid domains may play a
role. Many ion channels are mechanosensitive in eukaryotic cells [59]. We will briefly
discuss epithelial sodium channel (ENaC), Piezo, TREK, transient receptor potential (TRP),
and big potassium (BK) channel families; however, other ion channels also contribute to
mechanotransduction. Table 1 shows the diverse roles of mechanosensitive ion channels
in mammals. Of note, as techniques become more sophisticated, mechanisms for the
mechanosensitivity of channels are being elucidated, and some studies conflict with earlier
work concerning the mechanosensitivity and role(s) of ion channels.

4.1.1. ENaC Superfamily

Members of the ENaC superfamily of ion channels form homotrimers or heterotrimers
with two transmembrane regions per subunit [94]. Although the specific mechanism for
mechanical gating of this family of ion channels is not well understood, the extracellular
loop appears to be sensitive to shear stress. A recent study showed that ENaC activity
in human pulmonary microvascular endothelial cells was increased in response to shear
stress and the extracellular loop appears to act as a tether to the extracellular matrix [95].
ENaC responds to shear stress in both conduit and resistance arteries and changes in ENaC
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activity in response to shear stress alter intracellular endothelial nitric oxide synthase
activity to regulate vasoconstriction [96].

Table 1. The diverse roles of mechanosensitive mammalian ion channels.

Ion Channel Family Mechanosensitive Forms Examples of Physiological Relevance References

ENaC ASIC1 Gut mechanosensation [60,61]

ASIC2 Arterial baroreceptor reflex; cutaneous touch [62,63]

ASIC3 Gut mechanosensation; presure induced vasodilation;
nociception [60,61,64,65]

βENaC Myogenic vasoconstriciton [66]

γENaC Myogenic vasoconstriciton [66]

Piezo Piezo 1
Vascular developmental/shear stress response; touch

sensation; red blood cell function; bone growth; sensing
bladder distension

[67–72]

Piezo 2 Touch sensation; enterochromaffin response to mechanical
signals [73–75]

TREK TREK1 Pain perception; mechanosensation in the gut; vasodilation [76–78]

TREK2 Pain perception [79]

TRP TRPA1 Touch sensation, pain perception [80–82]

TRPP1 Response to flow in renal epithelium; endothelial/epithelial
cilia function [83–85]

TRPC6 Vascular smooth muscle contractiity (conflicting results) [86–88]

TRPP2 Response to flow in renal epithelium [83]

TRPV4 Sensing weight load during bone development; micturition
reflex; pressure sensing [89–91]

BK BKCa
Mechanosensation in the gut; flow-induced K+ secretion in

nephrons [92,93]

4.1.2. Piezo Channels

The recently discovered Piezo channels are trimeric proteins with a large number
(24–40) of transmembrane regions [97,98]; two Piezo channels (Piezo1 and Piezo2) exist in
vertebrates [99]. The mechanosensitivity of these complex channels is poorly understood;
however, mechanosensitivity may be conveyed via interaction with regulator proteins or
changes in conformation. Notably, the membrane tension required to gate Piezo1 channels
is within the physiological range and mechanical manipulation was enough to activate the
channels in an experimental lipid bilayer model [100,101]. Interactions of Piezo channels
with the extracellular matrix and cytoskeleton modulate the mechanosensitivity of Piezo
channels. Piezo channels are 10x more sensitive to membrane tension when tethered to
the extracellular matrix. The presence of collagen IV, in particular, sensitized Piezo chan-
nels to mechanoactivation [102]. Piezo channels are bound to the actin cytoskeleton by
the E-cadherin complex, and the absence of E-cadherin or β-catenin desensitizes Piezo1
channels [103]. In contrast, removal of filamin A activates Piezo channels, suggesting that
interaction with the cytoskeleton through filamin A can desensitize Piezo channels [104].
Piezo channels transduce mechanical forces in a wide range of physiological processes that
require exquisite control. A combination of extracellular (via interactions with the extra-
cellular matrix), intracellular (via interactions with the cytoskeleton), and cell membrane
(membrane stiffness) forces likely contribute to the activity of Piezo channels.

In the skin, Piezo channels play a significant role in touch sensitivity [73]. In endothe-
lial cells, Piezo channels respond to both shear stress and stretch. Depletion of Piezo1
reduces endothelial nitric oxide activity in endothelial cells indicating that Piezo channels
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can regulate vasoconstriction [68]. In addition, activation of Piezo1 channels by shear stress
induces ATP release from endothelial cells [72]. The subcellular location of Piezo1 changes
to the leading apical lamellipodia in response to shear stress, indicating that Piezo channels
play a role in cell migration [68,70]. Stretch-activation of Piezo1 plays a role in sensing
flow and bladder extension in the urinary tract [69]. In osteoblasts, Piezo 1 channels are
down-regulated in response to microgravity and may play a role in altered bone growth
during microgravity [71]. Overall, Piezo channels play a significant role in a wide variety
of cell types.

4.1.3. TREK Channels

The TREK channel family consists of two-pore selective potassium channels (TREK1,
TREK2, and TRAAK), which are widely expressed in the central and peripheral nervous
systems [105]. Several members of this family can be activated by mechanical signals,
including stretch and cell swelling [106]. The TREK-1 channel is directly responsive to
membrane tension [107]. The mechanism underlying mechanoactivation of these channels
may involve exposure of an increased cross-sectional area of the channel during mem-
brane stretch that alters interactions with the lipid bilayer; altered interactions with the
lipid bilayer support conformational changes that favor pore opening [108–110]. Inter-
action of TREK-1 with the actin cytoskeleton may modulate the mechanosensitivity of
the channel [48]. Knockdown of TREK or TRAAK channels causes hypersensitivity to
mechanical stimuli [109]. In addition, TREK channels may be involved in the development
of arrhythmias and remodeling in the heart [111,112].

4.1.4. TRP Channels

TRP channels are a large family of nonselective cation channels with a tetrameric
structure containing 6 transmembrane domains [113]. The direct activation of TRP channels
by membrane tension is controversial [114,115]. Force sensing and transduction may be
mediated by the interactions of the TRPP1/TRPP2 complex with the extracellular matrix,
focal adhesions, the cytoskeleton, or other mechanosensitive channels like Piezo1 [116,117].
Mechanotransduction of TRP channels plays important roles in cardiovascular homeostasis,
nociception, renal function, and neural function [117]. Shear stress activates transient
calcium release at the leading edge of migrating fibroblasts via TRPM7 [118]. TRPP’/TRPP2,
TRPV4, and TRPC1 all modulate vascular smooth muscle contractility in response to
various mechanical signals [84,119–121].

4.1.5. BK Channels

BK channels are cytosolic Ca2+-activated potassium channels, consisting of tetramers
of α and β subunits [122]. The functional diversity of BK channels is conveyed by the
expression of different α/β subunits and splicing variants [123,124]. BK channels contain
a stress-axis regulated (STREX) domain at the C-terminus, which can be activated by
stretching the cell membrane [125]. Other domains also play a role in the stretch activation
of BK channels, as demonstrated by stretch activation of BK channels lacking the STREX
domain in colonic smooth muscle [92]. BK channels are expressed predominantly in the
smooth muscle of various organs and the brain and pancreas and play a significant role in
neuronal excitability, hormone secretion, and smooth muscle contractility [126].

4.2. G-Protein Coupled Receptors

G-protein coupled receptors (GPCRs) are a well-known family of 7-transmembrane-
domain receptors. Much is known about ligand activation of GPCRs and the downstream
signaling pathways associated with GPCR activation. Recent research suggests that me-
chanical stimuli can also activate a number of GPCRs in the absence of their relevant
agonists, resulting in translocation of their corresponding G proteins [127]. Early evidence
supporting mechanosensitive GPCRs came from the angiotensin II type I (AT1) receptor.
Komuro et al. showed that mechanical stretch induced the association of the AT1 receptor
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with janus kinase 2 and the translocation of G proteins to the cytosol [128]. Furthermore,
increased stretch induces cardiac hypertrophy in vivo in the absence of angiotensin II [128].
Subsequent studies showed that hypotonic swelling of the cell membrane resulted in
agonist-independent recruitment of β-arrestin to the AT1 receptor to the same degree as
maximum agonist stimulation [129]. The authors of this study went on to show that other
GPCSs, including the H1 histamine receptor and the muscarinic receptor (M5R), could also
be activated by stretch in the absence of ligands, indicating that the Gq/11-coupled receptors
share a common mechanosensitive activation mechanism [129]. The proposed mechanism
for stretch-induced activation of GPCRs is conformational change. This mechanism is
supported by bioluminescence resonance energy transfer and fluorescent resonance energy
transfer studies [129,130]. In addition to Gq/11-coupled receptors, Gi/o-coupled receptors
may be activated in the same ligand-independent manner [131]. Interestingly, the inverse
agonist, candesartan, prevents stretch-activation of the AT1 receptor, probably by locking
the receptor in an inactive conformation [128]. Stretch activation of GPCRs plays key roles
in the development of cardiac hypertrophy and myogenic vasoconstriction.

5. Role of Cell-Cell Adhesions in Mechanotransduction

Cell-cell junctions are specialized regions of the plasma membrane consisting of pro-
tein complexes that couple adjacent cells. Cell adhesions allow tissues to resist external
and internal forces and allow sensing and transmission of force between cells. Cell-cell
adhesions are unique to the cell type, tissue type, developmental stage, and physiologi-
cal/pathological conditions, and may possess different mechanical properties, i.e., mes-
enchymal tissue cell-cell adhesions may have different tensile strengths than epithelial cell
contacts [132]. The extracellular domains of transmembrane receptors within the cell-cell
junctions interact with adjacent cells while the intracellular domains interact with signaling
complexes and the cytoskeleton. Communication between the cell-cell junctions and the
cytoskeleton are two-way and both intrinsic and extrinsic forces affect mechanotransduc-
tion at the cell-cell junctions. Forces at the cell-cell junctions can directly impact cellular
processes, such as proliferation and differentiation. As indicated above, the Hippo pathway
plays a pivotal role in mechanotransduction processes. In addition, significant cross-talk
between Wnt signaling and cell-cell adhesions impacts cell differentiation and migration.

Adherens junctions are coupled to the cytoskeleton through cadherin complexes.
Cadherins, a family of transmembrane proteins, are under tension at cell junctions from
both internal and external sources and can transmit tension both ways [133,134]. The
intracellular domain of cadherins is bound to β-catenin, which is bound to α-catenin [135].
In the cadherin complex, α-catenin may be a mechanosensor [132,136,137]; α-catenin
binds to actin filaments in a tension-sensitive manner and the α1-helix of α-catenin is a
mechanosensing motif that enhances binding to actin when exposed [138]. While vinculin
has been more widely studied in integrin-based focal adhesions, vinculin can also act as a
mechanosensor in adherens junctions; tension transmitted via VE-cadherin in endothelial
cells unfolds α-catenin and reveals binding sites for vinculin [139]. Recruitment of vinculin
to the adherens junction stabilizes α-catenin [140]. Many other potential mechanosen-
sitive proteins surround the adherens junctions in the cortical area of the cells and in
communication with the cytoskeleton, including myosin motors [132]. Myosin motor
proteins accumulate at focal adhesions in response to mechanical signaling, leading to
changes in downstream signaling pathways [132,141]. For instance, non–muscle myosin
IIA negatively regulates the accumulation of the Rac GEF, β-Pix, in focal adhesions [142].

The cell-cell junctions of epithelial and endothelial monolayers are referred to as tight
junctions because they limit the passage of ions and solutes through the monolayer. Tight
junctions are also multimeric protein complexes and include the transmembrane proteins,
claudins, occludin, junctional adhesion molecules (JAMs), and intracellular proteins, zona
occludins (ZO), MAGI, MUPP1, and PATJ [143]. ZOs and cingulin proteins anchor tight
junctions to the actin cytoskeleton [144] and alterations in ZO1/2 in epithelial and en-
dothelial cells alters actomyosin cytoskeletal tension [145–147]. Shear stress downregulates
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occludin and claudin expression and increases vascular permeability [148]. JAMs regulate
cell motility in a taxol-dependent manner, indicating that microtubules are involved [149].

Desmosomes are cell-cell contacts in tissues, such as the myocardium, bladder, and
skin, that experience mechanical stress [150]. Unlike adherens junctions and tight junctions,
desmosomes couple with intermediate filaments. Two cadherin subtypes, desmogleins and
desmocolllins, make up the transmembrane component of desmosomes. The intracellular
domains of these cadherins bind to plakoglobin and plakophilins and desmosomes are
linked with intermediate filaments via desmoplakin [143]. Interestingly, using a FRET-
based tension sensor system, Price et al. showed that cytoskeleton-generated forces have
little impact on desmoplakin tension, but external forces impact desmosome tension [151].
The authors suggested that desmosomes are specialized for stress absorption. In conflict
with Price et al., using a force-sensing desmoglein-2 construct, Baddam et al. showed that
desmoglein experiences low-level tension in non-contracting cells [152]. The reasons for
this discrepancy are unclear, but investigations into the role of desmosomes in mechan-
otransduction are in the early stages. Desmosomes interact with adherens junctions and
may affect mechanotransduction in this way.

6. Role of Cell-Matrix Adhesions in Mechanotransduction

Focal adhesions are large protein complexes that consist of integrins and a large
array of adaptor proteins. Focal adhesions begin as nascent adhesions with only a few
integrins. While some nascent adhesions are short-lived, other nascent adhesions mature
into stable focal adhesions, depending on intracellular and extracellular conditions [153].
Focal adhesions mechanically connect the extracellular matrix to the cytoskeleton via stress
fibers, and communication between the extracellular matrix and intracellular proteins
via integrins is two-way. Cell-matrix adhesions are mechanosensitive structures that
grow and shrink in response to mechanical signals. For example, on rigid substrates,
focal adhesions mediate actin filament growth via Rho signaling [154]. Contraction of
the cytoskeleton is transmitted to the extracellular matrix to promote changes, such as
fibronectin fibrillogenesis [155]

Integrins are composed of α and β subunits and 26 different integrins are expressed
in mammals [156]. Signaling at focal adhesions is diverse and complex. The diversity of
mechanotransduction through focal adhesions depends on the integrin makeup of the focal
adhesions, trafficking of integrins to focal adhesions, the properties of the extracellular ma-
trix, and the intracellular signaling complexes associated with the focal adhesions [157]. The
α/β integrin subunits assemble in different combinations, resulting in different substrate
(extracellular matrix components) affinities and different intracellular signaling [156,158].
Integrins act as receptors for extracellular proteins, including collagen, laminin, fibronectin,
vitronectin, and thrombospondins [158]. The viscoelastic properties of the extracellular
matrix also affect the transduction of force through the integrin complex. Thus, the com-
position of the extracellular matrix affects mechanotransduction through focal adhesions.
Integrin trafficking to and from the cell membrane is regulated by endocytosis, which is
regulated by a number of different cell- and context-dependent signaling pathways [159].
In addition, integrins associate with different intracellular signaling pathways, including
the small GTPases, RhoA and Rac, the Hippo signaling pathway (discussed above), and
focal adhesion kinase and Src. Thus, both intracellular and extracellular factors, along
with the molecular makeup of the integrin complex itself, affect the transduction of force
through focal adhesions.

Integrins couple to the cytoskeleton through F-actin binding proteins, such as talin
and vinculin. Talin is a mechanosensitive protein; when talin is stretched, cryptic sites for
vinculin binding are exposed [160,161]. Vinculin is a component of both focal adhesions
and adherens junctions and binds to talin and α- and β-catenin, among other binding
partners [162]. Vinculin binding stabilizes focal adhesions by locking talin in the active
conformation and modulating talin binding to actin [163]. Two isoforms of talin with
different mechanotransductive properties are expressed in mammals; talin-1 is widely
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expressed whereas talin-2 is expressed predominantly in the heart, skeletal muscle, and
brain [164]. Talin forms a “molecular clutch” that transmits force generated by actin
polymerization to the cell membrane for cell motility [165]. Thus, talin both senses and
transmits force. Talin-vinculin interactions play a significant role in cell migration regulated
by intracellular tension.

Another stretch-sensitive protein, p130Cas, is also localized to focal adhesions. Both
the SH3 domain and Src-binding domains are required for Cas localization to focal ad-
hesions [166]. Cell stretching and mechanical extension of p130Cas result in increased
phosphorylation by Src-family kinases [167]. The increased phosphorylation of p130Cas in
response to stretch was not dependent on increased Src kinase activity. Thus, the increased
phosphorylation of p130Cas is likely due to the increased susceptibility of the extended
protein to phosphorylation.

Integrins also connect to actin filaments via other protein complexes, such as kinlin,
PINCH, and the parvin complex [168]. Integrin-linked kinase interacts with PINCH and
parvin to form a complex linking integrins with actin filaments [168] to modulate many cel-
lular functions, including cell spreading, fibronectin deposition, and cell proliferation [168].

7. Mechanotransduction in Cancer

In contrast to the reliance of tissues on mechanotransduction for homeostatic regula-
tion, mechanotransduction is part of the disease process in cancer. The mechanotransduc-
tive processes fall into two main categories, ‘cell autonomous’ responses and intercellular
communication between cancer cells and their microenvironment. Cancer cells experience
increased pressure either through solid stress due to increased cell mass, as tumors are
restricted to a confined space defined by preexisting stroma or neighboring organs, or
through elevated interstitial fluid pressure by edema development. Increased stiffness and
altered tissue properties, as well as altered tissue microarchitecture, arise from and act
through factors adjacent to the tumor cells, and usually occur as part of the disease-specific
interaction with mesenchymal elements. On the one hand, these factors fundamentally
change cancer cell behavior and disease progression. On the other hand, new tissue func-
tions may be introduced by these processes, such as stemness, epithelial plasticity, and
therapeutic resistance.

7.1. Determinants of Stiffness and Tissue Microarchitecture

Positional control over the activity of growth factor and cytokine receptors to receive
signals from and export signals to the surrounding mesenchymal tissue is primarily exerted
through distinct members (not all members) of the integrin family. Select integrin isoforms
influence the localization of specific cancer subtypes or the site of metastatic invasion. The
integrin complex ανβ3 combined with the PDGF-β receptor is associated with enhanced
proliferative signaling in pediatric glioblastoma [169], and integrin β1 mediates activation
of focal adhesion kinase (FAK) for metastatic dissemination of cancer cells to the lungs [170].
Integrin functions include the activation of intracellular signaling and organization of the
cytoskeleton, thereby affecting a number of cell fate transitions. Upon ligand binding,
integrins cluster and engage cytoskeletal linker proteins to regulate the cellular actin
network. Integrins also activate FAK or Src family kinases to transmit pro-mitogenic and
pro-survival pathways (Figure 2).

Once carcinoma cells acquire invasive properties and induce changes in the extra-
cellular matrix (ECM), various host cells (fibroblasts, macrophages, endothelial cells, and
immune cells) are recruited to promote the survival of the carcinoma cells [171]. Subse-
quently, the ECM is jointly produced by these host cells in a concerted manner, undergoing
significant changes in structure, composition, and mechanical characteristics [172]. Altered
mechanical properties derive partly from the more linearized and crosslinked nature of
collagen I at the tumor-stroma interface, as a result of HIF1α-induced elevated lysyl oxi-
dase (LOX) activity [173]. In addition to increasing the rigidity of the tumor matrix, these
changes up-regulate integrin signaling and stimulate cancer cell proliferation.
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Figure 2. The integration of mechanical, hormonal, and growth signaling determining transcriptional regulation. Signaling
routes in cancer cells activated by mechanical forces and stretching converge with growth pathways mediated through
receptor tyrosine kinase (RTK) growth factor receptors and G-protein coupled receptors (GPCRs) upon LATS1/2, to
modulate the Hippo pathway. Shared targets of the F-actin kinase (FAK) and Piezo1 include the serum response factor (SRF)
and AP-1. (blunt ends indicate inhibition and arrows indicate simulation)

Integrins by themselves do not transform cells. Instead, the ability of certain integrin
heterodimers, i.e., ανβ3 and α6β4, to positively regulate tumorigenesis is based on their
propensity to signal through Src, c-Met, EGFR, Her-2, and other oncogenic RTKs [174,175].
Another collagen-binding integrin complex, α10β1, supports tumorigenesis through RIC-
TOR and TRIO to activate Rac/P21-activated kinase and mTOR in myxofibrosarcoma [176].

Another class of targets for tyrosine phosphorylation mediated by integrins is the
caveolin proteins of cell membrane microdomains in lipid rafts. Phosphorylation of these
targets leads to the activation of Rho kinases, allowing cancer-associated fibroblasts (CAFs)
to exert mechanical force. The resulting changes render the tumor stroma favorable for cell
migration and metastasis [177]. Alternatively, a classic way of activating CAFs is through
the action of transforming growth factor-β (TGF-β), resulting in myofibroblasts that exert
significant contractile forces [178].

In addition to influencing the progression of cancer, the stromal composition of
premalignant tissue has a significant impact on the factors predisposing epithelial cells
to undergo transformation towards a cancerous phenotype. Mammographic density
and fibrous stroma density are strong risk factors for mammary carcinomas [179,180].
Downstream effectors include activation of JNK1 stress signaling, increased COX2 ex-
pression, inhibition of TGFβ signaling, and correlation with Syndecan-1 expression in
breast cells [181–183]. Notably, syndecan-1 may play a role in mechanosensing through
modulation of Rho-associated signaling pathways, the nuclear localization of YAP/TAZ,
and SMAD2/3 phosphorylation [184]. In conclusion, factors that dictate mesenchymal
structure and the signaling pathways used by proliferating cells to monitor mechanical
cues may offer viable preventive and therapeutic targets in the future.
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7.2. Transcriptional Footprint of Mechanical Cues in Cancer Cells

Multiple mechanisms are utilized by cancer cells for the transduction of mechanical
signals to the nucleus. Activation of the serum response factor (SRF) is primarily responsive
to Rho kinase signaling through the actin-dependent translocation of the myocardin-related
transcription factor (MRTF) MAL. Actin polymerization was shown to release cytoplas-
mic MAL, allowing it to translocate to the nucleus and activate SRF [40]. In the absence
of Rho activity, filamentous actin converts to monomeric G-actin, which triggers actin-
dependent nuclear export of MAL and the silencing of SRF-induced transcription [185].
Therapeutically, the pharmacological blockade of the TRPM7 cation channel may utilize
MRTF-dependent transcriptional control to inhibit carcinogenic activity. A novel negative
gating modulator, NS8593, was recently shown to inhibit Mg2+-influx and the phospho-
rylation of Rho kinase, leading to transcriptional inactivation of MAL and senescence of
hepatocellular carcinoma cells [186].

An intriguing connection between cell density and the cell cycle was demonstrated
by Gudipaty et al., who investigated the factors that control the balance between cell
division and cell attrition. Moderate mechanical stretching of epithelial cells induces
proliferation by activating ERK1/2 and cyclin B transcription, pushing them from early
G2 phase towards mitosis [187]. The homeostatic sensor, Piezo1, mediates this effect.
Piezo1 is a mechanosensory ion channel that can also drive the up-regulation of c-Jun and
endothelin-1, stabilize Hif1a, and drive the proinflammatory response in myeloid cells
in response to cyclical hydrostatic pressure [188]. Piezo1 is unique in its ability to detect
both stretch and mechanical crowding, forming inactive cytoplasmic aggregates in the
latter state.

In addition to SRF and Piezo1, cell shape and mechanical tension transmitted through
cell-matrix connections and intercellular junctions exert transcription control through the
Hippo pathway. Among the gene regulatory mechanisms, the role of the Hippo/YAP path-
way in mechanotransduction is the best characterized. YAP and TAZ are transcriptional
regulators frequently activated in human cancers. YAP and TAZ may initiate tumorigenic
events that manifest in solid tumors by inducing cancer stem cell proliferation and promot-
ing metastasis and chemo-resistance [189]. Mechanoresponsive factors sense and respond
to physical stimuli, such as stretching or increased cell density (crowding), and utilize
integrin adhesion and the actin cytoskeleton to induce YAP/TAZ nuclear translocation and
the activation of target genes promoting cell proliferation. Mechanical forces activate yorkie
(yki), the Drosophila homolog of YAP, in response to stretching of the cell’s apical region.
Yki accumulation at the cell cortex in the apical junctional domain results in activation of
myosin through a myosin regulatory light chain kinase [190]. Furthermore, changes in
F-actin distribution alter YAP/TAZ activity via Rho GTPases, which transmit signals from
cell-cell and cell-ECM complexes at the cell surface [191]. Studies in cultured cells have
also identified G-protein-coupled receptors (GPCRs) and their agonists as regulators of
Hippo signaling [192]. However, different G proteins may have opposing effects on Hippo
signaling, with Gα11, Gα12, Gα13, Gαi, Gαo, and Gαq activating and Gαs inhibiting
YAP/TAZ [192].

Hippo activity may be affected by increased cell mechanics through direct genomic
interactions. Specifically, the tumor suppressor ARID1A operates as an inhibitor of the
YAP and TAZ proteins. ARID1A is a prominent component of the chromatin remodeling
complex SWI/SNF, which is frequently mutated in various forms of cancers. Loss of
ARID1A may represent an obvious pathomechanism for carcinogenesis via de-repression
of the pro-oncogenic coactivators, YAP and TAZ. However, a new study has shown that
cellular mechanotransduction regulates the association between ARID1A-SWI/SNF and
YAP/TAZ. Cells exposed to low mechanical stress experience inhibitory interaction of
ARID1A-SWI/SNF and YAP/TAZ, in which YAP/TAZ can freely signal through its DNA-
binding platform TEAD. High mechanical stress causes nuclear F-actin to bind to ARID1A-
SWI/SNF and prevent the formation of the ARID1A-SWI/SNF-YAP/TAZ complex, thereby
enabling an association between TEAD and YAP/TAZ [193].



Int. J. Mol. Sci. 2021, 22, 11566 13 of 23

In search of new druggable factors governing stemness and organ size, alternative
avenues for the activation of the Hippo-YAP pathway were identified in genetic screens.
In addition to suppressing mTORC1 activity through the phosphorylation of the AMP-
activated kinase, LKB1 modulates both microtubule affinity-regulating kinases and Hippo
kinases, linking the tumor-suppressive capabilities of LKB1 to YAP activation [194].

Therapeutic opportunities may be presented by modifiers of actin and Rho GTPases,
such as gelsolin and cofilin, to inhibit harmful activation of YAP/TAZ leading to enhanced
cell proliferation in response to mechanical cues from an abnormal microenvironment. Fur-
thermore, drugs that degrade matrix components and reduce fibrosis may prove beneficial.
The angiotensin receptor I blocker, losartan, can reduce both collagen I and hyaluronic acid,
as well as inhibit TGF-β action [195].

8. Mechanotransduction in the Gut

The gastrointestinal (GI) tract is a mechanically active system; all cells in the GI tract
are subject to constant movement. Cells in the GI tract need to sense and/or respond to me-
chanical signals to perform their physiological function. Thus, mechanotransduction in the
GI tract is crucial for normal physiological function, and defects in mechanotransduction
lead to a variety of GI pathologies, including chronic constipation, visceral hypersensitivity,
irritable bowel syndrome (IBS), and colon cancer [196–198]. Mechanotransduction affects
gastrointestinal function from the system level to the cellular level. Examples of mechan-
otransduction include stretch-induced relaxation of the esophageal sphincter and the colon;
at the cellular level, increased stretch modulates P21-activated kinase signaling resulting in
altered myosin light chain phosphorylation and, consequently, changes in intestinal smooth
muscle cell contractility [199,200]. Dysregulation of mechanotransduction contributes sig-
nificantly to pathology in the gut, ranging from the development of ileus to cancer [201,202].
Thus, understanding mechanotransduction in the gut is crucial for developing successful
strategies to treat GI motility disorders and pathologies. Mechanotransduction has been
demonstrated in a number of different cell types in the GI tract, including enteric neurons,
interstitial cells of Cajal (ICCs), and smooth muscle cells.

8.1. Enteric Neurons

The enteric nervous system (ENS) plays an important role in mechanotransduction in
the gut. The GI tract is the only organ with an independent nervous system, highlighting
the importance of the ENS in coordinating GI motility, secretions, and absorption. The ENS
consists of the myenteric plexuses between the two muscle layers in the gastrointestinal
wall and the submucosal plexuses. Sensory neurons within the ENS can sense mechanical
cues and respond with action potentials [203,204]. The activation of complex ascending
and descending pathways in response to stretch, resulting in peristalsis, is an example
of the motility patterns induced by mechanical signals in the gut [205]. Shear stress does
not appear to play a major role in mechanotransduction in the ENS, while compressive
stress plays an important role. Mechanosensitive neurons adapt to compression at different
rates. Ion channels play a significant role in the mechanosensitivity of enteric neurons.
For example, BK channels are directly mechanosensitive, as discussed above [92,125]. In
patch-clamp experiments, membrane stretch comparable to intestinal diameter changes
under physiological conditions resulted in prolonged BK channel opening time [206].
Interestingly, mechanical deformation of neuronal processes evokes action potentials in
the soma while deformation of the soma body inhibits action potentials [205]. Stretching
of S-neurons from the myenteric plexus evoke action potentials, even in the presence of
muscle paralytics [207].

8.2. Intersitital Cells of Cajal

ICCs are the pacemaker cells of the GI tract. A network of ICCs is located between
the two muscle layers of the GI tract and initiates the slow waves (also known as the basic
electrical rhythm), which set the pace for GI contractions. The ICCs are in close contact
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with both enteric neurons and smooth muscle cells. Stretching of gastric muscle induces
an increase in the slow-wave rhythm, indicating that ICCs are stretch sensitive [208]. A
tetrodotoxin-insensitive voltage-dependent Na+ channel appears to be responsible for
stretch activation of ICCs [209].

8.3. Smooth Muscle Cells

The myogenic response of GI smooth muscle refers to the response of smooth muscle
to mechanical forces independent of innervation. The myogenic response is intrinsic to
many parts of the GI tract. In the stomach through the colon, slow waves (initiated by
ICCs) change the membrane potential of smooth muscle cells; if the membrane potential
reaches a threshold, calcium enters smooth muscle cells and triggers a contraction. Stretch
can induce smooth muscle contraction in the absence of neuronal influence, indicating that
smooth muscle cells are mechanosensitive [205]. A variety of mechanical cues, including
shear stress, intracellular pressure, or membrane stretch, induces an influx of Ca2+, which
likely involves L-type calcium channels [210,211]. L-type calcium channels respond to
shear stress and osmotic stress, and these responses are dependent on cell membrane
stretching, not cytoskeletal changes [212,213]. TRP and TREK channels may also be in-
volved in mechanotransduction in smooth muscle cells [77,205]. TREK-1 and TRP channels
are expressed in gastric and colonic smooth muscle cells [214,215]. Deletion of TRPC4
and TRPC6 results in impaired intestinal motility [216]. BK channels are expressed in
colonic smooth muscle and are involved in stretch-induced relaxation of colonic smooth
muscle [217]. Blocking BK channels attenuates the relaxation of colonic smooth muscle in
response to stretch [217].

In addition to contractile activity, mechanical stretch can induce changes in transcrip-
tion and intracellular signaling. Shi et al. showed that mechanical stretch in an obstructive
bowel disease model induced expression of cyclooxygenase-2 in colonic smooth muscle
cells [218]; the induction of COX-2 depended on stretch-induced ion channels and integrin
signaling [219]. Intestinal edema, which frequently develops during trauma resuscitation,
induces intestinal wall swelling leading to increased stretching of intestinal smooth muscle
cells [220]. Stretching of intestinal smooth muscle cells to mimic edema development
induces decreased myosin light chain phosphorylation via increased p21-activated kinase
activity [199,200].

8.4. Other Cell Types

A number of different endocrine cells reside in the GI mucosa, and many of these cells
are mechanosensitive. Mechanical stimulation of the intestinal mucosa induces the release
of serotonin from enterochromaffin cells, which affects the ENS [221]. TRPA1 channels
may be involved in mechanotransduction in enterochromaffin cells [205]. A wide variety
of immune cells reside in the gastrointestinal tract, including resident macrophages in
the intestinal wall. These cells may also respond to stretch and release inflammatory
mediators [201]. Macrophages also respond to pressure by increasing phagocytosis and
cytokine release, possibly through focal adhesion kinase and extracellular signal-related
kinase inhibition [222]. Epithelial cells and vascular endothelial cells are also responsive to
mechanical forces [223].

9. Conclusions

Virtually every cell responds to intrinsic and extrinsic mechanical cues. Most of
these mechanical signals are sensed and transmitted directly at the plasma membrane
or the interface between the cytoskeleton and the plasma membrane at cell-cell and cell-
membrane adhesions. These adhesions link cell signaling to the surrounding environment
and changes in the mechanical characteristics of the environment are transduced to intra-
cellular signals. Mechanotransduction plays a significant role in both physiological and
pathological functions. In this review, we discussed the contribution of mechanotransduc-
tion to normal physiological functions using the gut as an example and the contribution of
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mechanotransduction to pathological conditions, using cancer development as an example.
There are still many unanswered questions about how mechanical signals are sensed by
proteins and how these signals are transmitted into and through the cell. Understand-
ing mechanotransduction in health and disease will facilitate the identification of new
drug targets.
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