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METHODOLOGY

Mini‑XT, a miniaturized tagmentation‑based 
protocol for efficient sequencing of SARS‑CoV‑2
Marc Fuchs1, Clara Radulescu2, Miao Tang2, Arun Mahesh2, Deborah Lavin2, Syed Umbreen, James McKenna3, 
Mark Smyth3, Eilís McColgan3, Zoltan Molnar3, Chris Baxter1, Timofey Skvortsov4, Aditi Singh2, Fiona Rogan2, 
Julia Miskelly1, Stephen Bridgett2, Derek Fairley3 and David A. Simpson2*   

Abstract 

Background:  The COVID-19 pandemic has highlighted the importance of whole genome sequencing (WGS) of 
SARS-CoV-2 to inform public health policy. By enabling definition of lineages it facilitates tracking of the global spread 
of the virus. The evolution of new variants can be monitored and knowledge of specific mutations provides insights 
into the mechanisms through which the virus increases transmissibility or evades immunity. To date almost 1 mil-
lion SARS-CoV-2 genomes have been sequenced by members of the COVID-19 Genomics UK (COG-UK) Consortium. 
To achieve similar feats in a more cost-effective and sustainable manner in future, improved high throughput virus 
sequencing protocols are required. We have therefore developed a miniaturized library preparation protocol with 
drastically reduced consumable use and costs.

Results:  We present the ‘Mini-XT’ miniaturized tagmentation-based library preparation protocol available on proto-
cols.io (https://​doi.​org/​10.​17504/​proto​cols.​io.​bvntn​5en). SARS-CoV-2 RNA was amplified using the ARTIC nCov-2019 
multiplex RT-PCR protocol and purified using a conventional liquid handling system. Acoustic liquid transfer (Echo 
525) was employed to reduce reaction volumes and the number of tips required for a Nextera XT library preparation. 
Sequencing was performed on an Illumina MiSeq. The final version of Mini-XT has been used to sequence 4384 SARS-
CoV-2 samples from N. Ireland with a COG-UK QC pass rate of 97.4%. Sequencing quality was comparable and lineage 
calling consistent for replicate samples processed with full volume Nextera DNA Flex (333 samples) or using nanopore 
technology (20 samples). SNP calling between Mini-XT and these technologies was consistent and sequences from 
replicate samples paired together in maximum likelihood phylogenetic trees.

Conclusions:  The Mini-XT protocol maintains sequence quality while reducing library preparation reagent volumes 
eightfold and halving overall tip usage from sample to sequence to provide concomitant cost savings relative to 
standard protocols. This will enable more efficient high-throughput sequencing of SARS-CoV-2 isolates and future 
pathogen WGS.
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Background
The COVID-19 pandemic has highlighted the impor-
tance of large-scale whole genome sequencing (WGS) of 
SARS-CoV-2. This enables surveillance of virus epidemi-
ology, tracking of virus transmission and identification 
of variants with greater infectivity or potential for vac-
cine escape. This work has been driven in the UK by an 
integrated national SARS-CoV-2 genomic surveillance 
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network (The Coronavirus Disease 2019 [COVID-19] 
Genomics UK Consortium) [1, 2].

Many approaches have been developed to enrich 
SARS-CoV-2 for WGS, including target capture, and 
virus-specific reverse transcription [3–5]. While these 
have some advantages, random primed reverse tran-
scription followed by multiplex tiled PCR has been most 
widely adopted. The ARTIC protocol [6] has been used 
in many studies [7, 8] and employs two pools of prim-
ers, which are being continually improved [9], to amplify 
~ 400 bp tiled amplicons.

Particularly in the early stages of the pandemic nanop-
ore sequencing was used to provide rapid turnaround for 
single or small batches of samples. Increasing prevalence 
and recognition of the value of sequencing all positive 
cases has driven demand for higher throughput methods. 
Although nanopore protocols now enable multiplexing 
of 96 samples, sequencing platforms with greater output, 
such as Illumina, are more suitable.

Both the cost and availability of reagents are criti-
cal determinants of the number of samples that can be 
processed. The disruption caused by the pandemic to 
manufacturing and the logistics of reagent delivery, in 
combination with a significantly increased global demand 
for viral RNA extraction and sequencing, resulted in 
delivery delays and temporary shortages of laboratory 
consumables in many countries, impacting not only 
COVID-19 testing, but other clinical and fundamental 
microbiology research [10]. To maximise throughput 
from a given stock of reagents, protocols have been mod-
ified to reduce volumes (eg ARTIC V1 to V3) or been 
specifically designed to minimize the reagents required, 
such as CoronaHIT [11].

Automation is an essential part of any high through-
put protocol, but unfortunately processing of multiple 
plates requires many expensive plastic pipette tips. This 
also raises logistical challenges due to COVID-related 
delays and has longer term sustainability issues. Acous-
tic liquid handling enables the transfer of low volumes in 
the nanolitre range without the use of physical tips [12]. 
We and others have previously applied this technology 
to the preparation of, for example, synthetic DNA [13], 
RNA-Seq [14–16] and plasmid libraries. Here we pre-
sent a ‘Mini-XT’ protocol for sequencing of SARS-CoV-2 
using ARTIC tiled amplicons, Nextera XT-based library 
preparation miniaturized using an Echo 525 liquid han-
dling system (Beckmann) and sequencing on an Illumina 
MiSeq. Details are available on protocols.io (https://​
doi.​org/​10.​17504/​proto​cols.​io.​bvntn​5en). This enables 
a tenfold reduction in reagents relative to the standard 
Nextera XT protocol and use of significantly fewer dis-
posable plastic tips. We have used the Mini-XT protocol 
to generate over 4000 SARS-CoV-2 genome sequences, 

with quality comparable to those prepared using full vol-
ume DNA Flex library preparation or on the nanopore 
platform.

Results
This study analysed primarily Northern Irish ‘Pillar 2’ 
(swab testing for the wider population) SARS-CoV-2 
samples from Randox Laboratories, with a smaller num-
ber of ‘Pillar 1’ (NHS swab testing for those with a clini-
cal need, and health and care workers) samples from the 
Belfast Trust used in comparisons between sequencing 
protocols.

To facilitate high throughput whole genome sequenc-
ing of these samples and to reduce consumable use, a 
miniaturised version of the Nextera XT (Illumina) library 
preparation protocol called ‘Mini-XT’ was developed. 
A graphical overview is provided in Fig. 1, with the full 
protocol available at https://​doi.​org/​10.​17504/​proto​cols.​
io.​bvntn​5en. A list of reagents is provided in Additional 
file 1. We report here a total of 4384 samples processed 
using the Mini-XT protocol of which 4271 (97.4%) passed 
COG-UK QC. This is comparable with the results of the 
study by Baker et al., in which the maximum pass rate of 
97.6% was reported for higher viral load samples with a 
known Ct of 32 or lower processed using CoronaHiT-
Illumina [11]. The sequencing metrics for the runs organ-
ised in date order are shown in Fig. 2. An extended figure 
of all runs completed since January 2021 (Additional 
file  2: Fig. S1) demonstrates the improved consistency 
as the final protocol was established. One recent run 
210,622 failed to reach acceptable QC and was excluded 
from further analysis. As expected, the percentage of 
samples passing QC closely mirrored the mean percent 
per sample of bases covered. In addition to read depth 
the distribution of reads is critical and probably explains 
why the correlation between the mean number of aligned 
reads per sample and percentage of samples passing QC 
was less significant.

As expected, the percent of bases covered by the 
consensus sequence reduces slightly as the Ct value 
increases, from over 99% in the most concentrated sam-
ples (Ct < 20) to 97% in those samples with the highest 
Ct’s tested (28 ≤ Ct < 30) (Additional file 2: Fig. S2).

To test whether the approximately tenfold reduction in 
reagents used in the Mini-XT protocol compromises per-
formance relative to standard full volume DNA-Flex pro-
tocols, four 96 well plates of samples were processed in 
parallel using both approaches. The sequencing metrics, 
including percent coverage (Fig. 3; Additional file 2: Fig. 
S3) were broadly comparable. For 202 samples the lineage 
calls from both protocols were identical, for 5 the same 
but with descendant sublineages missing from one of the 
calls and for 4 there were discrepancies in sub-lineages 
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between protocols. In these 4 cases most of the charac-
teristic variants are common between the discrepant sub-
lineages (Additional file 2: Fig. S4; [17]) and the differing 
calls presumably reflect differing sequence quality at the 

discriminating sites. In a phylogenetic tree created with 
the consensus sequences generated using Mini-XT and 
DNA-Flex protocols, the same samples sequenced by dif-
ferent technologies clustered together (Fig. 3), reflecting 
the consistency of SNP calling between methods.

Fig. 1  Overview of the Mini-XT protocol. The workflow can be paused at any stage and the plates stored at the indicated temperature
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Nanopore sequencing is widely used throughout the 
COG-UK consortium [2] and we use this approach for 
samples requiring a rapid turnaround. To further vali-
date the Mini-XT protocol we compared the results of 20 
samples that had also been sequenced using the nanop-
ore platform. The sequencing metrics were broadly com-
parable (Fig. 4A). The lineage calls were identical for the 
same samples processed using each technology and the 
sample pairs clustered together when plotted on a phylo-
genetic tree (Fig. 4B).

The use of acoustic liquid transfer enables a significant 
reduction in the use of consumables, in particular plastic 
tips. This equates to an approximately 90% reduction in 
tips required during library preparation and a reduction 
from 23 to 12 tips per sample for processing from RNA 
sample to completed library.

New England Biolabs (NEB) have released re-balanced 
ARTIC primer pools aimed at improving uniformity of 
SARS-CoV-2 genome coverage and an associated library 
preparation kit. For a small number of samples tested, 
the coverage obtained with the ARTIC v3 primers used 
throughout the rest of this study and the NEB pools was 
comparable (Additional file 2: Fig. S5). The same ampli-
con pools processed with Mini-XT or the NEB library 
preparation protocol produced similar results. A new 
version of the ARTIC primers (v4) has recently been 
released. In a comparison between 20 samples amplified 
with v3 or v4 primers the latest version performed better, 

with a reduced percent of N bases (0.54% vs. 2.17%), 
increased percent of covered bases (99.4% vs. 97.8%) and 
increased longest no N run (28,919% vs. 20,222%) (Fig. 5).

Discussion
WGS has become a critical part of the international 
response to the COVID-19 pandemic [1] and will be key 
in any similar future situations. Indeed, WGS is now an 
established tool for monitoring many infectious diseases 
in both the USA [18] and Europe [19]. This increas-
ing demand necessitates the development of more cost-
effective high throughput library preparation methods. 
The ability of the Echo 525 liquid handler to dispense low 
volumes in a 384 plate format has already been exploited 
for high throughput low-cost RT-qPCR SARS-CoV-2 
surveillance testing [20]. Although various high through-
put protocols for sequencing of SARS-CoV-2 have been 
reported [11, 21, 22], the use of acoustic liquid transfer 
enabled a greater reduction in volume in the Mini-XT 
protocol than many alternatives. The ability of the Echo 
system to dispense variable volumes also facilitated effi-
cient normalization of amplicon pool concentrations. 
As with other robotic platforms, automation of sam-
ple preparation minimises human error and improves 
consistency.

Similar protocols employing acoustic liquid transfer 
to reduce reagent volumes for generating libraries for 
RNA-Seq and synthetic biology applications have been 

Fig. 2  Mini-XT sequencing metrics for individual runs. All runs over a 3-month period are indicated by date (YYMMDD)
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reported previously by us [14] and others [13, 15, 16]. 
However, Mini-XT is the first such protocol to be applied 
specifically to whole-genome sequencing of SARS-CoV-2. 
The confirmation that sequence quality is comparable 
to that achieved with conventional Illumina or Oxford 
Nanopore library preparation protocols provides confi-
dence in use of this approach for virus surveillance and 
research to understand viral transmission and evolution. 
The thousands of samples processed and reported here 
demonstrate the robustness of the protocol. While Artic 
v3 primers were used for amplification of SARS-CoV-2 
cDNA throughout the study, the initial findings reported 
for the v4 primer set suggest that it will improve the qual-
ity of sequences generated. The Mini-XT protocol can be 
used to prepare libraries from any DNA sample, and we 
anticipate that it will be of use for wider pathogen WGS 
applications because it can simultaneously decrease costs 
and dramatically increase sample throughput. Increased 
use of WGS for public health surveillance and in clinical 

microbiology are current objectives in Europe [19] that 
Mini-XT sequencing could facilitate. This approach may 
also be valuable in the emerging field of clinical metagen-
omics. Direct metagenome sequencing has the potential 
to transform diagnostic clinical virology in particular [23, 
24]. Wider use of high-throughput sequencing for diag-
nosis is often limited by cost and capacity constraints, so 
there is great scope to apply novel methods such as Mini-
XT sequencing in this area.

One of the most effective ways for labs to become more 
sustainable is to reduce single use plasticware [25]. The 
Mini-XT protocol requires a remarkable ~ 4600 fewer 
tips per 384 samples processed than equivalent conven-
tional manual or robotic preparation. Not only does this 
reduce waste, but also makes the protocol more resilient 
to consumable shortages, such as experienced during the 
COVID-19 pandemic.

Although the Mini-XT protocol is optimized for 
high-throughput use, which maximizes reagent and 
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Fig. 3  Sequencing results from Mini-XT and Illumina DNA Flex library preparation are comparable. A The percentage coverage was very similar 
between each of 333 samples prepared by both library preparation protocols. B A subset of the consensus sequences (named according to 
protocol and sample number) were placed in a phylogenetic tree with branch lengths shown in nucleotide substitutions per site and the lineages 
comprising the main branches indicated. The same samples sequenced using both protocols cluster together on the tree. C The same SNVs were 
identified in each sample by both platforms. This is illustrated in a SnipIt plot of 15 pairs of sequences representing each branch of the tree and 
aligned to a reference Wuhan sequence modified to contain all invariant SNVs identified in these samples



Page 6 of 11Fuchs et al. Journal of Translational Medicine          (2022) 20:105 

plasticware savings to offset capital costs, it can be eas-
ily adapted to a 96-sample format.

Conclusion
We have demonstrated that sequence quality can be 
maintained after applying acoustic liquid transfer to 
dramatically reduce reagent volumes during library 
preparation. The resulting Mini-XT protocol provides 
an effective, robust, low cost, high-throughput library 
preparation approach for WGS of SARS-CoV-2. The 
value of large-scale sequencing of SARS-CoV-2 has 
been demonstrated during the COVID-19 pandemic 
and this protocol will facilitate the ongoing provision of 
whole-genome sequences.

Methods
Samples
A total of 4384 samples are reported in detail [a further 
4,586 have been processed with earlier versions of the 
Mini-XT protocol (Additional file 2: Fig. S1)]. These are 
Pillar 2 (non-clinical swab testing of general population) 
swab extracts prepared by Randox Laboratories (Crum-
lin, Northern Ireland) using the MagMAX Viral/Patho-
gen Nucleic Acid Isolation Kit (MVP II) (Thermo Fisher 
Scientific, MA).

cDNA generation
RT-PCR followed the ARTIC Network nCoV-2019 
sequencing protocol v3 (LoCost) (https://​www.​proto​
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Fig. 4  Mini-XT and Illumina sequencing results are comparable with those from Nanopore technology. Twenty samples with B.1.1.7 lineage were 
sequenced on both platforms. A The percentage coverage was very similar between platforms. B The same SNVs were identified by both platforms, 
as exemplified in a SnipIt plot of 10 pairs of sequences aligned to a reference Wuhan sequence modified to contain all invariant SNVs identified in 
these samples. C In a phylogenetic tree of all 20 samples the same samples (named according to protocol and sample number) clustered together, 
reflecting consistent SNV calling (branch lengths shown in nucleotide substitutions per site)

https://www.protocols.io/view/ncov-2019-sequencing-protocol-v3-locost-bh42j8ye
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cols.​io/​view/​ncov-​2019-​seque​ncing-​proto​col-​v3-​
locost-​bh42j​8ye) and its modified version adapted 
for use with Illumina sequencers (https://​doi.​org/​10.​
17504/​proto​cols.​io.​bnn7m​dhn) [26]. cDNA setup was 
performed in a pre-PCR environment and bench sur-
faces and pipettes were disinfected before starting 
work. SARS-CoV-2 viral nucleic acid extracts and two 
non-template controls containing nuclease-free water 
per 96-well plate (NTCs), were reverse transcribed with 
LunaScript RT SuperMix Kit (NEB), using 5  µl of the 
RNA sample in a total reaction of 10 µl. The reactions 
were incubated for 2 min at 25 °C, followed by 20 min 
at 55 °C and 1 min at 95 °C before cooling to 4 °C.

Amplicon generation
The cDNA samples were amplified by tiled PCR using 
separate primer pools derived from premixed ARTIC 
nCoV-2019 V3 panel (100  µM, IDT) diluted 1:10 in 
molecular grade water, to achieve 10 µM primer stocks. 
Two PCR reactions per sample plate, for primer Pools 
A and B, were performed in a total volume of 25  µl 
using 4  µl of each 10  µM primer set, 5  µl of 5 × Q5 
Reaction Buffer (NEB), 0.5 µl of dNTPS (10 mM each), 
0.5 U of Q5 Hot Start High-Fidelity DNA Polymerase 
(NEB) and 2.5 µl of cDNA. The cycling conditions were: 
heat activation at 98 °C for 30 s followed by 35 cycles of 
denaturation at 98 °C for 15 s and annealing at 63 °C for 
5 min and then a hold at 4 °C.
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Fig. 5  Comparison of samples amplified with ARTIC v3 and v4 primer sets. The percent coverage (top) and longest run with no N’s (bottom) were 
consistently greater with the v4 primers
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Amplicon purification and quantification
A pair of PCR A and PCR B plates were centrifuged at 
280×g and 10 µl from each well of plate A and B com-
bined in a fresh fully skirted PCR plate. Automated 
bead cleaning was performed using a Biomek NXp 
robot (Beckman Coulter. CA) with an 8 channel head 
using 1.5 × KAPA Pure beads (Roche) to sample ratio. 
Samples were eluted in 60  µl 10  mM Tris pH 8.0 and 
quantified using an Invitrogen Quant-iT dsDNA broad 
range assay kit (Q33130) with a PHERAstar FS multi-
mode microplate reader (BMG Labtech).

Mini‑XT library preparation
The quantified RT-PCR products (A + B amplicons) 
were normalised to 0.2 ng/µl using the Echo 525 Liquid 
Handler (Beckman Coulter): four 96-well plates with 
RT-PCR products were combined into one 384-well 
Echo source plate (384PP 2.0), whereby each source 
pate well was filled with 30 µl A + B amplicon. The Echo 
Liquid Handler was then programmed to transfer a vol-
ume of each amplicon mix containing 8 ng of DNA into 
a second Echo source plate (normalisation plate). Each 
well of the normalisation plate was manually topped up 
with 40 µl of 10 mM Tris buffer at pH 8.0, resulting in 
the desired target concentration of 0.2 ng/µl.

The normalised amplicons were prepared for 
sequencing using the Nextera XT DNA Library Prepa-
ration Kit (Illumina) in combination with the Nextera 
XT Index Kit v2 Set A and Set D. The manufacturer 
recommended volumes were scaled down tenfold and 
the reactions prepared using the Echo Liquid Handler. 
For the tagmentation reaction, 1000  nl Tagment DNA 
Buffer was transferred from a 6-reservoir Echo source 
plate (001–11101) into a 384-well PCR plate (Library 
preparation plate), followed by 500  nl of amplicons 
from the normalisation plate and 500  nl of Ampli-
con Tagment Mix from a 384PP 2.0 plate. After spin-
down, the plates were incubated at 55  °C for 5 min on 
a Tetrad DNA Engine 2 thermal cycler (Bio-Rad) and 
then placed on ice. Five hundred nl of Neutralize Tag-
ment Buffer was added to the Library Preparation plate 
from a 6-reservoir source plate to stop the tagmenta-
tion reaction, followed by a 5  min incubation at room 
temperature.

The library amplification reaction was again prepared 
with the Echo. The Nextera XT Indexes were presented 
on a 384PP 2.0 plate and transferred to the Library prepa-
ration plate so that each well received one of the 384 pos-
sible unique index combinations. After that, 1500  nl of 
Nextera PCR Master Mix was transferred from a 6-res-
ervoir plate into the Library preparation plate. After 
another spin-down, the libraries were amplified on a 

Tetrad DNA Engine 2 in 12 PCR cycles as outlined in the 
Illumina Protocol for Nextera XT Library preparations.

Up to 384 amplified Libraries were pooled without 
normalisation and purified in two consecutive 1.6× bead 
cleanups with KAPA Pure beads. Two wash steps per 
cleanup were performed with 80% ethanol, and the pool 
was eluted in 10 mM Tris at pH 8.0, quantified with High 
sensitivity Qubit dsDNA assay (Thermo Fisher Scientific, 
MA) and analysed with a Tapestation D1000 assay (Agi-
lent, CA) to determine the average fragment size. The 
molarity was calculated based on the Qubit concentra-
tion and the D1000 size, applying an average molecular 
weight of 660 g/mol per 1 bp of dsDNA:

DNA flex library preparation
Full volume Illumina DNA Prep library preparation 
(formerly called Nextera DNA Flex Library Prep), cata-
logue number 20018705, was performed according to the 
manufacturer’s protocol, using IDT® for Illumina® DNA/
RNA UD Indexes Set A or B, catalogue number 20027213 
or 20027214.

Illumina sequencing
The Library pool was diluted to 4 nM with 10 mM Tris 
pH 8.0, denatured with 0.2 N NaOH solution and diluted 
to 20 pM with Hyb Buffer following Illumina instructions 
for the Miseq. The 20  pM pool was further diluted to 
9 pM and spiked with 1% PhiX at 12.5 pM before being 
loaded onto a sequencing cartridge. 150  bp paired-end 
sequencing was performed on a MiSeq system using the 
300-cycle v2 MiSeq Reagent Kit. FASTQ generation was 
performed on-board with the Local Run Manager v3.0, 
secondary analysis was performed off-board as described 
below.

Nanopore library preparation
The Nanopore library preparation protocol was adapted 
from nCoV-2019 sequencing protocols v2 (https://​doi.​
org/​10.​17504/​proto​cols.​io.​bdp7i​5rn) and v3 (https://​
proto​cols.​io/​view/​ncov-​2019-​seque​ncing-​proto​col-​v3-​
locost-​bh42j​8ye) and the amended protocol is available 
on protocols.io: https://​www.​proto​cols.​io/​priva​te/​8BFC7​
458DD​268B8​46ADA​0B5CA​5A71C​57. All reagents are 
detailed in (Additional file 1).

NEBNext Ultra II End Repair/dA-Tailing Module 
(E7546, New England Biolabs, MA) was used for end 
preparation of purified amplicon, for which 1.2 μl Ultra 
II End Prep Reaction Buffer and 0.5 μl Ultra II End Prep 
Enzyme Mix was added to 50 ng of purified amplicon and 

Molarity[nM] = 106 ∗
Concentration

[

ng
µl

]

660
g

mol∗bp
∗ Average size[bp]

.
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nuclease-free water added to a volume of 10 μl per reac-
tion. The mixture was incubated at room temperature for 
15 min and 65 °C for 15 min, followed by incubation on 
ice for 1 min.

For sample multiplexing, ligation of barcodes was then 
performed using NEBNext® Ultra™ II Ligation Mod-
ule (E7595, New England Biolabs, Ipswich, MA, United 
States) and Native Barcoding Expansion kits (EXP-
NBD104/EXP-NBD114/EXP-NBD196, Oxford Nanopore 
Technologies, Oxford, UK). The end preparation product 
from the previous step (0.75 μl) was input into the liga-
tion reaction by adding 5 μl Ultra II Ligation Master Mix, 
0.15  μl Ligation Enhancer, 1.25  μl Native barcode, and 
2.85  μl Nuclease-free water. The mixture was incubated 
at room temperature for 20  min and 65  °C for 10  min, 
followed by incubation on ice for 1  min. Samples were 
pooled together and purified using KAPA Pure Beads 
with 0.4× beads-to-sample ratio. The barcoded amplicon 
pool and beads were incubated at room temperature for 
5  min, and the pellet was washed twice in 250  μl Short 
Fragment Buffer (EXP-SFB001, Oxford Nanopore Tech-
nologies, Oxford, UK), followed by one wash in 200  μl 
70% ethanol. The barcoded amplicon pool was eluted in 
30  μl Elution Buffer (LSK-109, Oxford Nanopore Tech-
nologies, Oxford, UK) and quantified using Qubit™ 
dsDNA HS Assay Kit.

The ligation of adaptors was performed using NEB-
Next® Quick Ligation Module (E6056, New England 
Biolabs, Ipswich, MA, United States) and Adapter Mix 
(AMII) from Native Barcoding Expansion kits. The liga-
tion reaction was performed by adding 10 μl Quick Liga-
tion Reaction Buffer (5×), 5 μl Quick T4 DNA Ligase and 
5 μl Adapter Mix (AMII) to the 30 μl barcoded amplicon 
pool from the previous step and incubating the mixture 
at room temperature for 20  min. The adaptor-ligated 
amplicon pool and 50 μl beads were incubated at room 
temperature for 5 min, the pellet washed twice in 250 μl 
Short Fragment Buffer and the purified library eluted in 
15 μl Elution Buffer and quantified using Qubit™ dsDNA 
HS Assay Kit.

Nanopore sequencing
MinION sequencing was performed on R9.4 flow cells 
(FLO-MIN106D, Oxford Nanopore Technologies, 
Oxford, UK) following manufacturer’s guidelines. Min-
ION sequencing was controlled using MinKNOW™ 
software. Up to 15  ng of purified library was input into 
the loading library by adding 37.5  μl Sequencing buffer 
and 25.5  μl Loading beads (LSK-109, Oxford Nanopore 
Technologies, Oxford, UK). Elution buffer was added to 
a volume of 75 μl loading library. The run was monitored 
with the assistance of ARTIC-nCoV-RAMPART-v1.0.0 

(https://​artic.​netwo​rk/​ncov-​2019/​ncov2​019-​using-​rampa​
rt.​html).

Data analysis
For each Illumina sequencing run, the base-calling and 
demultiplexing of reads by sample-id, was routinely 
performed by the “MiSeq Reporter” software [27]. The 
resulting data was then transferred from the Illumina 
MiSeq computer to the Queen’s University Kelvin2 HPC 
compute cluster for analysis. (Optionally, if the sample-
sheet required modification, the Illumina “bcl2fastq” [28] 
or “BCL Convert” [29] pipeline was used to base-call and 
demultiplex the data).

The “connor-lab/ncov2019-artic-nf” nextflow-based 
open-source pipeline [30], as used by the COG-UK con-
sortium, was then used with its “illumina” and “profile 
conda” options, and otherwise default options. Inter-
nally, this pipeline uses: “TrimGalore” [31] to trim the 
adapter sequence from the paired reads; then “bwa-
mem” [32] with default options to align the trimmed 
reads to the Wuhan-Hu-1 reference genome (accession 
id: MN908947.3); “samtools” to sort the aligned reads 
in the bam files, then “iVar” [33] to trim the ARTIC 
amplicons and generate a consensus fasta sequence for 
each sample. To determine which resulting samples are 
accepted, a python QC script is used to accept those con-
sensus sequences that have either over 50% of reference 
bases covered by at least 10 reads, or have a stretch of 
more than 10 Kbp of sequence without N’s (where N’s are 
defined as bases with less than 10 reads).

To analyse Nanopore data, the ncov2019-artic nextflow 
pipeline [30] was used to automate the ARTIC network 
nCoV-2019 novel coronavirus bioinformatics protocol 
[34]. Firstly, the Guppy program (available from https://​
commu​nity.​nanop​orete​ch.​com/​downl​oads) was used 
for basecalling and demultiplexing of reads, using the 
"require_barcodes_both_ends" options, and arrangement 
files nb12 and nb24:
guppy_barcoder --require_bar-

codes_both_ends -i run_name -s out-
put_directory --arrangements_files 
"barcode_arrs_nb12.cfg barcode_arrs_
nb24.cfg"

Then the ncov2019-artic pipeline was run with the 
‘--nanopolish’ option. The pipeline’s nanopore con-
figuration file (https://​github.​com/​connor-​lab/​ncov2​
019-​artic-​nf/​blob/​master/​conf/​nanop​ore.​config) speci-
fies the parameters used for the analysis. As the ARTIC 
protocol can generate chimeric reads, the artic “gup-
pyplex” program is used to accept reads with length of 
400 to 700 bases, then samples with fewer than 10 reads 
are excluded. Barcodes having fewer than 100 reads are 
ignored. The minimap2 [35] read aligner is used. To call 

https://artic.network/ncov-2019/ncov2019-using-rampart.html
https://artic.network/ncov-2019/ncov2019-using-rampart.html
https://community.nanoporetech.com/downloads
https://community.nanoporetech.com/downloads
https://github.com/connor-lab/ncov2019-artic-nf/blob/master/conf/nanopore.config
https://github.com/connor-lab/ncov2019-artic-nf/blob/master/conf/nanopore.config
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consequences of a variant on the encoded amino acid, 
the typing frequency threshold was 0.75 and minimum 
coverage depth 20.

“Pangolin” [36] and “PangoLEARN” [37] were used 
to assign each qc-passed sample’s genome consensus 
sequence to the most likely Pango lineage [38]. The mini-
map2 pair-wise aligner and the “type_variants” [39] script 
were used to call specific variants of interest/concern, 
and the “SnipIt” [40] package was used to plot an image 
of the variants in each sample compared to the Wuhan 
reference. Data was collated and summarised using bash 
and python scripts.

Phylogenetic analysis
Phylogenetic analysis was performed using the ‘Next-
strain’ collection of tools (nextstrain.cli 3.0.3) [41] to 
analyse our consensus fasta sequences. The linux-based 
command line module, specifically the Augur module, 
was used to perform alignment and infer trees.
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Additional file 1. Reagents required for the Mini-XT protocol.

Additional file 2: Figure S1. Mini-XT sequencing metrics for all individual 
Mini-XT runs indicated by date (YYMMDD). Figure S2. RT-qPCR Ct values 
of the SARS-CoV-2 positive RNA samples sequenced using Mini-XT vs. 
percent of bases covered. A Relationship between Ct value (Orf1ab 
target gene) and the percent of bases covered in SARS-CoV-2 genome 
sequences for 2000 samples processed with the Mini-XT protocol. B 
Average percent covered bases (± SD) for samples with increasing Ct 
ranges (excluding samples with one or both amplicon pools failing, ie 
percent covered bases < 70). Figure S3. Comparison of individual 96 well 
plates of samples prepared using the DNA Flex library kit with the same 
samples prepared with the Mini-XT protocol. The concentrations of the 
amplicon pools are indicated in ng/µl and broadly correlate with the 
percentage coverage achieved. The insets indicate the total number of 
aligned reads for each set of samples. Figure S4. Characteristic variants 
of sublineages called differentially between sequencing protocols. SNP-IT 
plots indicate that all the SNPs called from Mini-XT and Flex sequences are 
either shared or not called in one sequence. The comparison illustrates 
that most characteristic variants of the discrepant lineages are shared and 
only vary at several positions. Figure S5. Comparison of Arctic v3 and 
NEB primer pools. Samples are named according to the amplification and 
then library preparation method and ordered according to percentage 
coverage achieved with Articv3 primers and mini-XT library preparation 
(Artic_MiniXT).
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