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Abstract: The urgency of heat treatment of samples of maraging steel obtained by direct laser
deposition from steel powder 06Cr15Ni4CuMo is considered. The structural features and properties
of 06Cr15Ni4CuMo steel samples after direct laser deposition and heat treatment are studied. The work
is devoted to research into the influence of thermal processing on the formation of structure and the
mechanical properties of deposit samples. Features of formation of microstructural components by
means of optical microscopy are investigated. Tests for tension and impact toughness are conducted.
As a result, it was established that the material obtained by the direct laser deposition method in
its initial state significantly exceeds the strength characteristics of heat treatment castings of similar
chemical composition, but is inferior to it in terms of impact toughness and relative elongation.
The increase in relative elongation and impact toughness up to the level of cast material in the deposit
samples is achieved at the subsequent heat treatment, which leads to the formation of the structure of
tempered martensite and reduction in its content at two-stage tempering in the structure of the metal.
The strength of the material is also reduced to the level of cast metal.

Keywords: direct laser deposition (DLD); direct metal deposition; additive manufacturing
(AM); corrosion resistant steel; heat treatment (HT); maraging steel; microstructure;
mechanical characteristics

1. Introduction

Currently, to increase the competitiveness of shipyards for the manufacture of parts of marine
engineering, new high-tech technologies are used. Additive manufacturing methods are increasingly
being used, including direct laser deposition technology (DLD). In the DLD process it is possible to
obtain parts, including from shipbuilding steels used in the Arctic. Iron and its modified alloys are the
most important class of metallic materials used in shipbuilding. Different grades of stainless steels
can be treated as a part of traditional manufacturing techniques such as casting, machining, powder
metallurgy and welding, including any combination of those. [1,2].

As a result of the research on estimation of material characteristics in 1980, this has been developed
and mastered in the industry of martensitic–austenitic stainless steel (CA6NM—06Cr15Ni4CuMo)
for manufacturing compressors [3], propeller blade [4–7], castings of blades, components of chemical
and oil industry and other cast details of responsible purpose, and now for the manufacture of large
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castings for a propeller blade of blades and hub steel of 06Cr15Ni4CuMo. Currently, it is relevant to
obtain parts and blanks for industrial production of this steel by the DLD method.

With the development of modern production technologies, it has become possible to manufacture
parts from virtually any metal powder using additive technologies (AM). AM is characterized by quick
fabrication and economical spending of expensive materials. Direct laser deposition (DLD) methods
are of special interest when large workpieces need to be made using AM. The DLD technology makes
it possible to fabricate large parts from stainless and cold-resistant steels [8–12]. The features of the
DLD process include high temperature gradients, and repeated fast heating and fast cooling that cause
residual strains and form heterogeneities in the microstructure. Microstructural features, such as grain
size and morphology (as well as phase transitions), are very sensitive to the dynamic thermal history
and they directly influence the microhardness, tear strength and modulus of resilience [13–18].

The mechanical properties of alloys obtained using DLD depend on their structure-phase
states. For steels, an important role is played by the content of laminar low-carbon martensite (α′)
microstructure and the presence of other phases, such as delta ferrite (δ), austenite (γ) and chromium
carbides. It is known that the austenite phase is preserved in the tempering process and/or it is
restored as a result of the treatment of quenched material. The secondary phase of ferrite in the alloy is
δ-ferrite, which forms at very high temperatures during hardening in the course of casting or the DLD
process [19].

To achieve high mechanical characteristics for martensite stainless steel, heat treatment (HT)
is normally used. However, the microstructure of alloys obtained using DLD is close to a cast
structure and is anisotropic. Such materials are characterized by low plasticity and modulus of
resilience [20–22]. Here, the material’s inner structure is particularly influenced by cyclic heating
during DLD due to layer-by-layer metal deposition [23–25]. During the fabrication process, the work
piece is tempered. While classical casting and welding envisages a full HT cycle (quenching and
tempering), parts fabricated by deposition require the development of ad-hoc HT that is different from
the classical one [26,27]. The influence of these effects on the structural characteristics and mechanical
properties needs research, specifically the presence of residual austenite γ, non-quenched martensite
α′, and delta ferrite δ. These factors govern the final properties of the manufactured parts.

The goal of the research work was to grow a plate of 06Cr15Ni4CuMo steel and further reveal the
patterns of microstructure formation and mechanical properties after high tempering and determine
the maintenance regime providing the required level of ductility of steel not inferior to casting.

2. Materials and Methods

2.1. Materials

We have chosen 06Cr15Ni4CuMo (an analog of CA6NM) for the material. The starting material is
06Cr15Ni4CuMo fraction 45–160 µm Figure 1 is the producer of the “Polema” powder. The chemical
composition of the steel is provided in Table 1.

The impact bending tests of the 06Cr15Ni4CuMo steel were conducted on an RKP 450 (Zwick/Roell,
Ulm, Germany) unit at −10 ◦C, with impact energy 150 J and tensile tests were performed on a Z100
(Zwick/Roell, Ulm, Germany) unit at room temperature. Samples made under mechanical tensile
testing GOST 1497-84 (RU) and impact testing GOST 6996-66 (RU).

To show the structure, we used chemical etching with Kalling’s reagent in a solution (33 mL HCl
+ 33 mL of ethanol + 33 mL of H2O + 1.5 g of CuCl2) over 30–60 s.

The deposited cladding layers were visually examined and instrumentally measured; then,
they were investigated by optical microscopy on the DMI 500 Leica (Leica Microsystems, Wetzlar,
Germany) microscopes using Thixomet (Thixomet, St.-Petersburg, Russia).
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Figure 1. Surface of powder particles 06Cr15Ni4CuMo.

Table 1. The chemical composition of the steel.

Material Grade
Elements Mass Ratio, %

C Si Mn Cr Ni Mo S P Fe Cu

06Cr15Ni4CuMo ≤0.06 0.40 0.60–0.90 14.0–15.5 4.0–4.4 0.11–0.28 0.015 0.015 Bal. 1.0–1.5

2.2. Fabrication of Samples Using DLD and Their Heat Treatment

We used the following equipment: a robotic complex based on an LRM-200iD_7L (Fanuc, Oshino,
Japan) industrial robot; fiber laser based on a LS-3 Yb (IRE Polus Ltd., Fryazino, Moscow Region,
Russia) unit; an FLW D30 (IPG Photonics, Oxford, UK) laser deposition head with a detachable SO12
(Fraunhofer IWS, Aachen, Germany) deposition nozzle and a Twin 10C (Sulzer Metco Inc., New York,
NY, USA) powder feeder. A shielding gas atmosphere was used for deposition: an air-proof chamber
filled with argon at an excess pressure of 2–3 MPa. In the argon-filled chamber the content of oxygen
was not more than 300 ppm. Manufacturing of samples by DLD method was carried out at power
P = 2300 W, speed V = 25 mm/s and cross section of depositing bead 2 × 0.8 mm2 powder flow rate
G = 35 g/min, displacement along the ∆x = 1.6 mm, and ∆z = 0.7 mm. Five blocks (1 in the initial state
and 4 per HT) with LxWxH dimensions 130 × 80 × 16 mm in Figure 2 were deposit simultaneously: a
layer was applied alternately to each of the samples, after that the transition to the next layer took place.
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DLD was carried out in a shielding chamber with controllable atmosphere. High purity argon was
used as a transport and protective gas. Overpressure of 2–3 Mbar was maintained in the deposition
chamber. The residual oxygen content in the working atmosphere did not exceed 300 ppm. The porosity
in the grown plates did not exceed 2% of the total volume of the deposit sample.
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The heat treatment was performed in a SNOL 30/1300 muffle furnace without, shielding gas.
The heating rate was 200 ◦C per hour with subsequent exposure and cooling as shown in Figure 3.
Cooling rate of samples after high-temperature tempering was 50 ◦C per hour and then air cooling
was 150 ◦C.
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Figure 3. The heat treatment of the samples fabricated by deposition.

3. Results

In the course of parts fabrication from martensite grade steels using DLD, forced process thermal
cycling is taking place due to extensive heat deposition. Heat deposition then impacts the presence of
retained austenite and δ-ferrite [28] in the structure of the samples fabricated by DLD. Residual austenite
can have a negative effect on hardness and toughness.

In the course of tempering during subsequent cooling, metal plasticity deteriorates, and this is due
to the formation of secondary martensite as a result of conversion of residual austenite. That is why it
makes sense to conduct a second tempering of secondary martensite. This promotes an increase in the
metal’s relative elongation, creating a finer structure as a result of the decomposition of secondary
martensite and the formation of quenched martensite.

Cast metal needs HT for quenching and dual subsequent tempering. During DLD, however,
forced thermal cycling is taking place. This strengthens the samples, so we only need to conduct dual
tempering to achieve the desired results. Based on the mentioned data from the literature and the
results of experimental studies of the steel’s characteristics, we have found HT modes for the samples.
These modes envisaged high-temperature tempering that would provide the best combination of
mechanical properties: high strength, elongation, and impact strength [27].

After DLD the steel has high strength characteristics and low plasticity. To achieve the required
mechanical properties for the steel, we have selected several HT modes, as shown in Table 2.

Different δ-morphologies were clearly revealed after etching the fabricated sample, Figure 4a.
These morphologies are created by the incomplete growth of Widmanstetten γ-grains during the
solid-state δ→γ phase transformation, Figure 4b. Here, incomplete growth results in residual δ stringer
inclusions being left at the borders [4]. These inclusions outline the growth front that resembles
the initial orientation of the ex- Widmanstett patterns in the final microstructure. During further
cooling, γ-austenite converts into α′-martensite, but some amount of δ-delta-ferrite remains in the
final microstructure, as shown in Figure 4a. Afterwards, the fabrication δ-delta-ferrite was discovered
in the samples, and its content did not exceed 5%.
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Table 2. Mechanical properties for heat treatment (HT) modes.

P (W) V (mm/s) Yield Strength,
σв, (MPa)

Ultimate Strength,
σ0.2, (MPa)

Relative Elongation,
δs, (%)

Impact Toughness,
KV−10, (J)

Technical
specifications N/A N/A ≥790 ≥620 ≥19 ≥40

DLD 2300 25 1088 792 8 17

b/Т = 750 ◦C, t = 2 h

Mode 1 1840 20 1114 798 7.5 16

c/Т = 650 ◦C, t = 2 h

Mode 2 1840 20 863 530 15 39

d/Т = 650 ◦C, t = 4 h

Mode 3 2300 25 891.7 587.2 12 29

e/Т = 620 ◦C, t = 2 h

Mode 4 2300 20 816.4 698.3 16 42

f/Т = 620 ◦C, t = 2 h/x2 the cycle is repeated twice

Mode 5 2300 20 804.4 666.8 19 42
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At such high temperatures, δ-grains are growing rapidly during heating. Then, during the cooling
process, they convert into a γ-phase with subsequent transition into a α′ structure. In Figure 4b,
after a single iteration of high-temperature tempering, some amount of γ-austenite (as well as M7C3

chromium carbides) is still observed.
Figure 4c,d shows some amount of non-converted α′-martensite that is an unstable microstructure

in the α matrix. It promotes the formation of carbides, interlayer boundaries at large angles and a
γ-phase.

Figure 4e,f includes a structure after high-temperature tempering that is represented by quenched
lath α′-martensite with fine particles of residual austenite. The particles are located between martensite
laths and at the boundaries of martensite batches with large inclusions of δ-ferrite in the matrix basis.

The best mechanical properties were achieved at dual tempering at Т = 620 ◦C, t = 2 h/x2 the cycle
is repeated twice Figure 4. This mode complies with the technical specifications for this steel grade
while having slightly lower plasticity characteristics.

Figure 5 shows the distribution of microhardness single weld bed and their arrangement for
different HT modes and a thermokinetic diagram for Fe-Cr-Ni.

The average microhardness in the fabricated sample tempered at 750 ◦C, Figure 5b, was 355 HV.
Tempering at 750 ◦C was chosen because of the phase transition into the γ-austenity area that preceded
the dissolution of existing chromium carbides in the fabricated sample (i.e., M23C6/M7C3). Thus,
it increased the concentration of carbon in the martensite matrix at room temperature.

With temperature reduction to 650 ◦C it was possible to decrease the hardness to 280 HV
with an exposure time of 2 h, and an exposure time of 4 h was required to decrease it to 301 HV.
At high-temperature tempering at Т = 620 ◦C with an exposure time of 2 h, the microhardness was
260 HV, and it was 273 HV after the second tempering.
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4. Discussion

It is established that the DLD process is the fastest and most convenient for creating parts. After the
process, it is necessary to produce high tempering to achieve all the necessary mechanical properties.
Samples obtained by the DLD method are not inferior in characteristics to casting, and in some cases
are most in demand.

Thus, we can conclude that the propeller with an optimized structure has reliability characteristics
close to the original solid version. We showed the manufacturing of hub and blades via DLD and
built-up propeller before and after CNC-machining and manual polishing. After all producing stages,
the propeller was weighted. The weight test showed that the mass is finished product is 105 kg. This is
20% less than the original cast design. A more detailed description of design analysis, optimization
procedure and production process is presented in [30].

5. Conclusions

The DLD process of 06Cr15Ni4CuMo steel achieves a high strength due to the forced thermal
cycling process at low impact toughness and relative elongation. In order to eliminate the imbalance of
the complex of mechanical properties, HT is proposed.

According to the results of a comparison of mechanical properties, it was established that the
lowest structural matrices are tempered by fine martensite with a low level of residual austenite
and δ-ferrite. Based on the analysis of the relationship between HT, mechanical properties and
06Cr15Ni4CuMo steel structure, the most suitable heat treatment mode for deposit samples was
established, consisting of a double HT at Т = 620 ◦C, t = 2 h/x2; the cycle is repeated twice, in which a
finely dispersed structure of tempered rack martensite is formed, providing a set of properties equal to
the material obtained by casting.
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