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A B S T R A C T

Coronavirus disease (COVID-19) is a recently discovered infectious disease caused by severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2). Graphene is an emerging material due to its extraordinary performance
in the field of electronics and antimicrobial textiles. Special attention devoted to graphene oxide-based materials
due to its surface to volume ratio is very high which make it easy to attach biomolecules by simple adsorption or
by crosslinking between reactive groups and the graphene surface. In response to the COVID-19 pandemic, we
have summarized the recent developments of graphene and its derivatives with possible virus detection and
textile applications. Moreover, graphene strain sensors can be executed on high-performance textiles and high-
throughput drug efficacy screening.

Introduction

The widespread of coronavirus disease (COVID-19) has become a
global public health issue in the whole world. The World Health
Organization (WHO) declared that COVID-19 is vastly infectious and
pathogenic caused by severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) [1,2]. Many researchers have researched vaccines as well
as protective products for public health care. COVID-19 is formed by
spherical envelope particles enclosing single-stranded positive-sense
RNA associated with a nucleoprotein within a capsid comprised of
matrix protein as shown Fig. 1 [3,4].

Graphene is playing a vigorous role in the field of medical and
electronics projects due to its potential role as an effective antibacterial
and sensing capabilities [5]. In the last few decades, graphene-based
nanomaterials are the most attractive materials for the design of bio-
sensor due to its high affinity, cost-effective, and ease of fabrication [6].
Graphene oxide (GO) can be converted into reduced GO (rGO) after
removing the oxygen groups by reducing agent to attain materials with
properties very close to graphene. Compared to the platelet-like surface
of graphite, wrinkled, layered flakes, and crumpled thin sheets were
observed on the surfaces of GO and rGO, respectively [7,8]. Being a
single layer sp2 hybridized carbon atoms; graphene has a high specific
surface area to volume ratio [9,10]. Due to this unique characteristic, it
can easily detect a single biomolecule as it comes in contact with the
graphene surface. This level of sensitivity is due to the changes in
electrical resistance, making these nanoscale material perfect sensors as
well as implantable devices [11]. Optical absorption of one atom thick

carbon layer is about 2.3%, which is 50 times more than that of gallium
arsenide (GaAs) of the same thickness [12], this property is very es-
sential for making an object free from live microorganism. The presence
of oxygen groups in GO makes it hydrophilic in nature compared to
graphene and rGO. Moreover, these groups provide active sites for
adsorption or functionalization with enzymes, protein, and nucleic
acids. Thus, we can think that how graphene exploration can take part
against COVID-19.

In this paper, authors exposed that the graphene and its derivatives
have good surface integrity towards capturing viruses [13,14]. Most of
the disease-related researchers focused on the advancement of gra-
phene sensors but the effects on viruses have been less characterized. It
has been proven that antibody-conjugated GO can promptly detect the
targeted virus and can be coupled to nanomaterial electronic properties
for signal amplification [15]. This can help in screening a large popu-
lation and also for the progress of low-cost environmental sensors.

Graphene sensors to detect virus

Many researchers are working to develop a graphene-based sensor
for the detection of virus combat COVID-19. In the past few years,
numbers of researchers have been proved that the graphene sensors to
be capable in advanced detection and testing such as respiration rate,
blood glucose, and pressure, real-time body temperature, small mole-
cules, and protein interactions and virus detection as well as allergen
sensing [16]. Recently, a group of researchers in the Republic of South
Korea has successfully developed a transistor-based biosensor that
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detects SARS-CoV-2. The biosensor was fabricated by coated graphene
sheets of field-effect transistor (FET) with a specific antibody against
the SARS-CoV-2 spike protein. They have reported that the addition of
SARS-CoV-2 or viral protein on the surface of graphene, the sensor
detects a change in electrical current [17].

Graphene and functionalized graphene is more compatible with
different biomolecules such as DNA, antibodies, enzyme, and cells [18].
These biomolecules have incorporated on the larger surface area of
graphene for the development of biosensors (Fig. 2). In recent research,
it was reported that the graphene has unique nanostructures that can be
used as nanodevices for DNA sequencing [19,20]. It has been reported
that the crumpling in graphene makes biosensor more sensitive to DNA
by creating an electrical hot-spot. This sensor could detect ultra-low
concentration molecules on the basis of the markers of disease, which is
important for early diagnosis [21,22].

Curcumin functionalized GO composite showed great biocompat-
ibility with the host cells and highly efficient inhibition for respiratory
syncytial virus (RSV) infection [23]. This composite was also used in

biological imaging due to its low cytotoxicity, better photostability, and
outstanding tumor-targeting ability [24]. Bugli et al. [25] reported
about the applicability of GO-curcumin composites as an antibiotic
resistant against methicillin-resistant Stayphylococcus aureus. A gra-
phene-polymer based biosensor electrochemical was proposed to detect
the early stage dengue virus (DENV) and antibody screening. GO-
polymer surfaces were functionalized by the DENV component using a
self-assembly process that makes the polymer surface more selective
and sensitive to the virus [26]. Omar et al. [27] developed a –NH2

functionalized GO based optical sensor for the DENV E-protein. They
have explored the sensing behavior for the identification of monoclonal
antibodies to the DENV. In another work, immobilized monoclonal
antibodies were covalently linked with graphene to detect Zika virus.
The low cost field effect biosensor (FEB) with anti-Zika NS1 can detect
early stage disease in presumptive Zika infection [28].

It has been demonstrated that the gold nanoparticle decorated rGO
nanocomposites can be used as an antigen functionalized surface to
detect the existence of the hepatitis B virus core antigen [30]. Similarly,

Fig. 1. Main structure of Corona viruses [4]. Reprinted under the terms of the Creative Commons CC BY license.

Fig. 2. Examples of biosensors and components on a graphene platform [29]. Reprinted under the terms of the Creative Commons CC BY license.
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DNA assisted magnetic rGO-copper nanocomposite was proposed to
sense the presence of the hepatitis C virus. This ultrasensitive detection
of the virus was accomplished via the electrochemical signal response
of the copper ions catalyzed oxidation of o-phenylenediamine [31]. An
electrochemical immunosensor was fabricated using shaellac derived
thermally rGO flakes for the detection of the influenza virus H1N1.
These thermally rGO based sensors used to fabricate variety of im-
munosensors and have high stability and reproducibility [32]. In an-
other work, silver nanoparticles graphene-chitosan nanocomposites
based sandwich-type immunoassay was designed to quantify avian in-
fluenza virus H7 (AIV H7) [33].

Graphene textile for protection against virus

Graphene, a new 2D and advanced nanomaterials can fight against
COVID-19 by developing high-quality protective equipment such as
gowns, gloves, and face masks for corona warriors. As of now, several
teams are taking advantage of graphene’s antistatic, antimicrobial, and
electrically conductive properties to fabricate protective equipment
which can be washable and reused. Tang et al. [34] fabricated cotton
fabric with the dispersion of coated graphene oxide (GO) nanosheet on
the surface of fabric via vacuum filtration deposition method (Fig. 3).
Further, the obtained fabric was assembled with polyaniline (PANI) by
the in-situ chemical polymerization process. The results showed that
the ultrastrong UV radiation protection and higher electrical con-
ductivity compared to control cotton. They have also reported that the
cotton fabric performs efficiently after 10 times water laundering
without losing any properties.

In the healthcare sector, conductive textiles are used for clinical
purpose. Graphene can act as a filter in between the body and external
environment to ensure ideal temperature for the wearer. In recent
news, it has been reported that the virucidal graphene-based compo-
sites ink can be incorporated into the fabric of face mask and other PPE
for better protection. Few tests have already been conducted to verify
Ag nanoparticles functionalized GO based ink kills the SARS-CoV-2.

The integration of graphene materials family was a reasonable step
to attain not only conductive fabrics but also multifunctional wearables
[35]. Fig. 4 shows the multifunctional properties of graphene-modified

protective clothing. Kowalczyk et al. [36] have used sol-gel method to
modified cotton fabric by xerogel coatings containing 0.5–1.5 wt% of
graphene and rGO. They have obtained the best anti-static properties
with increased conductivity of fabric due to the flattening and
smoothening of graphene flakes. In another research, GO modified N-
halamine coated cotton fabrics were fabricated via the conventional
dipping-drying method. Further, the obtained fabrics were in-situ re-
duced by treating with L-ascorbic acid [37]. Hu et al. [38] developed
ions implanted GO-based cotton fabric by radiation-induced cross-
linking under microwave and bombardment by different doses of Fe+3

ions. The ion bombardment has created a whirlpool structure on the
GO-cotton, which further increased its washing durability and anti-
bacterial activity.

A medical grade polyviscose textile pads were formed by impreg-
nation of Ag nanoparticle decorated rGO nanocomposite through wet
chemical solution dipping process. It is also reported that rGO in-
creasing the stability of Ag nanoparticles onto textile fabric substrates
which enhanced rinse-reuse capabilities and antimicrobial properties
[40]. Many companies have claimed that graphene can be used to make
gloves, masks and gowns for medical staff. LIGC applications developed
graphene filtration based Guardian G-Volt face mask that can be self-
sterilizing, virus killing and reusable. In comparison with a N95 face
mask, G-Volt is effective 99% against viruses of 0.3 µm [41]. Zhao et al.
[42] conducted a skin irritation experiment to evaluate safety of GO
modified cotton fabric. They have not found any evidence of irritation
from the test.

Conclusion and future outlook

Graphene and its derivatives (GO and rGO) have several diverse
applications. WHO regularly updates the need for PPE for frontline
healthcare warriors and graphene-coated face mask for self-protection
as well as others from the spread of COVID-19. Graphene based textiles
for filtering and for epidemiological exposure detection are possible
accomplices of health systems against epidemic spreading.
Furthermore, graphene sensors have been effectively demonstrated for
drug screening as well as high-throughput diagnostics. In response to
the worldwide pandemic of COVID-19, we have brief the recent

Fig. 3. Preparation procedure of PANI-GO-cotton fabric [34]. Reprinted with permission from Elsevier.
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development of graphene in virus detection as well as protective
clothing. Likewise, more advancement and research is required against
the diagnosis and treatment of SARS-CoV-2. Thus, we can say that
graphene may have a leading role against COVID-19.
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