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Abstract: Aim: Pilot study to examine the impact of shift work on cognitive function in Chinese
coal mine workers. Background: Shift work is commonly used in modern industries such as the
coal industry, and there is growing concern over the impact that shift work has on miners’ work
performance and personal well-being. Method: A total of 54 miners working three shifts (17 in
morning shift, 18 in afternoon, and 19 in night shift) participated in this exploratory study. A resting-
state fNIRS functional connectivity method was conducted to assess the cognitive ability before and
after the work shift. Results: Results showed significant differences in cognitive ability between
before and after the work shifts among the three-shift workers. The brain functional connectivity was
reduced ranking as the night, afternoon, and morning shifts. Decreased brain functional connectivity
at the end of the working shift was found compared with before in the morning and afternoon shifts.
Opposite results were obtained during the night shift. The resting-state functional brain networks
in the prefrontal cortex of all groups exhibited small-world properties. Significant differences in
betweenness centrality and nodal local efficiency were found in the prefrontal cortex in the morning
and night shifts. Conclusions: The current findings provide new insights regarding the effect of shift
work on the cognitive ability of Chinese coal mine workers from the view of brain science.

Keywords: Chinese coal mine workers; fNIRS; functional connectivity; cognitive ability; shift work

1. Introduction

In modern industries, represented by the coal industry, miners are required to work
alternating morning, afternoon, and night shifts (three-shift) within 24 h to ensure the
normal operation of the company’s production. According to the “China Coal Industry
Development Annual Report 2020”, there are over 2 million shift coal mine workers in
China [1]. However, shift work not only affects the physical and mental health of shift
workers but also reduces their work efficiency and personal well-being [2,3]. Lack of
adequate or regular sleep affects alertness, reaction times, eye-hand coordination and con-
centration, and other cognitive abilities of shift miners, resulting in fatigue, degraded work
performance, unsafe behaviors, and causing accidents [4–7]. Due to the unique dangerous
and underground working environment, coal mine workers have been considered one
of the riskiest jobs [8]. Evidence shows that approximately one-half of major accidents
occurred in coal mines in China, and 95% of them were caused by human factors, especially
unsafe behavior [9,10]. To further reduce the occurrence of unsafe behavior, enhance the
safety management of coal mine companies and protect the physical and mental health
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of coal mine workers, it is necessary to investigate the cognitive performance of shift coal
mine workers before and after their shifts [11].

Cognitive functions, such as executive functions, working memory, attention, and
information processing speed, are the important guarantee of safe work [12,13]. Laboratory
studies provide evidence for cognitive functions declines associated with shift work in
nurses, doctors, miners, and petrochemical control room operators [12–18]. Long-time shift
work or irregular circadian rhythm could decrease mental and behavioral performance
such as declined working memory, inattentiveness, fatigue, sleepiness, lower sleep quality,
longer response time, reduced alertness level, decreased ability to learn and recall new facts,
irritability, bad mood, reduced communication skills [3,12,13,15,19]. Moreover, it could lead
to increased risk and unsafe behavior, operator error rates, and cause accidents [11,13,15,19].
Neuropsychological performance, such as memory performance, tends to decrease with
the increase in the duration of exposure to shift work [12].

In recent years, an increasing number of scholars have focused on the effects of shift
work on the cognitive functions of coal mine workers. Glenn Legault et al. summarized
the effect of sleep deprivation, shift working, and heat exposure on miners and combined
objective measures (actigraphy) and subjective measures (Karolinska and Epworth sleepi-
ness scales) to measure the cognitive consequences of shiftwork for miners [14,20]. Sally A.
Ferguson et al. investigated the impact of work- and sleep-related factors on an objective
measure (Actiwatch) of response time in a field setting [21]. Rebecca Jane Loudoun et al.
found that shift work, aging, and lack of control at work increased sleep problems in
miners [22]. Haimiao Yu et al. deployed a reaction time test and “psychometric fatigue
assessment scale” to measure the differences in mental fatigue between day-shift and night
shift coal mine workers [23]. Camila Pizarro-Montaner et al. analyzed the sleep quality
and physical activity of coal mine shift workers in high altitudes [24]. Based on Pittsburgh
Sleep Quality Index (PSQI), Xiao-Chuan Zhao et al. investigated the effects of shift work
on sleep and cognitive function in miners [25]. Lavigne et al. applied an actigraph and
vigilance scale to assess the change in sleep and vigilance of underground miners during
long periods of extended shifts [26].

However, most scholars have explored the effect of shift work on cognitive function
based on subjective and/or behavioral measures such as behavioral experiments, neuropsy-
chological tests, psychological scales, questionnaires, and wearable devices [8,12,14,27,28].
Subjective measures are highly dependent on the subjects’ self-will and awareness of their
cognitive status [29]. Behavioral measures are limited in the range of information they
provide and may interfere with task performance, inducing additional load [30]. Compared
with subjective and behavioral measures, as a reliable quantitative assessment, neuro-
physiological measurements such as resting-state functional near-infrared spectroscopy
(fNIRS) could be introduced to further explore the effect of shift work on cognitive func-
tion. In recent years, fNIRS has been considered an emerging imaging technique in a safe,
cost-effective, comfortable, and portable way to investigate safety problems [31–33]. In neu-
roscience, the prefrontal cortex (PFC) is an accepted key brain area of human cognitive
functions [34]. The fNIRS resting-state functional connectivity (RSFC) has been proved to
be a novel and advanced method to assess and monitor cognitive states such as fatigue,
mental workload, vigilance, sustained attention, and error recognition [35].

Thus, to fully comprehend the neuropsychological mechanism of the effect of shift
work on cognitive function in Chinese coal mine workers, the current study examined a
resting-state functional near-infrared spectroscopy (rs-fNIRS) study in the PFC of 54 Chi-
nese coal mine workers and evaluated the functional connectivity before and after their
shifts in three-shift work in a real environment to further explore the cognitive function
changes in three-shift coal mine workers from a brain science standpoint.
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2. Materials and Methods
2.1. Demographic Information of the Subjects

A total of 60 Chinese coal mine workers from Shaanxi Coal Group Northern Shaanxi
Mining Hongliulin Company, one of the largest modern coal mines in China, were randomly
selected to participate in this experiment. After excluding the bad data such as heavy
head movement, the fNIRS data of 54 miners before and after the shift were obtained
in this experiment. Among them, 17 miners were morning shift workers (8:00–16:00),
18 miners were afternoon shift workers (16:00–24:00), and 19 miners were night shift
workers (24:00–8:00). The morning and afternoon shifts are coal mining production shifts,
while the night shift is maintenance and repair shifts. Although the working hours of the
shift miners are 8 h a day, the miners have to arrive 2 h before the shift to prepare for the
pre-shift meeting, change their equipment and take the shuttle bus down the mine, and
after the shift, they also need to have a post-shift meeting, take a shower and change their
clothes. Therefore, each miner works more than 10 h a day. In order not to affect the normal
work of the miners, we choose to conduct the pre-shift experiment before the pre-shift
meeting and the post-shift experiment after the miners go up to the mine to wash up. For
convenience, the morning shift workers were identified as group 1, the afternoon shift
workers as group 2, and the night shift workers as group 3. Specifically, before the morning
shift work was defined as B1, after the morning shift work was defined as A1. Similarly,
before the afternoon shift work was defined as B2, after the afternoon shift work was
defined as A2; before the night shift work was defined as B3, and after the night shift work
was defined as A3.

The demographic information of these coal mine workers is detailed in Tables 1 and 2.
The average age of the participants was 36.06 ± 7.42 years, the average height was
172.63 ± 4.71 cm, and the average weight was 69.93 ± 8.36 kg. Participants were all right-
handed, and none of them had a history of neurological illness or psychiatric disorders.
Further, it was forbidden to drink alcohol or caffeine, and other sensitive products 24 h
before the experiment. During the 5 min rs-fNIRS experiment, the participants were asked
to remain still and stare at the center cross of the screen without falling asleep. The light
and temperature (25 ◦C) of the experimental room were kept constant throughout the
whole experiment.

Table 1. The demographic information of 54 coal mine workers.

Mean ± Std Chi-Square Test One-Way ANOVA

Total (n = 54) Group 1 (n = 17) Group 2 (n = 18) Group 3 (n = 19) χ2 p1 p2 F

Length of
service/year 9.91 ± 7.81 10.29 ± 6.72 11.9 ± 8.39 7.68 ± 7.33 577.785 0.92 0.704 0.788

Height/cm 172.63 ± 4.71 174 ± 4.78 171.78 ± 3.41 171.42 ± 4.86 306.464 0.34 0.316 1.215
Age/year 36.06 ± 7.42 36.8 ± 6.77 37.5 ± 7.61 34 ± 7.13 102.72 0.903 0.542 0.724

Weight/kg 69.93 ± 8.36 69.4 ± 7.99 71.9 ± 5.36 68.5 ± 10.2 99.392 0.924 0.132 1.959
Marital status - - - - 38.096 0.086 0.038 * 4.519

Education
information - - - - 170.959 0.417 0.019 * 3.246

Note: group 1 represents morning shift workers, group 2 represents afternoon shift workers, and group 3
represents night shift workers; * represents passed the 95% One-way ANOVA test.

Before the experiment, all participants were fully informed of the contents of the
rs-fNIRS experimental program. All procedures followed the Human Ethics Commit-
tee of Xi’an University of Science and Technology and met the ethical standards of the
1975 Helsinki Declaration.
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Table 2. The marital status and education information of 54 coal mine workers.

Total (n = 54) Group 1
(n = 17)

Group 2
(n = 18)

Group 3
(n = 19)

n % n % n % n %

Marital status
Married 48 88.9 16 94.1 17 94.4 15 78.9

Unmarried 6 11.1 1 5.9 1 5.6 4 21.1
Education information

Bachelor’s degree 4 7.4 1 5.9 2 11.1 1 5.3
College 12 22.2 5 29.4 3 16.7 4 21.1

High school 27 50.0 5 29.4 11 61.1 11 57.9
Junior high school 1 1.9 1 5.9 0 0.0 0 0.0

Technical secondary school 10 18.5 5 29.4 2 11.1 3 15.8

Note: group 1 represents morning shift workers, group 2 represents afternoon shift workers, and group 3
represents night shift workers.

2.2. Data Acquisition

In this study, the hemodynamic responses were measured using a near-infrared optical
imaging system (LABNIRS; Shimadzu Corporation, Kyoto, Japan) with a sampling rate of
7.4074 Hz. As shown in Figure 1, the system was equipped with 7 sources and 8 detectors
emitting light at two different wavelengths (690 and 830 nm), defining 22 channels, covering
the PFC. The distance between a pair of a source and a detector was 30 mm. To ensure
accuracy of positioning, detector 7 was placed perpendicular to the tip of the nose and
flush with the eyebrows.

The locations of all fNIRS channels were measured using a 3D digitizer system (FAS-
TRAK; Polhemus, Colchester, VT, USA) after the experiment. The system had its origin
at the center of the chin with nasion (Nz), right preauricular points (AR), left preauricular
points (AL), and central zero (Cz) as reference points [36]. The locations of the fifteen
fNIRS optodes were obtained according to the origin and the four reference points. The
coordinate of an fNIRS channel was computed based on the locations of the sources and de-
tectors using the MATLAB toolbox NIRS-SPM (The MathWorks Inc., Natick, MA, USA) [37].
As shown in Table 3, the estimated mean locations of 22 channels were obtained based
on Brodmann Areas’ anatomical information. Consistent with previous studies, PFC was
chosen to be the main regions of interest (ROIs) of this study, including the dorsolateral
prefrontal cortex (dlPFC) (CH01, CH02, CH03, CH04, CH05, CH06, CH08, CH09, CH14,
and CH18), the frontopolar cortex (FPC) (CH07, CH10, CH11, CH12, CH13, CH15, CH16,
and CH17) and the orbitofrontal cortex (OFC) (CH19, CH20, CH21, and CH22) [34,38].
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Figure 1. (a) Positions of fifteen optodes (eight sources and seven detectors) and fNIRS channels.
(b) Fifteen optodes were attached to the prefrontal cortex forming 22 channels in frontal view. (c) The
3D MNI coordinates of 22 channels in a different view. DLPFC means dorsolateral prefrontal cortex,
FPC means frontopolar cortex, OFC means orbitofrontal cortex.
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Table 3. Mean locations of 22 fNIRS channels.

CH Brodmann Area MNI Coordinates

x y z

CH01 9—Dorsolateral prefrontal cortex 34 45 43 0.85714
CH02 9—Dorsolateral prefrontal cortex 14 55 44 1
CH03 9—Dorsolateral prefrontal cortex −9 55 45 1
CH04 9—Dorsolateral prefrontal cortex −28 45 43 0.90498
CH05 46—Dorsolateral prefrontal cortex 43 47 30 0.60444
CH06 46—Dorsolateral prefrontal cortex 25 61 31 0.35887
CH07 10—Frontopolar cortex 4 63 32 0.75357
CH08 9—Dorsolateral prefrontal cortex −19 60 33 0.44939
CH09 46—Dorsolateral prefrontal cortex −40 47 30 0.67544
CH10 10—Frontopolar cortex 35 62 20 0.51373
CH11 10—Frontopolar cortex 15 70 21 1
CH12 10—Frontopolar cortex −10 70 20 1
CH13 10—Frontopolar cortex −32 62 19 0.51538
CH14 46—Dorsolateral prefrontal cortex 45 58 6 0.59144
CH15 10—Frontopolar cortex 25 71 8 0.83502
CH16 10—Frontopolar cortex 5 72 9 1
CH17 10—Frontopolar cortex −21 71 8 0.88372
CH18 46—Dorsolateral prefrontal cortex −42 58 6 0.60311
CH19 11—Orbitofrontal cortex 34 67 −6 0.59649
CH20 11—Orbitofrontal cortex 15 73 −4 0.52229
CH21 11—Orbitofrontal cortex −11 73 −3 0.47
CH22 11—Orbitofrontal cortex −32 66 −4 0.51408

2.3. Data Preprocessing

In this study, the fNIRS signals recorded during the whole experiment were ana-
lyzed using MATLAB by our script (R2013b, MathWorks, Natick, MA, USA). Firstly, a
bandpass filter (0.02–0.1 Hz) was applied to detrend and reduce high-frequency noise due
to respiration, cardiac pulsations, and optodes’ movements [39–41]. Secondly, wavelet-
based correction of extreme values was performed by Wavelab850 toolbox to reduce head
movements and surface noise and set the parameters as: Mother wavelet: ‘Vaidyanathan’,
support: 10, threshold: 0.0001, alpha: 0.1 [42]. Thirdly, the mean value of the differential
pathlength factor (DPFmean = 6.53 ± 0.99) was adopted [43]. Finally, the hemodynamic
responses were computed from the processed light intensity using the modified Beer–
Lamberts’ law (MBLL) [44]. Consistent with previous studies, oxy-Hb signals were chosen
as the research objects of this study because of their better sensitivity and robustness to the
changes associated with regional cerebral blood flow [45,46].

2.4. Resting-State Functional Connectivity Analysis
2.4.1. Pearson’s Correlation Coefficient and T-Test

Pearson correlation coefficients (COR) correlation matrices were conducted to measure
the strength of the functional connection between brain channels for each coal mine worker
on each shift [47]. The COR matrix for each shift is the average of the COR matrix between
the 22 × 22 channels of each coal mine worker in the 5 min resting state. In this study, the
mean time course for one participant as X =

(
xi(t)t=1,2,...N

)
, where xi(t)t=1,2,...N is the

mean time series of the ith region, we defined COR as [48]:

COR
(
xi, xj

)
=

∑N
t=1[xi(t)− xi]

[
xj(t)− xj

]√
∑N

t=1[xi(t)− xi]
2
√

∑N
t=1
[
xj(t)− xj

]2 (1)

For further interpretation of the difference among these three groups of functional
connectivity, the COR matrix was binary transformed. Similar to previous studies, the
threshold was set as 0.7 [33]. In this study, it is defined that if COR > 0.7, COR = 1;
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otherwise, COR = 0 [33]. The paired t-test was used to compare before and after the shift
work in three groups. Since the statistical test was conducted for 22 networks independently,
false discovery rate (FDR) correction was adopted to eliminate the multiple comparison
problems (q < 0.05) [49]. All statistical calculations were performed by SPSS 26.0 (SPSS Inc.,
Chicago, IL, USA) (p < 0.05).

2.4.2. Brain Network Analysis

To further quantify the functional connectivity for complex network analysis, a graph
theory approach was adopted to compare the rs-fNIRS topological properties of the brain
networks between 22 × 22 channels before and after work shifts in three coal mine workers
groups [50,51]. The graph theory analysis has multiple important parameters:

Clustering coefficient (Cnet): the local efficiency in information transfer of the network
and generally defined as [52]:

Cnet =
1
n ∑

i∈N
Ci =

1
n ∑

i∈N

2ti
ki(ki − 1)

(2)

where ki is the number of links connected to a node, ti is the number of triangles around
a node i.

Global efficiency (Eglobal): the ability of information transmission of the global network
and generally defined as [52]:

Eglobal =
1

N(N − 1) ∑
i,j,i 6=j

1
dij

(3)

where dij is the shortest path length between nodes i and j.
Local efficiency (Eloc): the ability of information transmission of the local network and

generally defined as [52]:

Eloc =
1
n ∑

i∈N
Eloc,i =

1
n ∑

i∈N

∑j,h=N,j 6=i aijaih

[
djh(Ni)

]−1

ki(ki − 1)
(4)

Shortest path length (Lp): the overall routing efficiency of a graph and generally
defined as:

Lp = dij = ∑
auv∈gi↔j

auv (5)

where gi↔j is the shortest path between i and j.
Betweenness centrality (Bc): the influence of an index node over information flow

between all other nodes in a network and generally defined as [48]:

Bch =
1

(n− 1)(n− 2) ∑
i, j ∈ N

h 6= j; h 6= i; j 6= i

dij(i)
dij

(6)

where dij is the shortest path length between nodes i and j.
Small-world parameters (σ): modular processing and efficient transmission of infor-

mation between network characteristics modules and generally defined as [53,54]:

σ =
γ

λ
(7)

where γ = Cnet/Cran, λ = Lnet/Lran, C, and Cran are the clustering coefficients, AL and
ALran are the characteristic path lengths, Cran and Lran are the average clustering coefficient
and characteristic path length of the real network and a random network (σ� 1) [52].
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These parameters were calculated by the GRETNA toolbox on MATLAB [55]. Ac-
cording to previous studies, a range of continuous threshold values T (T ∈ (0.1 : 0.1 : 0.9))
were adopted to construct the brain networks [45,56]. A total of 100 matched random
networks were generated to compute the ratios of the above parameters between the real
brain functional networks [50,57]. The paired t-test was used to confirm the differences
between before and after the shift work in three groups (p < 0.05).

3. Results
3.1. Demographic Information

Table 1 illustrates the demographic information for the total of 54 coal mine workers
and three subgroups. Overall, the chi-square test showed that there were no significant
differences in demographic information between the three groups of coal mine workers
(p < 0.05). In particular, the mean length of service of all participants was approximately
10 years (9.91 ± 7.81), while the mean height of them was 172.63 ± 4.71. The mean age
of these participants was 36 years (36.06 ± 7.42) old, while the mean weight of them was
nearly 70 kg (69.93 ± 8.36).

The results of the one-way ANOVA showed that there was a significant difference
between coal mine workers’ brain functional connectivity and marital status (p = 0.038)
and education information (p = 0.019). Unfortunately, there was no significant difference
between coal mine workers’ brain functional connectivity and the mean length of service,
height, age, and weight among subgroups.

Table 2 showed that the marital status and education information of 54 coal mine
workers and three subgroups. Almost 90% of these coal mine workers were married, and
more than half of them were graduated from high school.

3.2. Pearson’s Correlation Coefficient and T-Test

Figure 2 demonstrates the mean COR before and after shifts for three groups of
coal mine workers. In which red represents before shifts and blue denotes after shifts,
and the horizontal line is the mean value. As shown in Figure 2, the mean COR values
of all three groups of coal mine workers before and after their shifts were significantly
different (p < 0.001). Of these, the mean COR of group 1 was declined from before shifts
(CORB1 = 0.6096) to after shifts (CORA1 = 0.52895). A similar reduction in the mean
COR was obtained in group 2 between before shifts (CORB2 = 0.6112) and after shifts
(CORA2 = 0.5234). Unlike group 1 and group 2, the mean COR was increased from before
shifts (CORB3 = 0.4932) to after shifts (CORA3 = 0.5384). Combining the six states of the
three groups of coal mine workers before and after their shifts, the mean COR was ranked
from highest to lowest: CORB2, CORB1, CORA3, CORA1, CORA2, CORB3.
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Figure 3 shows the 22 × 22 correlation matrices and the paired t-test results for three
shifts of coal mine workers (p < 0.05). Each grid denotes the correlation coefficient of a
pair of channels (COR ∈ [0, 1]). COR indicates the degree of correlation between pairs
of channels. If COR→ 1 , there is significantly related to the activation between pairs
of channels. As shown in the legend, a redder grid indicates a more correlated pair of
channels, while a bluer one is less correlated. Overall, all three groups of coal mine workers
had significantly different COR matrices before and after their shifts.
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It is shown in Figure 3a that the functional connectivity of B1 was larger than that of
A1 (p < 0.05). That is, compared to before the work shift, prefrontal functional connectivity
was significantly decreased after the work shift in group1. These differences are concen-
trated in the following four categories: (a) the functional connectivity within dorsolateral
prefrontal cortex (dlPFC): CH01-05 (p = 0.0285), CH06-08 (p = 0.0359); (b) the functional
connectivity between dlPFC and frontopolar cortex (FPC): CH04-10 (p = 0.0304), CH04-11
(p = 0.0134), CH04-12 (p = 0.0446), CH08-10 (p = 0.0367), CH08-11 (p = 0.0155), CH08-12
(p = 0.0113), CH08-13 (p = 0.0357), CH08-16 (p = 0.0389); (c) the functional connectivity
between dlPFC and orbitofrontal cortex (OFC): CH04-20 (p = 0.0177), CH06-21 (p = 0.036);
(d) the functional connectivity within OFC: CH20-21 (p = 0.0124), CH20-22 (p = 0.0226),
CH22-21 (p = 0.0488).

Similar to group 1, Figure 3b shows that the functional connectivity of B2 was also
larger than that of A2 (p < 0.05). Compare to group 1, the paired t-test results showed
that the difference in functional connectivity before and after the work shift is greater in
group 2. Specifically, these differences are clustered in the following five categories: (a) the
functional connectivity within dlPFC: CH02-08 (p = 0.0148), CH04-05 (p = 0.0394), CH04-09
(p = 0.0286); (b) the functional connectivity between dlPFC and FPC: CH02-17 (p = 0.0126),
CH03-17 (p = 0.0251),CH04-17 (p = 0.0181), CH07-14 (p = 0.0409), CH08-17 (p = 0.0235),
CH12-14 (p = 0.0187); (c) the functional connectivity within FPC: CH07-17 (p = 0.0023),
CH10-17 (p = 0.0333), CH12-17 (p = 0.0219), CH13-17 (p = 0.0040), CH13-21 (p = 0.0370);
(d) the functional connectivity between FPC and OFC: CH07-20 (p = 0.0313), CH11-21
(p = 0.0419), CH12-21 (p = 0.0141); (e) the functional connectivity between dlPFC and OFC:
CH02-21 (p = 0.0188), CH14-21 (p = 0.0311), CH18-21 (p = 0.0069).

In contrast to the other two groups, Figure 3c shows that the functional connectivity of
B3 is less than A3 with the fewest difference pairs (p < 0.05). There are only three categories
of these differences: (a) the functional connectivity between dlPFC and FPC: CH02-07
(p = 0.0388), CH03-17 (p = 0.0449), CH06-07 (p = 0.0249), CH07-09 (p = 0.0456); (b) the
functional connectivity within FPC: CH07-11 (p = 0.0132), CH07-12 (p = 0.0076); (c) the
functional connectivity within dlPFC: CH01-04 (p = 0.0441).

Figure 4 shows the PFC functional connectivity brain maps of three groups of coal mine
workers in different states with COR ∈ [0.7, 1]. As shown in the illustration, the 22 circles
represent CH01 to CH22, dlPFC is in brown, FPC is in green, and OFC is in blue. The
thickness of the lines between channels represents the value of the COR, with thicker lines
indicating higher functional connectivity between pairs of channels. In general, group 1
and group 2 generally had reduced functional connectivity after the shift than before, while
the opposite was true for group 3. As shown in Figure 4a, the functional connectivity
existed among dlPFC, FPC, and OFC before the work shift, while it was decreased and
mainly concentrated in the FPC after the work shift in group 1. The functional connectivity
of both before and after work shifts for group 2 were mainly focused on dlPFC between
FPC and decreased after work shifts (Figure 4b). For group 3, the functional connectivity
was mainly concentrated in dlPFC and FPC before the work shift, whereas it was enhanced
and existed among dlPFC, FPC, and OFC after the work shift (Figure 4c).
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3.3. Brain Network Analysis

For the brain network analysis, the threshold of this study was conducted to a range
of (0.1 : 0.1 : 0.9). As shown in Figure 5, Cnet, Eglobal , Eloc, and Lp were chosen to denote
the network efficiency in these three groups before and after the work shift. Consistent
with previous studies, for all three groups of coal mine workers before and after their shifts,
Cnet, Eglobal , and Eloc increased with the threshold, while Lp decreased as the threshold
increased [50,51]. The results of these network characteristics above showed that there
were stable small-world characteristics of PFC functional networks in their before and after
work shifts for all three groups of coal mine workers [51,59].
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The small-world analysis results for three groups are displayed in Figure 6. Similar
to the results of previous studies, the small-world parameters (γ, λ, σ) decreased with
increasing thresholds for all three groups of coal mine workers before and after their work
shifts [51,59,60]. In addition, all the σ � 1 represented a small-world property of the
resting-state brain networks of all three groups of coal mine workers before and after
their shifts.

The oxy-Hb-based group differences in betweenness centrality and nodal local effi-
ciency during the resting state were available in Tables 4 and 5, provided with a paired
t-test (p < 0.05). The results showed that there were significant differences between before
and after work shifts in group 1 and group 3, while there were no differences before and
after work shifts in group 2 (p < 0.05). In particular, CH15 (belong to FPC) passed the
paired t-test in betweenness centrality in group 1 (p = 0.0483) and CH19 (belong to OFC) in
group 3 (p = 0.039). Further, CH18 (belong to dlPFC) passed the paired t-test in nodal local
efficiency in group 1 (p = 0.0395) and CH14 (belong to dlPFC) in group 3 (p = 0.0475).
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Table 4. Group differences in betweenness centrality during resting state.

CH Brodmann Area

Betweenness Centrality

Mean ± Std
p1 T1

Mean ± Std
p2 T2

B1 A1 B3 A3

CH01 9—Dorsolateral prefrontal cortex 3.97 ± 0.37 4.05 ± 0.41 0.9565 −0.05 2.37 ± 0.02 3.77 ± 0.03 0.1228 −1.5803
CH02 9—Dorsolateral prefrontal cortex 3.58 ± 0.33 2.73 ± 0.29 0.446 0.77 3.3 ± 0.03 2.15 ± 0.01 0.1478 1.479
CH03 9—Dorsolateral prefrontal cortex 1.17 ± 0.16 1.72 ± 0.23 0.436 −0.79 3.1 ± 0.04 1.45 ± 0.01 0.0807 1.7969
CH04 9—Dorsolateral prefrontal cortex 5.16 ± 0.36 6.51 ± 0.63 0.4633 −0.74 4.47 ± 0.03 3.69 ± 0.02 0.4066 0.8398
CH05 46—Dorsolateral prefrontal cortex 3.29 ± 0.37 2.44 ± 0.3 0.485 0.71 1.75 ± 0.02 1.54 ± 0.02 0.7618 0.3054
CH06 46—Dorsolateral prefrontal cortex 6.71 ± 0.42 5.86 ± 0.5 0.6064 0.52 5.32 ± 0.04 6.06 ± 0.06 0.6684 −0.4318
CH07 10—Frontopolar area 2.18 ± 0.25 2.67 ± 0.26 0.592 −0.54 1.22 ± 0.01 0.74 ± 0.01 0.1802 1.3667
CH08 9—Dorsolateral prefrontal cortex 5.04 ± 0.33 5.24 ± 0.48 0.8914 −0.14 4.27 ± 0.03 2.91 ± 0.01 0.0911 1.7361
CH09 46—Dorsolateral prefrontal cortex 2.42 ± 0.45 2.51 ± 0.23 0.944 −0.07 1.49 ± 0.02 1.38 ± 0.02 0.8736 0.1602
CH10 10—Frontopolar area 5.42 ± 0.37 4.23 ± 0.3 0.3218 1.01 5.26 ± 0.03 4.76 ± 0.03 0.6606 0.4427
CH11 10—Frontopolar area 4.57 ± 0.27 4.61 ± 0.35 0.9747 −0.03 4.44 ± 0.04 4.63 ± 0.03 0.8701 −0.1647
CH12 10—Frontopolar area 3.65 ± 0.32 4.76 ± 0.23 0.2711 −1.12 4.83 ± 0.04 4.48 ± 0.03 0.7832 0.2772
CH13 10—Frontopolar area 6.39 ± 0.48 6.21 ± 0.42 0.9082 0.12 5.74 ± 0.03 6.82 ± 0.04 0.3976 −0.8562
CH14 46—Dorsolateral prefrontal cortex 3.23 ± 0.38 1.53 ± 0.15 0.1063 1.66 3.28 ± 0.02 2.77 ± 0.04 0.6566 0.4483
CH15 10—Frontopolar area 1.46 ± 0.15 3.04 ± 0.27 0.0483 * −2.05 1.41 ± 0.02 1.98 ± 0.03 0.5464 −0.609
CH16 10—Frontopolar area 6.11 ± 0.64 4.63 ± 0.44 0.4503 0.76 5 ± 0.03 4.89 ± 0.03 0.9157 0.1066
CH17 10—Frontopolar area 1.05 ± 0.16 2.26 ± 0.29 0.1529 −1.46 0.64 ± 0.01 1.2 ± 0.01 0.1257 −1.5676
CH18 46—Dorsolateral prefrontal cortex 4.66 ± 0.35 4.17 ± 0.33 0.6849 0.41 4.55 ± 0.03 4.72 ± 0.03 0.8773 −0.1554
CH19 11—Orbitofrontal area 2.37 ± 0.22 4.47 ± 0.49 0.1256 −1.57 3.88 ± 0.04 1.54 ± 0.02 0.039 * 2.1422
CH20 11—Orbitofrontal area 5.74 ± 0.48 4.89 ± 0.44 0.6048 0.52 4.51 ± 0.02 5.16 ± 0.03 0.4825 −0.7097
CH21 11—Orbitofrontal area 1.97 ± 0.39 1.51 ± 0.16 0.6635 0.44 1.68 ± 0.03 1.52 ± 0.03 0.8672 0.1684
CH22 11—Orbitofrontal area 1.2 ± 0.1 2.98 ± 0.54 0.2058 −1.29 1.33 ± 0.02 0.61 ± 0.01 0.1884 1.3408

* represents passed the 95% paired t-test.
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Table 5. Group differences in nodal local efficiency during resting state.

Brodmann Area

Nodal Local Efficiency

Mean ± Std
p1 T1

Mean ± Std
p2 T2

B1 A1 B3 A3

CH01 9—Dorsolateral prefrontal cortex 0.61 ± 0.1 0.6 ± 0.16 0.8661 0.1699 0.68 ± 0.07 0.68 ± 0.09 0.9215 −0.0992
CH02 9—Dorsolateral prefrontal cortex 0.64 ± 0.14 0.66 ± 0.15 0.7979 −0.2582 0.71 ± 0.04 0.69 ± 0.08 0.5201 0.6496
CH03 9—Dorsolateral prefrontal cortex 0.64 ± 0.16 0.66 ± 0.14 0.7127 −0.3715 0.66 ± 0.12 0.68 ± 0.08 0.5706 −0.5724
CH04 9—Dorsolateral prefrontal cortex 0.68 ± 0.06 0.62 ± 0.12 0.0673 1.8938 0.68 ± 0.03 0.69 ± 0.07 0.892 −0.1367
CH05 46—Dorsolateral prefrontal cortex 0.6 ± 0.14 0.62 ± 0.16 0.6814 −0.4143 0.52 ± 0.2 0.46 ± 0.23 0.4284 0.8011
CH06 46—Dorsolateral prefrontal cortex 0.67 ± 0.05 0.67 ± 0.09 0.8543 −0.1851 0.69 ± 0.04 0.7 ± 0.06 0.7372 −0.3382
CH07 10—Frontopolar area 0.62 ± 0.15 0.65 ± 0.13 0.5586 −0.5911 0.65 ± 0.15 0.67 ± 0.1 0.4791 −0.7153
CH08 9—Dorsolateral prefrontal cortex 0.7 ± 0.05 0.64 ± 0.1 0.0444 2.0926 0.69 ± 0.07 0.69 ± 0.08 0.9294 0.0892
CH09 46—Dorsolateral prefrontal cortex 0.58 ± 0.17 0.6 ± 0.11 0.5835 −0.5539 0.51 ± 0.2 0.46 ± 0.27 0.5196 0.6504
CH10 10—Frontopolar area 0.68 ± 0.05 0.68 ± 0.05 0.8924 0.1363 0.69 ± 0.05 0.67 ± 0.06 0.2535 1.1605
CH11 10—Frontopolar area 0.69 ± 0.05 0.68 ± 0.07 0.5912 0.5426 0.7 ± 0.07 0.7 ± 0.04 0.8454 −0.1963
CH12 10—Frontopolar area 0.71 ± 0.06 0.7 ± 0.03 0.5628 0.5848 0.69 ± 0.07 0.71 ± 0.04 0.2126 −1.2688
CH13 10—Frontopolar area 0.65 ± 0.06 0.66 ± 0.06 0.803 −0.2515 0.69 ± 0.05 0.68 ± 0.04 0.5956 0.5356
CH14 46—Dorsolateral prefrontal cortex 0.56 ± 0.14 0.59 ± 0.17 0.5213 −0.6484 0.63 ± 0.09 0.55 ± 0.14 0.0475 * 2.0521
CH15 10—Frontopolar area 0.55 ± 0.15 0.53 ± 0.17 0.7054 0.3814 0.43 ± 0.21 0.44 ± 0.21 0.8407 −0.2025
CH16 10—Frontopolar area 0.67 ± 0.07 0.68 ± 0.06 0.5587 −0.591 0.67 ± 0.07 0.66 ± 0.1 0.6849 0.4091
CH17 10—Frontopolar area 0.39 ± 0.23 0.46 ± 0.22 0.3337 −0.9815 0.37 ± 0.22 0.43 ± 0.18 0.3565 −0.9341
CH18 46—Dorsolateral prefrontal cortex 0.54 ± 0.14 0.63 ± 0.08 0.0395 * −2.1468 0.6 ± 0.11 0.59 ± 0.11 0.8275 0.2195
CH19 11—Orbitofrontal area 0.56 ± 0.13 0.5 ± 0.17 0.2697 1.1232 0.55 ± 0.12 0.45 ± 0.19 0.0701 1.8666
CH20 11—Orbitofrontal area 0.65 ± 0.07 0.64 ± 0.14 0.8883 0.1416 0.62 ± 0.08 0.62 ± 0.1 0.9437 0.0711
CH21 11—Orbitofrontal area 0.5 ± 0.22 0.49 ± 0.23 0.858 0.1804 0.5 ± 0.17 0.58 ± 0.13 0.1736 −1.3882
CH22 11—Orbitofrontal area 0.59 ± 0.18 0.48 ± 0.19 0.1006 1.6908 0.45 ± 0.18 0.41 ± 0.19 0.5917 0.5411

* represents passed the 95% paired t-test.

4. Discussion

In this study, an rs-fNIRS measurement was adopted to test the differences in func-
tional connectivity and brain networks in PFC between before and after the work shifts in
the morning shift workers, afternoon shift workers, and night shift workers. To the best of
our knowledge, this study is the first to investigate the effect of shift work on coal mine
workers’ mental states from a brain science perspective. Firstly, the coal mine workers’
brain functional connectivity was significantly correlated with marital status (p = 0.038)
and education information (p = 0.019). Secondly, there were significant differences in the
before and after work shift mental states of coal mine workers among three shifts (p < 0.05).
In particular, for the morning and afternoon shifts coal mine workers, after work shifts’
functional connectivity was decreased than before the work shift (p < 0.05). The results
showed a significant difference in COR matrices between before and after the work shift of
the morning shift coal mine workers in the brain region of dlPFC, dlPFC-FPC, dlPFC-OFC,
and OFC. For the afternoon shift coal mine workers, the differences in COR matrices before
and after work shifts were mainly concentrated in the brain region of dlPFC, dlPFC-FPC,
FPC, FPC-OFC, and dlPFC-OFC. Further, compared to the morning and afternoon shift
workers, the functional connectivity results for the night shift coal mine workers were
opposite (p < 0.05). The COR matrices were significantly increased in the brain region of
dlPFC-FPC, FPC, and dlPFC after the work shifts than that before the work shifts. Thirdly,
we also discovered that all the states of the morning, afternoon, and night coal mine shift
workers exhibited small-world properties in the PFC. Fourthly, significant differences were
found in betweenness centrality and nodal local efficiency between before and after the
work shifts, both in the morning and night shift workers (p < 0.05).

Among the demographic characteristics, marital status and education information
may influence the coal mine workers’ brain functional connectivity. Functional connectivity
intensity in PFC is significantly associated with cognitive function [61]. Similar to previous
studies, low educational attainment or a correlate predicts cognitive decline [25,61]. Com-
pared with married people, it might be easier to suffer from diseases related to a cognitive
impairment, such as Alzheimer’s disease, for single and divorced people [62].
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The results of our experiments demonstrate that the cognitive function was signifi-
cantly different before the work shift to the end of the shift in these three shifts of coal mine
workers. Therein, the cognitive function performance was lowest among the night shift
coal mine workers, followed by the afternoon shift and finally the morning shift, which is
consistent with previous studies [14,15]. It has already been demonstrated that the night
shift workers experience more fatigue than the morning and afternoon shift workers [63].
Similar to nurses, at the end of the night shift, physical and mental fatigue and cognitive
function of coal mine workers were severely impaired, which may lead to operator errors
and unsafe behavior [16,64,65].

Concerning the connectivity patterns of B1 and A1, our analysis demonstrated that
the resting-state functional connectivity of B1 in the dlPFC, dlPFC-FPC, dlPFC-OFC, and
OFC were connected more intensively. It is well accepted that PFC is the key region of
complex cognitive control. Specifically, dlPFC mediates executive functions such as plan-
ning, working memory, monitoring, selective attention, and inhibiting pre-programmed
behavior [66–68]. The FPC is crucial for complex human cognitive abilities such as multi-
tasking ability [69]. The OFC is involved in controlling and correcting reward-related and
punishment-related behavior, and thus in emotion and touch [70]. This means that after the
work shifts, group 1 was more easily experienced a decline in concentration, accompanied
by reduced multitasking skills and emotional control.

Similar to group 1, the resting-state functional connectivity of B2 was stronger than
that of A2 in the dlPFC, dlPFC-FPC, FPC, FPC-OFC, and dlPFC-OFC. In other words, after
the work shifts, the executive functions, complex cognitive abilities, and emotion and touch
perception were declined in group 2. Consistent with the results of behavioral experiments
and psychometric scales by Reza Kazemi et al., our study showed a decreased cognitive
performance of coal mine workers at the end of the morning shifts [13]. On the same
lines, behavioral experiments by Azam Esmaily et al. showed that shift work can affect
the cognitive function (working memory and attention) of nurses [15]. Lower cognitive
performance such as poor concentration, fatigue, and sleepiness can trigger the near-miss
events that lead to the unsafe behavior of coal mine workers [65].

It was found that the functional connectivity of group 3 was increased from before and
to the end of the shift. The main differences were concentrated in the dlPFC-FPC, FPC, and
dlPFC. That is, improved executive functions, including attention, working memory, and
multitasking, were found after the work shift in group 3 compared to before their shift. In
line with the EEG study, participants with distracted attention had stronger functional brain
connectivity intensity [71]. Interestingly, an experiment by Azam Esmaily Reza Kazemi
et al. demonstrated that among the three shifts, the cognitive function was decreased
most prominently after the night shift [15]. Our results are different from the previous
report, perhaps because the work content of the night shift is different from the morning
and afternoon shifts. According to the regulations of Hongliulin Coal Company, the
morning and afternoon shifts are coal mining production shifts, while the night shift is the
maintenance and repair shifts. Compared to the production shift, the working environment
of the maintenance and repair shift is relatively good, without production noise and dust.
The effects of different work contents and work environments on the cognitive function of
three-shift coal mine workers can be further investigated in the future.

Based on these analyses, the brain network differences among the three groups were
analyzed. The results showed that the trends in Cnet, Eglobal , Eloc, and Lp of all the states
among the 3 groups under 10 thresholds were in line with previous studies, with no
significant differences between before and after shifts [50,59,72]. Further, the small-world
properties of the brain networks of all the states among the three groups were calculated
separately, and the results were greater than 1. That is, the rs-fNIRS brain network data of
all groups exhibited small-world properties.

Notably, the results of the two-sample t-test showed that there were significant differ-
ences between in betweenness centrality and nodal local efficiency before and after work
shifts in group 1 and group 3, while there were no differences before and after work shifts
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in group 2. Concretely, the significant differences for betweenness centrality in the FPC
in group 1. Cortically, the larger betweenness centrality indicates the greater influence of
the target region as a hub within the brain network [73]. That is, the multitasking ability
was significantly different between B1 and A1. It coincides with the study by Marja-Leena
Haavisto Reza Kazemi et al. that shift work can impair multitasking performance [74]. In
addition, there were also significant differences for betweenness centrality in the OFC in
group 3, which may indicate that emotion control was reduced in the night shift work. Our
results were in line with the study by Dov Zohar Reza Kazemi et al. that sleep loss impaired
emotional reactivity [75]. Moreover, the significant differences in nodal local efficiency in
the dlPFC in both group 1 and group 3. The higher nodal local efficiency represents better
efficiency of information transformation within a local subgraph consisting of only the
neighbors of a given node [57]. Consistent with the results of the study by Ann Rhéaume
Reza Kazemi et al., cognitive performance was declined after long work hours and shift
work [65].

As far as we know, our study is a preliminary one, drawing attention to the correlation
between cognitive functions and shift work in coal mine workers in the real field from
the perspective of brain science. In addition, this research has some limitations. First, the
sample size of this study was relatively small. Second, the tests after shifts may have been
affected by a time constraint. Due to the special working conditions of coal mine workers
underground, the experiments were conducted after the miners had gone up the shaft and
washed up. Third, the present study only observed the brain functional connectivity of
the same miners before and after the work shift. In the future, the same subjects could be
observed continuously for multiple days to further explore the effect of shift work on the
cognitive abilities of coal mine workers.

5. Conclusions

The results of this study show that working a shift for an extended period can signifi-
cantly affect cognitive function among coal mine workers. On the one hand, the results
showed that there were significant differences in cognitive ability between before and
after the work shifts among the three-shift workers. The brain functional connectivity
was reduced ranking during the night, afternoon, and morning shifts. Decreased brain
functional connectivity at the end of the working shift was found compared with before in
the morning and afternoon shifts. Opposite results were obtained during the night shift.
On the other hand, significant differences were found in betweenness centrality and nodal
local efficiency in the morning and the night shift. The current findings also provide new
insights regarding the effect of shift work on the cognitive ability of Chinses coal mine
workers. Ideally, combining fNIRS with psychological scales and behavior experiments can
be used to investigate the influence of shift work on cognitive function among coal mine
workers in future studies.
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