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Abstract
Antimicrobial resistance of infectious agents is a growing problem worldwide. To prevent

the continuing selection and spread of drug resistance, rational design of antibiotic treat-

ment is needed, and the question of aggressive vs. moderate therapies is currently heatedly

debated. Host immunity is an important, but often-overlooked factor in the clearance of

drug-resistant infections. In this work, we compare aggressive and moderate antibiotic treat-

ment, accounting for host immunity effects. We use mathematical modelling of within-host

infection dynamics to study the interplay between pathogen-dependent host immune

responses and antibiotic treatment. We compare classical (fixed dose and duration) and

adaptive (coupled to pathogen load) treatment regimes, exploring systematically infection

outcomes such as time to clearance, immunopathology, host immunization, and selection

of resistant bacteria. Our analysis and simulations uncover effective treatment strategies

that promote synergy between the host immune system and the antimicrobial drug in clear-

ing infection. Both in classical and adaptive treatment, we quantify how treatment timing

and the strength of the immune response determine the success of moderate therapies. We

explain key parameters and dimensions, where an adaptive regime differs from classical

treatment, bringing new insight into the ongoing debate of resistance management. Empha-

sizing the sensitivity of treatment outcomes to the balance between external antibiotic inter-

vention and endogenous natural defenses, our study calls for more empirical attention to

host immunity processes.

Author Summary

The evolution and spread of antimicrobial resistance is a major global problem, and a
cause of substantial human mortality. As the discovery of new antibiotics does not follow
the rate at which new resistances develop, a more judicial use of available drugs is needed.
Here we develop a mathematical model of within-host infection dynamics that combines
the effects of pathogen clearance by the host immune system and by the antibiotics. Com-
puter simulations and mathematical analysis are used to evaluate treatment protocols in
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order to identify those that can restore patient health and limit the overall pathogen bur-
den and selection of resistance. We focus our study on infections with pre-existing resis-
tance, and explore two main treatment strategies: the classical treatment, characterized by
fixed drug dose and treatment duration, and the adaptive treatment that closely follows
infection outcomes and patient symptoms. Our results highlight treatment strategies that
promote synergy between host immunity and the antimicrobial drug. This can be achieved
by moderate treatments that combine appropriate timing, reduced drug dosage, and short
treatment durations. Our model is developed for bacterial infections but our framework
and findings may apply to other biological scenarios featuring drug resistance.

Introduction
Overcoming antimicrobial resistance is currently considered an international medical priority
[1, 2]. The evolution of drug resistance affects our ability to treat new infections as well as carry
out hospital procedures that rely on the prophylactic use of antibiotics such as surgeries and
organ transplants. Despite extensive research, antimicrobial alternatives to antibiotics, are not
yet a practical solution over current therapies (reviewed in [3]). It is thus critical to evaluate dif-
ferent treatment strategies in order to understand how the various parameters involved in the
prescription of antibiotics can influence the selection and spread of drug resistance. Optimiza-
tion of antibiotic treatments to increase the effective life span of drugs, while reducing both the
probability of resistance evolution and the adverse effects of treatments, is a key component of
hospital antimicrobial stewardship programs [4], as well as a research priority in evolutionary
epidemiology [5–7].

The problem of preventing the emergence of resistance is augmented with the problem of
resistance management once it is already present in a population [8]. Often, by the time bacte-
rial infections cause symptoms and treatment is initiated, the within-host bacterial load is large
enough to harbour mutants that are resistant to the treating antibiotic [9]. More importantly,
in hospital settings, resistant bacteria can already be acquired upon infection, requiring special-
ized therapeutic regimes [10–12].

Classical wisdom in drug-resistance management recommends that treatments should be as
aggressive as possible, using the highest possible dose to ensure that the pathogen load is elimi-
nated, and to prevent de novo evolution of resistance mutations [13]. These aggressive thera-
pies have recently been questioned on the basis that the stronger the treatment applied, the
stronger the selection favouring resistant pathogens, in particular in infections harbouring pre-
existent resistance. This conventional protocol of hitting hard and hitting fast might be relevant
for highly mutable pathogens such as HIV, but in cases where resistant strains are more likely
to be acquired in the community such as in TB [8] the advantages of aggressive therapies are
less obvious [14]. Alternative strategies could include more moderate treatments, or adaptive
regimens where doses and treatment durations closely follow patient health [14–16].

Current empirical and theoretical evidence has examples to support both therapeutic strate-
gies, as well as for a mixed compromise such as high dose and short treatments (reviewed by
Kouyos et al. [15]). For instance, experimental studies using rodent malaria parasites in labora-
tory mice have shown that less aggressive chemotherapeutic regimens substantially reduce the
probability of onward transmission of resistance without significant changes in host pathology
[16]. In contrast, varying concentrations of vancomycin in vitro[17] and in vivo using a rabbit
model [18] has confirmed the advantage of high dose aggressive treatment in controlling the
resistant populations of Staphylococcus aureus. This multitude of results indicates that the
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problem of devising general practices for treatment is far from settled. Conceptual frameworks
can help compare aggressive and moderate chemotherapy [15], but quantitative systematic
analyses are also needed. The current challenge is to identify among the diverse potential treat-
ment regimes, those that minimize selection for drug-resistance while not compromising
patient health [14].

A general principle advocated to guide rational development of patient treatment guidelines
is to impose no more selection than is absolutely necessary. For this, it is important to under-
stand when rules like ‘hit hard and hit early’ should apply [13], and when more moderate treat-
ment regimes would be more effective. Mathematical models play instrumental role in this
endeavour. When focused on population level dynamics they can evaluate and guide antibiotic
use regimens for hospitals [11, 19, 20] or wider communities [21], generally in endemic, but
also in epidemic scenarios (e.g. antiviral usage [22, 23]). When modelling pathogen dynamics
within host, mathematical approaches can outline the mechanisms of interaction and feed-
backs among pathogen types, and quantify how this basic ecology is modulated by one drug
[24] or multiple drugs [25].

An important, but often overlooked factor in the process of infection clearance and resis-
tance management is host immunity. A strong immune response can substantially reduce the
need for long treatments, as evidenced by some acute infections tending towards shorter drug
treatments in hosts with intact immunity [26–28]. The interplay between host immunity and
antimicrobial drugs has recently been incorporated into mathematical models of infection [29–
31]. Previous work [29] has shown that the presence of an immune response can narrow down
the mutant-selection window (MSW), defined as the range of drug concentrations for which
the drug is strong enough to remove the sensitive population [32], but insufficient to remove
the partially resistant pathogen population. Along similar lines, Ankomah and Levin, [31],
using an explicit resource-based model for the interaction between pathogen and host immu-
nity, have investigated infection scenarios, separating the effects of pathogen-dependent and
pathogen-independent immune responses. Yet, a quantitative understanding of host immunity
as a player in optimal treatment of resistant infections remains under-developed.

A series of studies have recently addressed the role of timing of antimicrobial use at the pop-
ulation level [22, 23]. By considering the indirect and direct effects of antimicrobial use, models
have found that optimal timing for treatment at the population level is well into the course of
an epidemic, where the indirect effects of delays usually result from minimizing the degree of
overshoot, i.e. minimizing the number of cases beyond the number that would be needed to
reach the epidemic threshold. There are parallels between transmission processes at the popu-
lation level and pathogen growth dynamics at the within-host level, where timing effects of
antimicrobial therapy have also been shown to be important [33].

In this article, we combine these two important concepts to study antimicrobial treatment
of drug-resistant infections: i) we zoom further into host immunity processes, and ii) we ana-
lyze explicitly the role of treatment timing on the success or failure of antibiotic therapies. We
consider a dynamic mathematical model that describes the interaction between the host’s
immune system, pathogen density, and antimicrobial treatment in mixed infections of drug-
sensitive and pre-existing drug-resistant pathogen strains. By analysing a diverse range of ther-
apeutic scenarios, and especially focusing on treatment timing, we uncover critical conse-
quences for infection dynamics and selection of resistance, before, during and after treatment.

We also compare in depth through a mechanistic approach, classical and adaptive treatment
protocols, applied to the same infection. To facilitate insight into the driving factors of treat-
ment efficacy, we simplify many aspects of host-pathogen interaction, focusing on key features.
We examine their interplay with treatment parameters, and their final impact on infection out-
comes, such as total immunopathology, time to clearance, pathogen burden, and overall
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resistance. Our framework formalizes and broadens up the question of what it means for a
treatment to be optimal and how such optimality can be achieved in practice.

Methods

Mathematical model
The within-host model is designed to investigate the interplay between antibiotic treatment
regimes and host immune response in acute drug-resistant infections. Our formulation is
based on a previous within-host model of infection dynamics [33], but here we consider two
pathogen phenotypes: those sensitive to the drug, Bs, and those partly resistant Br. These are
distinguished by their intrinsic growth rates (r0 and r1) and killing rates by antibiotic (δ0, δ1).
We consider c = r0 − r1 � 0 to be the fitness cost of resistance [34] and a = δ1/δ0, (0� a� 1) to
represent the fitness benefit of resistance, i.e. the factor by which antibiotic killing rate is
reduced in the resistant sub-population.

The action of host immunity, is considered explicitly, in terms of naive antigen-specific pre-
cursor cells N, effector cells E, and memory cellsM. We thus implicitly consider those infec-
tions that may have escaped the first barrier of innate immunity in the host [35]. The
pathogen-dependent immune dynamics represents a typical CD8+ T-cell mediated immune
response [36, 37], but also describes broadly key features of CD4+ cell responses [38, 39].
These are major players against intracellular bacterial pathogens, such as Listeria monocyto-
genes[40], and Legionella pneumophila[41, 42], but have also been implicated inHaemophilus
influenzae[39, 43] and protective responses against pneumococcal bacteria [44]. In the interest
of generality, we keep the detail of immune responses to a minimal level. Thus, the model is
inevitably a simplification of the complex interaction between host immunity, bacteria, and
antibiotics [45]. However, the underlying assumptions do capture crucial aspects of the
expected immune responses in acute infections. These include induction, activation, prolifera-
tion, decay and memory formation, typically studied in greater empirical detail in virus-host
interactions [46, 47]. Several mathematical aspects of our formulation feature in other theoreti-
cal models of infection [30, 31, 48].

Within-host dynamics for a mixed infection with a drug-sensitive (Bs) and pre-existing par-
tially resistant (Br) strain are described with the following set of ordinary differential equations:

dBs

dt
¼ r0Bs � dBsI � d0BsZðtÞAm

ð1Þ

dBr

dt
¼ r1Br � dBrI � d1BrZðtÞAm

ð2Þ

dN
dt

¼ �sN
B

kþ B
ð3Þ

dE
dt

¼ ð2sN þ sEÞ B
kþ B

� hE 1� B
kþ B

� �
ð4Þ

dM
dt

¼ fEh 1� B
kþ B

� �
; ð5Þ

where B(t) = Bs(t) + Br(t) is the total pathogen load at time t, and I(t) = N(t) + E(t) +M(t) is the
total number of immune cells activated to clear the pathogen. Naive precursor cells (N) are
stimulated to divide and differentiate into effector cells (E) in response to increasing pathogen
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density. Effector cells proliferate further upon antigen stimulation at rate σ as long as pathogen
is still in circulation. As bacteria are cleared, the majority of effector cells undergo apoptosis at
rate h per cell, except for a fraction f that differentiate into memory cells (M) that persist indefi-
nitely. All three types of immune cells act to kill pathogen, but effector cells represent the domi-
nant arm of the host immune defense, in particular in primary infection, which we focus on.

An important model assumption is that the killing rate d by lymphocytes is equal for both
pathogen sub-types, regardless of their antimicrobial susceptibility. Another important
assumption regards the immunity stimulation function. For immune stimulation by antigen, a
monotonically increasing saturating function of pathogen density (Hill function with coeffi-
cient 1) is assumed, where the parameter k represents the half-saturation constant for stimula-
tion of lymphocytes to divide and differentiate. We will hereafter refer to this parameter as the
host immunity threshold. To reflect the discrete nature of the pathogen, we assume an extinc-
tion threshold, when pathogen density of either sub-population falls below a critical level Bext.

Since the model is primarily designed to describe acute infection, we do not include a limit-
ing resource for pathogen growth [24], assuming main control via host immune responses. A
detailed description of model parameters is given in Table 1. Although our simulations are
based on a limited set of parameter values, likely to apply to a range of acute infections, the the-
oretical analysis that we provide alongside simulations enables extrapolation of our results to
settings and numerical values departing from the ones considered here. As in another recent
study [31], the exact parameter values used for simulations do not reflect any particular antibi-
otic-species combination.

Antimicrobial treatment: Classical and adaptive
To model antimicrobial treatment we use an indicator function η(t), which represents the rate
of antimicrobial uptake per unit of time. The dose of the drug deployed is denoted by Am. The

Table 1. Model parameters and interpretation.

Symbol Interpretation Value Range Units Reference

r0 Sensitive bacteria growth rate 3.3 1–8 (day−1) [33, 49]

r1 Resistant bacteria growth rate 1.1 (� r0) (day−1) [34]

d Pathogen killing rate by lymphocytes 1 × 10−5 10−5–10−4 μl/cell/day [50, 33, 46]

δ0 Killing rate of sensitive bacteria by antimicrobial drug 1 Scaled l/mg/day

δ1 Killing rate of resistant bacteria by antimicrobial drug aδ0 Scaled l/mg/day

a Antimicrobial susceptibility factor of resistant bacteria 0.1 0 � a � 1 - Varied

Am Average antibiotic concentration 1–50 0.03–128 mg/l Varied, [51]

σ Maximum immune cell recruitment/proliferation rate 2 1.2–3 (day−1) [36, 33, 52]

k Pathogen density where immune response grows at half its maximum rate 1 × 105 104–105 cell/μl [36, 33]

h Maximum effector cell decay rate 0.35 0.1–0.8 (day−1) [36, 33, 52]

f Fraction of effectors converting to memory cells 0.1 0.05–0.1 - [53, 33],

Bs(0)/Br(0) Initial bacterial density 10/2 � k cell/μl Fixed [54]

N(0) Initial precursor cell density 200 15–1500 cell/μl [55], [33]

τ1 Classical treatment onset (delay) 1–5 < tpeak (Eq 16) day Varied, [56]

τ2 Duration of classical treatment 7 3–15 day Varied, [56]

Ω Pathogen density causing symptoms in adaptive treatment <, =, > k 103–107 cell/μl Varied

Bext Pathogen extinction threshold 10−1 � 1 cell/μl Fixed

Although graphical illustrations in this study use these specific values, the additional analyses provided enable general extrapolation of model results to

different parameter combinations that may apply in other settings.

doi:10.1371/journal.pcbi.1004857.t001
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case when treatment onset (τ1) and duration (τ2) are fixed from the start corresponds to a clas-
sical treatment. The case when drug uptake depends on bacterial density within host corre-
sponds to an adaptive regime. For classical treatment, the rate of administration of
antimicrobials is:

ZðtÞ ¼
1 if t1 � t � t1 þ t2

0 if t < t1 or t > t1 þ t2

(
ð6Þ

In the adaptive regime, treatment onset and duration are influenced by the bacterial dynam-
ics in the infected host. Previous authors have considered tight coupling between adherence to
drug and bacterial load [29]. In this study, similar to the study by Ankomah and Levin [31], we
only consider the simplest form of adaptive treatment that uses a threshold for total pathogen
load, O, above which the patient takes the drug, and below which the patient does not. The rate
η(t) of antibiotic administration per unit of time, becomes a direct function of pathogen load B
and the threshold O:

ZðtÞ ¼
1; if BðtÞ � O

0; if BðtÞ < O:

(
ð7Þ

Thus, over a given treatment window, the net average amount of drug taken by the host per
unit of time in the adaptive case, may be less than the actual administered dose. This alternative
model of antimicrobial delivery could mirror a ‘take when feeling bad, stop when feeling good’
approach, requiring necessarily reliable translation between symptoms and pathogen load.

Focusing on the net effect of the antibiotic on the bacterial population, which has been
shown to be relatively insensitive to changes in the frequency of administration of the drug
[31], we neglect the explicit pharmaco-dynamics of the antibiotic. Thus we model only the
average rate of antibiotic-mediated pathogen killing (represented by the product δ0 Am and
δ1 Am, respectively for Bs and Br), which simplifies analysis.

Both in the classical and adaptive regime, we explore treatment onset at various times over
infection, departing from previous studies that typically link treatment initiation to a fixed
pathogen load or the peak bacterial density [30, 31]. Our formulation of treatment delay is
inspired by two recent studies [23, 33]. Its generality enables a deeper understanding of the
trade-off induced by antibiotic treatment between reduction in host pathology and immuniza-
tion, in the new context of resistant infections.

Infection summary measures for simulations
Assuming an extinction threshold when pathogen density of each subpopulation within host
reaches Bext, we can compute text, the extinction time, or clearance time. Because we simulate
treated and untreated infections only up to a finite time horizon T, usually set to 30 days, infec-
tion duration is thus defined as:

D ¼ minðT; textÞ ð8Þ

The total resistance burden over the entire infection is calculated as

Rtot ¼
Z D

0

BrðtÞdt: ð9Þ

The total pathogen burden over infection is Btot ¼
R D

0
BðtÞdt, and final host immune mem-

ory isM(D). We also track the resulting immunopathology [33], which roughly reflects the
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cumulative damage to host health due to pathogen killing by cells of the immune response and
associated inflammation [57]. For the total immunopathology accumulated up to time t, H(t),

following [33], we define: HðtÞ ¼ R t

0
dBðsÞIðsÞds. As the pathogen population grows and host

immunity builds up, the cumulative immunopathology due to immune-mediated killing and
inflammation also grows following the infection dynamics. Upon pathogen clearance (or at the
end of a simulation) the immunopathology accumulated over infection reaches

Htot ¼
Z D

0

dBðsÞIðsÞds: ð10Þ

We perform a systematic analysis of these infection outcomes, varying treatment regimes
(classical and adaptive) and model parameters, such as the fitness cost and benefit of resistance,
and host immunity characteristics. We use as reference for comparison summary measures from
infections in which no treatment is used. All simulations are performed in Matlab1 R2011a.

Results

Dynamics in the absence of antibiotics
In the absence of treatment, the infection follows a typical acute dynamics (Fig 1A). Sensitive
bacteria grow initially quasi-exponentially, while immune responses are not yet active. Resis-
tant bacteria also increase from their initially low numbers, but relatively more slowly, depend-
ing on their fitness cost c = r0 − r1. Resistant bacteria reach their peak around the same time as
the sensitive sub-population, but at a lower density. As sufficient immunity gradually builds up
during the bacterial growth phase, bacterial clearance is initiated, primarily through the action
of effector cells. Following pathogen decline, effector cells also decline, with a fraction of them
differentiating into persistent immune memory cells. High levels of acquired immune memory
will act as pre-existing immunity in a secondary infection with the same pathogen and lead to
rapid clearance. Mathematical analysis of the model in the absence of antibiotic confirms that
stability of the infection-free state requires N� +M� >max(r0, r1)/d (see S1 Text, part I).

Below we derive analytical expressions, to understand how characteristics of the pathogen
and of the host, represented by different parameters, interact to determine outcomes of infec-
tion. This serves as a starting point to then explore how perturbations like treatment, or varia-
tion in parameter values can affect these baseline dynamics. Focusing on the ‘expansion phase’
of immune dynamics, as in [48, 58], we can simplify the rates of change in total bacterial den-
sity and host immunity by the following sub-system:

dB
dt

� r0B� dBI ð11Þ

dI
dt

� sI
B

kþ B
ð12Þ

where I = N + E +M and B = Bs + Br. By assuming negligible fitness cost of resistance (r0 � r1),
the equations above give somewhat an upper bound on total bacterial growth. Biologically, the
relative magnitudes of various parameters satisfy: B0 � k, dI0 � r0, where B0 = B(0) is the ini-
tial pathogen density, and I0 = I(0) reflects the precursor frequency, i.e. the number of initial
immune cells specific to the pathogen at the time of infection. Dividing the above equations,
and integrating, we obtain:

log
Bþ k
B0 þ k

� �
¼ r0

s
log

I
I0

� �
� d
s
ðI � I0Þ ð13Þ
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This equation gives the relationship between the number of immune cells and parasite den-
sity at any given time during the bacterial growth phase. Thus, it allows us to calculate the level
of immunity as a function of current pathogen load, and viceversa. Under this approximation,
the peak pathogen load, in the absence of treatment, occurs when a critical level of host immu-
nity has been reached, namely when

I � Icrit ¼
r0
d
: ð14Þ

The peak pathogen density at the end of the growth phase in acute infection can be obtained
from combining Eqs 13 and 14:

Bmax � ðB0 þ kÞ r0
deI0

� �r0=s

ð15Þ

The time it takes for the pathogen load to reach its peak can be approximated considering
two phases of growth: i) the time it takes the pathogen load to reach k, required for half-

Fig 1. Illustration of model dynamics. A)Untreated infection.B) Classical treatment with: Am = 6, τ1 = 3.5, τ2 = 7. C) Adaptive treatment with parametersΩ
= 106, Am = 6. Other parameters as in Table 1. The resulting duration of adaptive treatment is 2.7 days. From the coupling to pathogen load, the effective rate
of antibiotic uptake in adaptive treatment within such interval is 0.44, which implies a reduction in the effective dose from the prescribed Am = 6 to about 3,
sufficient to restrict growth of the drug-sensitive sub-population. The treatment onset τ1 = 3.5 days corresponds toΩ = 106 (adaptive regime), whereΩ > k.

doi:10.1371/journal.pcbi.1004857.g001
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maximal immune stimulation, and ii) the time it takes the immune response subsequently to
grow from its initial level to the critical level Icrit. This dynamic decomposition focusing on k is
an analytically convenient choice, yielding:

tpeak ¼ tk þ tk!peak �
1

r0
log

k
B0

� �
þ 1

s
log

Icrit
I0

� �
ð16Þ

Such expressions, taken together, convey how host immunity characteristics, e.g. initial
immunity I(0) [55], or immune cell recruitment rate σ, affect different infection outcomes.
These may vary with host age [59], or other aspects of immune competence. One can also
notice above the importance of the host immunity threshold, k, and maximal pathogen growth
rate, r0, which may vary too across host-pathogen systems. In the absence of the drug, the dif-
ference in growth rate between resistant and sensitive bacteria does not significantly affect the
dynamics of immune build-up, peak bacterial load, or the cumulative immunopathology over
infection. The cost of resistance (c = r0 − r1) only changes the relative frequency of resistance in
the total pathogen load. This is because immunity gets equal stimulation from both bacterial
types and kills them at the same rate.

After the immune ‘expansion phase’, which leads to pathogen clearance, the ‘contraction’
and ‘memory’ phases of the immune response follow, provided that h> 0, described in detail
by Eqs 3–5 of the full model. Summing those three equations, one can see that total immune

response in the system keeps increasing whenever B > khð1�f ÞE
sðNþEÞ . This means some immune stim-

ulation still continues during pathogen decline, thus the peak immune response reached over
infection typically exceeds the critical value Icrit required for triggering clearance.

Notice that setting h = 0 in the full model would mimic a situation of non-waning immunity
(at least non-waning in the time-scale of interest), quantitatively captured by the simple system
of Eqs 11 and 12. Most of the analysis above could thus be useful to understand also such a sce-
nario, where for instance, the final level of immunity Ifinal accumulated after infection could be
calculated from Eq 13, by solving it for B = 0.

In all these theoretical scenarios, infection in principle resolves through action of host
immunity, but depending on the severity of parameter values, the total damage to the host can
be overwhelming, such that administration of drugs is required. By severity here we mean the
clinical relevance or manifestation of Bmax in the absence of treatment (Eq 15), e.g. how close
this peak density would be to a pathogenesis or lethal threshold for the host [58]. This naturally
depends on pathogen growth rate and host immune competence. For example, slowly-growing
pathogens might never trigger symptoms in their host (thus may never need antibiotic treat-
ment), and eventually will be cleared by the immune system without causing high levels of
pathology.

Next, we analyze the full model with treatment, where antibiotics interact with host immu-
nity. In treated infections, the presence of a drug-resistant pathogen sub-population becomes
relevant in either regime of drug delivery (see Fig 1B and 1C).

Dynamics with classical antibiotic treatment
The effect of the antibiotic can be encapsulated as a reduction in the intrinsic per capita net
growth rate of the two bacterial types during the treatment phase (τ1 � t� τ1 + τ2). The antibi-
otic reduces pathogen load and immunopathology, relieving the burden on host immunity (Fig
1B). However, its timing, dose, and duration can produce a diverse range of outcomes, as
shown in Fig 2. With very aggressive treatments, resistant bacteria are not selected, and infec-
tions get cleared rapidly. In other cases, treatment cessation may result in a second infection
peak, or even multiple peaks of bacteria, which may be equal to or even higher than pre-
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Fig 2. Dose-delay interaction during classical treatment with fixed dose and duration. Pathogen
dynamics for the sensitive (blue) and resistant sub-population (red dashed line) are shown across different
parameter combinations. A) High cost of resistance, c = 2.2. B) Low cost of resistance c = 0.1. Parameters as
in Table 1, (r0 = 3.3) with treatment duration set to 7 days. Varying the cost of resistance, from A to B, shifts to
higher values the range of critical doses that promote selection of resistance, from doses in [3.3, 11] to [3.3,
32]. However, we again observe an effect of bacterial clearance via synergistic interaction between drug and
host immunity, when moderate doses are applied at appropriate times over the course of infection (here at τ1
= 4 days). All scenarios depicted achieved infection clearance (B < Bext) by 30 days, except in A) scenarios:
τ1 = 4, 5, Am = 20 and τ1 = 5, Am = 10, where clearance occurred by 30.1, 31.2 and 30.6 days respectively.
The minimum time to clearance is observed for smallest delay and highest dose in both A) and B), at 7.8 and
7.2 days post infection.

doi:10.1371/journal.pcbi.1004857.g002
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treatment levels, and consist of sensitive or resistant organisms. Treatment consequences vary
especially depending on the phase of the infection in which treatment begins, where the growth
potential of both strains is modulated by host immunity. To understand critical treatment
parameters, we must consider the respective growth rates of bacterial subpopulations within
host at the time τ1 when treatment is applied. In the presence of an immune response, the
doses needed to halt growth of either subpopulation are decreasing functions of the immunity
level I(τ1) upon treatment onset:

A
0
mðIÞ ¼

r0 � dI
d0

and A
00
mðIÞ ¼

r1 � dI
ad0

; ð17Þ

for the sensitive and resistant strains respectively. In the absence of any immunity, the antibi-
otic doses that inhibit growth of sensitive and resistant bacteria are given by the maximum val-
ues:

A�
m ¼ r0

d0
and A��

m ¼ r1
ad0

; ð18Þ

where A�
m � A��

m , if the cost and benefit of resistance balance in such a way that r0 � r1/a (the
scenario we consider here). In general, depending on the level of immunity, thus on the delay
for treatment initiation, either bacterial type can decline, persist or grow during treatment, sub-
ject to how the actual dose that is deployed, Am, sits in this critical range (Fig 3). As a conse-
quence, immunity can also decline, persist or grow while antibiotics are applied. If during
treatment, the net change in dynamics results in an excessive decline of pathogen-dependent
immunity, there is a window of possibility for pathogen relapse after treatment cessation, in

Fig 3. The critical antibiotic dose range, for bacterial behaviour immediately after treatment onset. As
the treatment onset is postponed, and more immunity accumulates in the host, smaller doses can be used to
interrupt the growth of each bacterial sub-population (blue line for Bs, and red line for Br). Depending on how
the actual dose, Am, that is deployed, sits in this range, different dynamic scenarios may ensue during
treatment, with specific consequences for immune dynamics. In the lower dose range, immunity can still
increase during treatment and assist in infection clearance. In the higher dose range, immune build-up is
disrupted by treatment, and clearance can be achieved only by prolonged antibiotic pressure. Parameters as
in Table 1. The time it takes the pathogen load to trigger immune activation (i.e. reach the immunity threshold
k), in the absence of treatment, denoted by tk, is given by the gray vertical line. The time it takes the host
immunity to trigger bacterial decline (i.e. time for B(t) to reach its peak), in the absence of treatment, denoted
by tpeak is given by the black vertical line. An optimal delay usually sits in the middle of this range.

doi:10.1371/journal.pcbi.1004857.g003
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case complete clearance has not been achieved with the drug. The sub-population surviving at
an advantage at the end of treatment, may be the one to dominate the relapse, provided that
such advantage in total numbers is greater than its relative fitness cost in the absence of treat-
ment (Fig 2A, τ1 = 2, Am = 4). When such recrudescence is caused by resistant bacteria (e.g. for
τ1 = 2, Am = 10 in Fig 2A, or Am = 30 in Fig 2B), the lower the fitness cost of resistance is, the
faster the new peak will be reached after therapy stops. Clearly, the amount of drug interference
with normal immune build-up during treatment depends on its dose and duration.

Thus, under pathogen density-dependent immunity, if bacteria persist or grow slightly dur-
ing treatment it may not be so bad, given that such growth helps stimulate more immunity,
and reduces the risk of relapse at the end of treatment. By the same argument, removal of anti-
gen stimulus too rapidly during treatment may have adverse effects, because surviving patho-
gens at the end of therapy could re-grow if immune responses in the meantime have declined
to subcritical levels (assuming waning immunity, h> 0). Selecting a moderate regime to bal-
ance between these scenarios is a challenge.

Infection clearance through aggressive treatment and no involvement of
the immune system
While finding an optimal intermediate regime, involving some degree of immune control, is
far from trivial, the extreme therapeutic option that does not require immunity at all, is much
easier to analyze. Such antibiotic treatment is bound to be of an aggressive type. Consider the
total bacterial load at treatment onset B(τ1). The scenario of drug-only-mediated clearance can
be represented as an exponential decay of both bacterial subpopulations during treatment.
Notice that resistant bacteria are killed at lowest rate by the drug, so by approximating the total
population decline at that lower rate, we explore the worst case scenario for the host. Resistant
bacteria are also more likely to suffer a fitness cost (r1 � r0), thus by approximating total popu-
lation growth at its highest possible rate, r0, we are also considering a worst case scenario for
the host. In this way, by being conservative in bacterial growth and decline during treatment,
we obtain a sufficient criterion for ultimate clearance during classical treatment with dose Am

and duration τ2 as Bðt1Þeðr0�ad0AmÞt2 � Bext; which is equivalent to requiring:

Am � 1

ad0
r0 �

1

t2
log

Bext

Bðt1Þ
� �� �

ð19Þ

Thus, if the dose and duration of classical treatment, in combination satisfy the above
inequality, relative to the pathogen density at treatment onset B(τ1), and pathogen extinction
threshold Bext, infection clearance by the end of treatment is guaranteed, without relying on
host immunity. As the above expression shows, the earlier treatment begins, thus the lower B
(τ1), the easier it is to meet the criterion with smaller doses and shorter treatment duration (Fig
4). Generally, the dose Am and duration τ2, can be traded-off against one another, and still sat-
isfy the clearance criterion for different pathogen loads at classical treatment onset. The caveat
is to know whether these effects are possible with antibiotic doses below the toxic threshold for
the patient. Notice, that the criterion in Eq 19, does not depend on the cost of resistance, and
also does not exclude that clearance may be achieved with lower doses, because the additional
pathogen killing by immunity, accumulated up to and during treatment, is not accounted for
by this formula.

Drug-immunity interplay and the role of host’s natural defenses
Here, we explore the interplay between antibiotic treatment and host immunity in the full dose
range through numerical simulations of the complete model. In several ‘theoretical experiments’
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(Fig 2), we vary treatment onset τ1, between 2 and 5 days post-infection, and consider treatment
duration between 3 and 15 days, realistic for bacterial infections [56]. Such duration may corre-
spond to the prescribed therapy by a doctor, or may reflect the actual adherence by the patient.
Similarly, the delay can reflect the time over a typical infection course when a patient seeks
treatment, and this may fluctuate from person to person.

Varying the antimicrobial dose, we observe that doses of the drug below A�
m (Eq 18) admin-

istered somewhat later over infection can be efficient in reducing the bacterial burden without
promoting selection for resistance, because they yield the preponderate role in eliminating bac-
teria to the immune system. As soon as doses go above r0�r1

dð1�aÞ, the fitness differential between

sensitive and drug-resistant bacteria is reversed (e.g. Fig 2A: Am = 4, τ1 = 2). Small doses, just
above A�

m, start to interfere with immune build-up, but this interference decreases when treat-
ment onset is delayed (moving along the delay axis in Fig 2A and 2B). Higher intermediate
doses of the drug, between A�

m and A��
m , instead, promote more selection of resistant bacteria

during and after treatment, and ultimately infection clearance is achieved by the delayed action
of the immune system (e.g. Fig 2A: Am = 10). Yet, also here, optimal intermediate delays for ini-
tiating treatment, can help reduce host immunopathology and selection of resistance (S1 Fig).
In contrast, higher doses of antimicrobial drug, beyond A��

m , are able to induce immediately the
decline of both sensitive and resistant populations (e.g. Fig 2A: Am = 20, and Fig 2B Am = 40),
but at the risk of a resistant relapse if they are not high enough, or applied sufficiently long (Eq
19). At the extreme case of very aggressive treatment, the host experiences minimal immuno-
pathology from infection, but also does not accumulate any immune memory.

As a result of interference by the drug, at certain intermediate doses, relapses in pathogen
load can be maintained indefinitely. These arise when immunity at the end of treatment

Fig 4. Aggressive treatment guaranteeing infection clearance using a classical regime, without relying on host immunity. Antibiotic dose and
treatment duration can be traded-off against one another, at any treatment onset (lines depict τ1 varying between 2 days and 5 days), to achieve the same
final result: infection clearance by the end of therapy. We apply Eq 19 to two infection scenarios: A) a = 0.1, very high resistance; andB) a = 0.3 lower
resistance of the drug-resistant bacterial sub-population. Parameters as in Table 1.

doi:10.1371/journal.pcbi.1004857.g004
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consists approximately only of effector cells I� E, and coincides with r0/d, while pathogen load
coincides with B(t) = hk/σ (see S1 Text, part I). Since these values are sufficient to yield dE/
dt = 0 and dB/dt = 0, a persistence quasi-steady state is observed with oscillatory dynamics, as
reported also in the model by [33]. Such oscillations typically arise in predator-prey systems,
making it hard for the immune response to clear the pathogen in the short term. The total
pathogen density may consist of sensitive or resistant bacteria, if the dose has been low or suffi-
ciently high respectively. Given enough time however, conversion of effectors into memory
cells will gradually build up enough persistent immunity to enable final clearance.

When fixing the delay τ1 for treatment onset, we find many dose-duration combinations
that select for the same amount of resistance overall, although they lead to varying immunopa-
thology (S2 Fig). On the other hand, many dose-duration combinations lead to the same
immunopathology (clinically neutral range) [15], while corresponding to different bacterial
burdens and infection duration. Testing for the advantages of increasing treatment duration,
we find that these apply only in those combinations of dose and delay where treatment imme-
diately induces net pathogen decline. In dose-delay combinations where treatment allows slight
pathogen growth, thus co-stimulation of the immune system, we observe that increasing treat-
ment duration does not significantly improve infection outcomes, as ultimate clearance is
driven by host immunity. In cases where antibiotic doses just about prevent growth of B(t),
keeping bacterial density at a too low level relative to the immunity threshold k, longer treat-
ments may worsen outcomes: by delaying the relapse bound to occur at the end of therapy, and
by increasing resistance selection.

Numerical search for optimal classical treatment
When mapping each infection profile to a quantitative assessment of infection summary mea-
sures (see Methods), we notice more clearly how treatment dose and delay mediate selection
for resistance, infection duration and host immunopathology, as shown in S3 Fig. In Fig 5
instead, we illustrate primarily one dimension of treatment success: resistance selection. Con-
sidering several treatment landscapes, we observe that for intermediate doses, there is a selec-
tion window for resistant bacteria, namely mutant selection window (MSW), that shifts when
treatment onset is delayed. This selection window includes a much narrower range of doses
when the susceptibility a of the resistant strain increases, or when treatment duration increases
from 7 to 15 days. With diminishing cost of resistance, the resistance selection window moves
towards higher doses, as expected.

In particular, Fig 5 shows the relative selection of resistance in different infections under
treatment, varying the cost and benefit of resistance, and treatment dose, timing and duration.
The doses are chosen in each case to represent the relevant relative range interpolating
½0:1A�

m; 2A
��
m �, thus comprising doses below, within and above the critical inhibitory doses for

Bs and Br respectively. The resistance selection window, depicting dose-delay combinations in
which Rtot is higher than the resistance burden of an untreated infection is given by the white
dashed contour line, and shown separately for clarity also in S4 Fig.

In such landscapes, one can seek optimal treatment by imposing that certain targets be
met in terms of infection features, taking as reference the corresponding untreated infection.
For illustration, we first set a target for treatment to successfully clear infection: quantita-
tively, to keep infection duration within a factor of 1.1 relative to its value in the no-treatment
case. The resulting dose-delay combinations are depicted with yellow dots. Then, we set in
addition a second target: for treatment to lower immunopathology Htot by at least 2-log
orders of magnitude. Those combinations of dose and delay that satisfy both these criteria
are depicted by red dots.
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Among these candidates, we can notice that there are broadly two ways of reaching infec-
tion clearance and reducing immunopathology with classical treatment: either with super-
critical doses, above the resistance selection window, or with subcritical doses, below the
resistance selection window. In the first case, there is little or no involvement of host immu-
nity, whereas in the second case, there is synergistic immune response contribution to patho-
gen clearance. In the latter moderate treatments, as treatment is delayed, a greater level of
host immunity is expected at onset, thus there is less chance for immunity to fall to subcritical
levels during treatment. For this reason, with later onsets, we observe that higher doses begin
to satisfy our optimality criteria. Although they are not needed for clearance, slightly higher
doses, in this moderate range, remove the bacterial killing burden from the immune system,
yielding lower pathology. Even when the cost of pre-existent resistance is lower (Fig 5D and
5G), moderate doses, below the corresponding A��

m , applied at moderate delays post-infection,

Fig 5. Resistance selection over treated infections, for different combinations of dose Am and delay τ1 in the classical regime. The simulated values
of Am correspond to 30 doses in the range ½0:1A�

m; 2A
��
m �. We plot the proportional change in the resistance burden over treated infection Rtot, relative to the

samemeasure in untreated infection, as a function of antibiotic dose and timing of treatment onset for a range of infection scenarios. In the subpanels, the
benefit and cost of resistance, and treatment duration vary as: A) a = 0.1, c = 2.2, τ2 = 7; B) a = 0.2, c = 2.2, τ2 = 7; C) a = 0.1, c = 2.2, τ2 = 15; D) a = 0.1, c = 1,
τ2 = 7; E) a = 0.2, c = 1, τ2 = 7; F) a = 0.1, c = 1, τ2 = 15; G) a = 0.1, c = 0.1, τ2 = 7; H) a = 0.2, c = 0.1, τ2 = 7; I) a = 0.1, c = 0.1, τ2 = 15. The resistance selection
window is defined by the dashed white line (contour line corresponding to a proportional change of 1). Superimposed are treatment combinations that
maintain infection duration within a factor of 1.1 relative to no treatment (yellow dots), and those that, in addition, satisfy a reduction in immunopathology by at
least 2-logs order of magnitude (red dots). All parameters as in Table 1, unless otherwise stated. The growth rate of the resistant bacteria Br is varied as r1 =
r0 − c (different rows). Moderate dose-delay combinations, applied below the resistance selection window at each infection, can be effective in clearing the
pathogen, in synergy with host immune responses. The aggressive high doses instead are effective without relying on the contribution by the immune
system.

doi:10.1371/journal.pcbi.1004857.g005
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can be effective to rapidly remove the pathogen, limiting the ascent of the resistant sub-
population.

Regarding the impact of longer classical treatment, 15 days, as opposed to 7 days, we find
that in the moderate dose range (below the selection window) prolonging the therapy does not
add new optimal dose-delay combinations (Fig 5), and no significant gains in infection out-
comes such as resistance selection or time to clearance. In contrast, in the aggressive dose
range (above the MSW), longer duration of treatment increases the effectiveness of relatively
lower doses: expanding the range of small dose-delay combinations that can be used to clear
infection (shown in S5 Fig), as expected from our earlier analysis in Eq 19.

Zooming further into optimal treatments, (e.g. the low cost resistance scenario of Fig 5G),
we find that dose-delay combinations satisfying only the duration criterion (yellow) yield
higher immunization levels for the host at the end of infection, than treatment combinations
satisfying both the low duration and low immunopathology criteria (red), shown in Fig 6.
Resistance selection, compared to untreated infection, is also lower in scenarios of low immu-
nopathology. However, in a majority of the other moderate scenarios, shown in the top-right
panel in Fig 6, the resistance selection factor is still below 1, evidently displaying an improve-
ment compared to no-treatment.

Fig 6. Details from optimal moderate treatments in the classical case, for high cost of resistance.We compare infection outcomes obtained from
selected dose-delay combinations (Am, τ1) below MSW in scenario G of Fig 5 where the cost of resistance is c = 0.1. The treatment combinations satisfying
only the duration criterion (yellow) display higher immunity levels at the end of infection than treatment combinations satisfying both the low duration and low
immunopathology criteria (red). The resistance selection factor (relative to no treatment) is lower in scenarios of low immunopathology. However, as shown in
the top-right panel, in about 75% of the other moderate scenarios (yellow), the resistance selection factor is still below 1, evidently marking an overall
reduction compared to no- treatment.

doi:10.1371/journal.pcbi.1004857.g006
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Unsurprisingly, when immunity does not wane (h = 0), clearance of infection by classical
treatment becomes easier, (S6 Fig) and the range of effective moderate doses below the MSW
increases slightly. In this case, the MSW peak is lower than that in the h> 0 case, illustrating
reduced potential for pathogen growth within-host, and it is centred at earlier delays, due to a
more robust immune response experiencing only minor interference by treatment.

Taken together, these results confirm the effectiveness of aggressive therapy, but also
uncover the effectiveness of moderate antibiotic doses, in combination with appropriate timing
of treatment, for achieving synergistic infection clearance involving host immunity.

Adaptive treatment and the role of the symptom threshold
After considering classical treatment, with fixed onset, duration and dose, we also explore
infection dynamics under an adaptive treatment regime (Fig 1C), where drug uptake is related
to pathogen density (B(t)� O). Here we vary the dose Am and the symptom threshold O, i.e.
the total pathogen load above which the host takes the antimicrobial drug.

Our simulations convey that how the symptom threshold O compares with the host immu-
nity threshold k impacts strongly duration of treatment and the ensuing dynamics (Fig 7).
Recall that k corresponds to the pathogen density required for half-maximal immune stimula-
tion. We observe that for O� k, the drug starts to act too early, namely before or just when
host immunity has been triggered to grow at its half-maximal rate, and adaptive treatment
does not always clear an infection. In particular, if high doses are applied too early, an adaptive
regime leads to chronic maintenance of either resistant or sensitive bacteria, in relapsing mode,
peaking at O for indefinite time, an effect due to suboptimal immune activation and direct cou-
pling of treatment to pathogen load. If treatment allows for minimal pathogen growth, thus
only at low doses, adaptive treatment can yield pathogen clearance.

On the other hand, when the symptom threshold exceeds the immunity threshold (O> k),
effective clearance of infections is more likely to occur (Fig 8A). In these cases the immune sys-
tem and the drug possibly act in synergy, for as long as needed to initiate and complete bacte-
rial clearance. During such an adaptive treatment, sensitive bacteria can continue to grow
slightly above O if doses are low, or remain fixed at O if doses are higher, but selection of the
resistant sub-population is minimal and independent of the dose.

Intuitively, for the success of the adaptive strategy, the involvement of the immune system is
a pre-requisite. However, how high exactly the ratio O/k needs to be, in order to guarantee
clearance, must depend on the magnitudes of other immunity parameters, such as σ and h. For
example, the higher the rate of immune stimulation, σ, or rate of memory formation, h f the
closer to k the adaptive symptom threshold can be (i.e. the earlier treatment can begin). We
make this precise by the following arguments.

Suppose that when treatment begins, thus when B(t) = O, most of the bacterial population
consists of drug-sensitive bacteria (i.e. when r0> r1). Then the dose required to interrupt bacte-

rial growth is roughly Am ¼ r0�dIðtOÞ
d0

. Conversely, if r0 � r1, and the fitness cost of resistance is

low, this no-growth dose is determined by the resistant sub-population Am ¼ r1�dIðtOÞ
ad0

.

By instantaneously modulating rate of drug administration η(t), adaptive treatment man-
ages to effectively scale higher antibiotic doses to these minimal inhibitory values, thereby
maintaining pathogen load at O. Optimal adaptive treatment, during drug-administration,
keeps B(t) at the symptom threshold O, which is sufficient to provide constant immune stimu-
lation. Under this scenario, using Eqs 4 and 5, the immune response dynamics during
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Fig 7. Adaptive treatment dynamics depends on dose Am and the symptom thresholdΩ. A) High cost
of resistance (c = 2.2) where ½A�

m;A
��
m � ¼ ½3:3; 11�. B) Low cost of resistance (c = 0.1) where

½A�
m;A

��
m � ¼ ½3:3; 32�. All other parameters as in Table 1 (r0 = 3.3, k = 105). Drug-sensitive pathogen dynamics

are plotted in blue solid lines, and drug-resistant pathogen dynamics are given by the red dashed lines. In
adaptive treatment, doses below A�

m allow bacterial growth during treatment thus co-stimulation of immunity.
Higher doses are scaled according to pathogen density B(t)� Ω, which maintains the total infection load atΩ,
until sufficient host immunity has been mounted. Doses above A��

m can be scaled down if necessary (A top
right panel), or used in full (B top panel) guaranteeing the no-growth condition. Under σ = 2 as in Table 1, at
too low symptom thresholds (Ω < k), the treatment starts too early, and immunity does not reach the critical
level. When coupled with high dosage of treatment, this results in chronic infection being maintained
indefinitely, unless other killing mechanisms or non-specific immune defenses are present at such low
bacterial densities and can assist in clearance.

doi:10.1371/journal.pcbi.1004857.g007
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treatment can be approximated as:

IðtÞ � EðtÞ þMðtÞ

¼ EðtÞ þ hf 1� O
Oþ k

� �Zt

tO

EðsÞds

¼ IðtOÞeZt þ hf 1� O
Oþ k

� �
IðtOÞ
Z

ðeZt � 1Þ;

ð20Þ

where, for simplicity of notation

Z 	 ðsþ hÞ O
Oþ k

� h

represents the net exponential rate of change, and I(tO) is the immunity at treatment onset, i.e.
when B(t) reaches O. This level of immunity at treatment onset can be computed from the

Fig 8. Illustration of adaptive treatment above the immunity threshold (Ω > k). A)Clearance dynamics whenΩ is sufficiently high (Ω = 10k), i.e. satisfies
Eq 22. B) No clearance dynamics, whenΩ is too close to k (Ω = 5.6k), and adaptive treatment induces oscillatory dynamics. C) High rate of effector cell
conversion into memory f = 0.1.D) Lower rate of conversion into memory f = 0.05. When persistent immunity accumulates faster, the range of symptom
thresholds where adaptive treatment works, approaches the host immunity threshold, enabling treatment success at lower pathogen densities. Parameters
as in Table 1, with k = 105.

doi:10.1371/journal.pcbi.1004857.g008
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approximation in Eq 13, replacing B by O and solving for I. In the derivation of Eq 20, the con-
tribution of N cells is assumed negligible, and total immune response is given by effector and
memory cells only. The condition for the exponential rate of change to be positive (Z> 0) is
satisfied if: O/k> h/σ. It becomes evident that the rate of growth of the host immune response
during treatment depends not only on how O compares with k, but also on the lymphocyte
recruitment rate σ, rate of decay h, and proportion differentiating into persistent memory cells
f. Clearly, the same rate of immune buildup may be achieved by the balanced effects of either
higher O/k or higher σ (see S7 Fig).

Enabling the immune system to catch up during treatment, the adaptive therapy will then
last until the critical level of immunity, Icrit, has been reached. Using Eq 20, the expected dura-
tion of successful adaptive treatment can be calculated as:

Duradaptive ¼
1

Z
log

Icrit
IðtOÞ

Z þ hf 1� O
Oþ k

� �

Z þ hf 1� O
Oþ k

� �
2
664

3
775; ð21Þ

after which the immune system of the host should be able to finish the ‘job’ of pathogen clear-
ance. From this equation, matching very well with our simulations (S8 Fig), we observe that a
stronger immune response guarantees shorter treatment duration, during which the drug is
taken only while necessary, to facilitate subsequent action by the immune system.

At the end of such an adaptive treatment, the host immune responses have reached the criti-
cal level Icrit, required for initiating pathogen decline. Although this is the first necessary step
for clearance, it is not sufficient. While pathogen load starts to decline from levelO, residual
immune stimulation continues initially post-treatment, as long as total pathogen load satisfies

B > khð1�f ÞE
sðNþEÞ � khð1�f Þ

s , following from Eqs 3–5. But as B drops to low numbers, the immune

response starts to decline as well. If the time it takes for this declining immunity to reach Icrit
again, exceeds the time it takes for the declining pathogen load to hit the extinction threshold,
then clearance occurs after adaptive treatment (Fig 8A). On the contrary, infection clearance
does not occur if immune responses fall to sub-critical levels before pathogen extinction (Fig
8B). In that case, an oscillatory dynamics between pathogen—occasional treatment—and
immunity emerges, and infection continues. Mathematically, by analyzing the ‘contraction’
phase of host immunity, these clearance and no-clearance regimes can be approximately distin-
guished via the following criterion (see S1 Text, part II):

log
B
O

� �

log
Bþ k
Oþ k

� � ¼ s
hð1� f Þ þ 1 and

B � Bext ! clearance

B > Bext ! relapse;

(
ð22Þ

which applies to the pathogen load when host immunity hits Icrit during its contraction phase.
If the solution to the above equation is below the extinction density Bext, then adaptive treat-
ment administered at symptom threshold O will be effective, otherwise oscillatory dynamics
will be induced by treatment instead of clearance. The above conditions specify the parameter
space where adaptive treatment can provide a sustainable solution for resistant infections
under minimal drug pressure, highlighting the important role of the immunity threshold k, as
well as other immunity parameters. Thus, not all symptom thresholds O above k are effective:
only those, which in combination with the rest of immune indicators, and the pathogen extinc-
tion threshold, satisfy the necessary and sufficient criteria for clearance, as illustrated in Fig 8C
and 8D.
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Notice that the distinction between clearance and relapse after adaptive treatment, obviously,
only applies if there is the possibility of a contraction of the immune response in the time scale
of interest, i.e. if h> 0. In case immunity does not wane (h = 0), clearance always follows after
adaptive therapy, with ever-increasing immunity I> Icrit, and Eqs 20 and 21 still apply. What
may vary is the speed of such clearance, ultimately regulated by the pathogen killing efficiency
of immune cells, d.

Classical vs. adaptive regime?
To jointly evaluate both protocols on the same infection, we assume τ1 (classical treatment)
equals the time it takes the total bacterial population to reach the symptom threshold O (adap-
tive treatment) in the absence of the antibiotic, so we ensure equivalent treatment onsets. We
consider variable symptom threshold O = B(τ1), and variable dose Am. Assuming a fixed dura-
tion of 7 days for classical treatment, we compare infection outcomes between the two regimes
(Fig 9), for simulated dynamics up to 30 days.

Keeping all other immunity parameters fixed, when the symptom threshold is lower than or
equal to the immunity threshold, it is classical treatment with high doses that is more likely to
clear infection, by 10 days on average, as shown in Fig 9A (red circles). At such low bacterial
densities adaptive treatment generally fails, and induces oscillatory pathogen dynamics, unless
the doses are sub-inhibitory, such that bacterial growth continues during treatment, stimulat-
ing immunity and eventual clearance.

As the delay of treatment onset increases, implying higher symptom thresholds, clearance of
the same infection can be obtained by both classical and adaptive regimes (Fig 9A, blue squares).
However, while in the classical regime, the clearance doses are generally very high, the effective
doses in adaptive therapy are much lower (Fig 9B). Contrary to the fixed protocol of the classical
regime, in adaptive treatment, duration and drug uptake are modulated by pathogen load. As
immune response grows rapidly during adaptive treatment at symptom thresholds above k,
decreasing the growth potential of bacteria within host, the rate of uptake of the drug progres-
sively goes down. This effectively reduces the dosage of therapy to the minimum necessary,
thereby limiting resistance selection, and minimizing gradually any interference with immunity.

For our illustrative parameter values (Table 1), as shown in Fig 9C, adaptive treatment
achieves infection clearance by day 8 post-infection, averaged over all dose-delay combina-
tions, while classical treatment clears infection later, in 12 days on average. This longer time to
clearance results from those cases when low-dose classical therapy disrupts temporarily the
natural course of host immune defenses, leading to bacterial relapse post-treatment and
delayed immune control.

The differences in immunopathology and total bacterial burden from our simulations
favour classical treatment by a slight amount, but when considering total resistance burden,
the adaptive treatment is remarkably superior, yielding lower values by at least two orders of
magnitude, averaged across all dose-delay combinations that we tested. The analogous compar-
ison between the two protocols, for a lower cost of resistance, is shown in S9 Fig, where the
greater immune activation obtained from resistant bacteria growing slightly at sub-inhibitory
doses, increases the success potential for adaptive treatment, but at the cost of higher pathol-
ogy. We also find treatment scenarios where infection may be prolonged indefinitely, both
within classical and adaptive regimes, a failure feature attributed previously only to adaptive
scenarios [31].

As the distance of the symptom threshold from the immunity threshold (O/k) increases,
treatment is initiated at higher and higher pathogen loads, where the preponderate role in bac-
terial killing can be more readily fulfilled by the immune system. At such high pathogen
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numbers, classical treatment, by maintaining drug pressure over longer periods of time, relieves
to a larger extent the burden on host defenses. Thus, a classical regime is bound to yield lower
immunopathology, because it replaces the role of the host’s immune system. Adaptive treat-
ment, instead, does precisely the opposite: it exploits the contribution of the immune system,
and while doing so, is able to achieve the same reduction in pathogen load and infection dura-
tion. On one hand, this might entail the cost of more pathology, but also brings about the
potential benefit of host immunization.

Discussion
An essential question in resistance management is how can evolutionary approaches be applied
to identify therapeutic regimes that can best counteract the rise of antibiotic resistant

Fig 9. Comparison of classical and adaptive regimes, for variable dose and treatment delay. Different treatment scenarios are simulated up to T = 30
days post-infection. Classical treatment assumes a fixed duration of 7 days, while in the adaptive regime, drug uptake is related to bacterial density above the
thresholdΩ = B(τ1). Parameters as in Table 1. A) Clearance of infection by 30 days can be obtained: via classical treatment only (red), via adaptive treatment
only (green) or using either regime (blue). B)-C) The amount of drug deployed in each treatment and the associated time to clearance. Longer time to
clearance in the classical regime at low doses corresponds to relapsing infection after treatment cessation, and delayed clearance by host immunity.D)
Treatment outcomes in those cases where both regimes, classical/C, and adaptive/A, can yield infection clearance (mean ± sd), with: �BC

tot ¼ 3:2
 107,
�BA
tot ¼ 9:6
 107; �RC

tot ¼ 1:4
 106, �RA
tot ¼ 1:3
 103; �HC

tot ¼ 3
 107, �HA
tot ¼ 1:5
 108. E) Treatment outcomes in those cases where clearance can be achieved

exclusively via one or the other regime (mean ± sd), with: �BC
tot ¼ 2:1
 106, �BA

tot ¼ 1:4
 108; �RC
tot ¼ 2:0
 106, �RA

tot ¼ 1:3
 103; �HC
tot ¼ 2:2
 106, �HA

tot ¼ 2:3
 108.

doi:10.1371/journal.pcbi.1004857.g009
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pathogens [14, 15, 60]. Optimal treatment protocols should seek to restore patient health,
while minimizing immunopathology, limit the pathogen load and resistance over infection,
and prevent transmission. In this paper, we have used a mathematical model to examine condi-
tions of antibiotic treatment that optimize outcomes of infection with drug-resistant infectious
organisms. Although the role of immunity and treatment timing has been evoked in recent
work, in this paper we have provided a deeper analysis of these two important aspects of treat-
ment, in particular interpolating between classical and adaptive regimes.

Motivated by recent studies on the topic [14, 30, 31], we have explored in detail the fine
interplay between antibiotic dosage, treatment onset and duration, and host immunity. The
interaction between antibiotics and the immune response can be antagonistic when antibiotic-
mediated pathogen killing decreases the intensity of the immune response activated for infec-
tion clearance. However, we find that appropriate timing, moderate dosage and duration of
treatment can transform this interaction into a synergistic one, where both antibiotic and host
immunity act together.

Antibiotic treatment with fixed dose and duration is the dominant conceptual framework in
antimicrobial therapy and clinical settings. Recently it has been questioned whether the classi-
cal recommendation of treating infections as aggressively as possible, with high antimicrobial
doses and long duration, is the most appropriate therapeutic strategy in the presence of drug-
resistance [14, 16]. Due to the growing resistance crisis, clinical practice is also opening up to
treatment regimes that offer either a more dynamic alternative to fixed prescription, or explore
delaying treatment onsets [61–64]. In the present study, analysis of our model and changes in
several key parameters, allows us to go a step further in this discussion. We observe that the
reality of within-host infection dynamics is highly non-linear, with many intervening pressures
among which host immunity, that act in conjunction to produce diverse outcomes. We have
dissected the effects of classical therapy, being it aggressive or moderate. Further, we have iden-
tified the mechanistic links between moderate treatment and an adaptive regime, where drug
uptake closely follows infection progression via symptom signalling of pathogen dynamics.

We have found that whether in a classical or adaptive regime, timing of antimicrobial ther-
apy is very important for treatment success. Treatment timing (delay) effects are twofold: on
one hand related to pathogen load, and on the other hand, to the level of immunity expected
upon onset. While increasing pathogen load requires higher doses to achieve clearance by a
given time, increasing immunity over the course of an infection acts to facilitate clearance with
smaller doses. These two opposing forces can be reconciled through intermediate treatment
timing, corresponding to pathogen loads just above the immunity threshold (the half-satura-
tion constant for antigen stimulation of immunity). Undoubtedly, this optimal timing is sub-
ject to other immune characteristics and pathogen factors, and we have analyzed in detail some
of these here, including the rate of immune activation, decay and differentiation into memory.
While different pathogen systems may exhibit different forms of interaction with immunity,
requiring adaptation of model structure, similar critical drivers of treatment success, as the
ones analyzed here, may emerge.

Besides the ‘hit hard and fast’ protocol, we find that classical treatments of moderate doses
and moderate duration, when applied at the right time, can promote a synergy between the
host immune system and antibiotic treatment. The definition of ‘moderate’ depends on the
critical dose range ½A�

m;A
��
m �, that varies with fitness cost and benefit of resistance, and with

absolute pathogen growth rate within host. Adaptive treatment, on the other hand, calibrates
moderation in an autonomous manner, by coupling drug administration to pathogen dynam-
ics, and its typical effectiveness in leading to infection clearance depends on how the symptom
threshold compares to the host immunity threshold and other kinetic parameters. A safe choice
in adaptive regimens seems to be deployment of the higher A��

m dose as default (minimal
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inhibitory dose for the resistant sub-population), which will be naturally scaled down to A�
m in

the best case, or will be taken in full if necessary in the worst case. The duration and success of
adaptive therapy is then naturally determined by the strength and speed of host immunity, sug-
gesting that it may not be a feasible solution for immunocompromised hosts.

When comparing the performance of the classical and adaptive regime in treating the same
infection, we found again that the timing in relation to the immunity threshold k, was impor-
tant, although the critical value is inevitably modulated by other host immunity parameters.
Below the immunity threshold, typically only the classical regime could clear an infection by 30
days, or only adaptive regimes with sub-critical doses, where pathogen levels stimulate suffi-
cient immunity. Generally, above the immunity threshold, adaptive and classical treatment can
both be effective in clearing infections, but in different ways, and using different amounts of
antibiotic pressure. While classical treatment deploys higher amounts of drug, and is generally
superior in terms of yielding lower host immunopathology, adaptive treatment, by relying on
minimal drug pressure, minimizes selection of pre-existing resistance and promotes
immunization.

The importance of immunization depends on the likelihood or re-exposure to the same
pathogen. While the level of immunity provided by moderate treatments may yet be sub-opti-
mal to completely clear a secondary infection (see S10 Fig), it may be sufficient to constrain
growth, trigger a rapid secondary response, or contribute to clearance alongside innate immu-
nity or other control mechanisms. The caveat for the adaptive strategy remains ensuring per-
fect translation and immediate response delivery to the symptom signal, and here more
research is needed. In reality, one is usually constrained by how much immunopathology a
given host can tolerate, how toxic the drug is, and also what upper bounds one should target
for overall resistance and infection duration. Hence, there may be cases where the dose needed
to effectively eliminate all pathogens might also not be an available option.

Links with empirical data
By exploring in detail the treatment parameter space, across classical and adaptive regimes, we
uncover the cases where a more prudent use of antibiotics, with lower doses over less time,
could be favoured, as a more effective way to reduce the rate of ascent of resistance. Our results
thus extend the perspectives of Read et al. [14], highlighting the novel important role of treat-
ment timing, as advocated recently by other modeling studies [23, 33], and bring forward new
testable hypotheses.

Our model behaviour illustrates four broad infection outcomes: acute infections dominated
by either drug-sensitive (i) or resistant bacteria (ii), and relapsing infections dominated by
drug-sensitive (iii) or resistant bacteria (iv), which can reach higher or lower peaks than pre-
treatment levels. Relapsing resistant infection, has been observed experimentally in malaria
parasites in vivo[16] and in bacterial infections of humans, e.g. urinary tract recurrent infec-
tions within 2 weeks of treatment [65], infections with C. difficile[66], in clinical treatment of
Salmonella bacteraemia [67] and in treatment failure of endocarditis [68], where relapse was
associated to heterogeneous resistance of Staphylococcus aureus pre-treatment. Treatment fail-
ures leading to relapses often occur because of a mismatch between first line antimicrobial
therapy and the unknown antibiotic susceptibility of the disease-causing agent. On a broader
level, infection relapses post-treatment may have parallels with the trade-off between clearance
by intervention and immunization, observed also at the epidemiological level, as it has been
argued for example in schistosomiasis control [69], where massive drug administration, reduc-
ing antigen exposure, could result in rapid decline of protective immunity in the population
and infection rebound if treatment ceased.

Integrating Antimicrobial Therapy with Host Immunity

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004857 April 14, 2016 24 / 34



To successfully treat resistant infection in hosts with an intact immune system, our model
suggests that doses can be moderate, especially when the treatment (symptom) threshold
exceeds the immunity threshold. This results in an optimal delay [33], after which the critical
pathogen density, triggering adaptive immunity, has been surpassed, and the subsequent over-
shoot in pathogen-growth is minimized through treatment. This is similar to the principles
advocated by Tanaka et al. [23] for treatment timing near the epidemic peak at the population
level. Our results thus highlight the importance of appropriate timing of moderate therapy and
synergistic action of host immunity whenever possible. These theoretical analyses corroborate
evidence from experimental and clinical studies of infection [40, 70, 71], and call attention on
the empirical values of the host immunity threshold [36], and other variable immune response
determinants [72] as critical modulators of treatment success.

The role of mutational input to the system
In our model, we neglected the process of de novomutation that can lead to resistance to the
current drug. Exploiting the analogy with the Luria-Delbruck process [73], it is known that the
timing at which the first resistant clade arises impacts strongly on the subsequent prevalence of
resistance in a growing bacterial population. If the first resistant strain arises early over infec-
tion, a large resistance clade ensues within host. In contrast, if the first resistant strain arises
later, the resulting clade is expected to be smaller. These effects are amplified in the presence of
immune control. A similar scenario at the population level has been explored by Tanaka et al.
[23]. In a way, our model considers the worst extreme of this timing spectrum for the host, by
assuming that resistance is already pre-existent from the start of infection. Assuming some fit-
ness cost of resistance and a slight advantage in initial numbers of the drug-sensitive bacteria,
postponing slightly antibiotic treatment until host immunity is triggered, gives the sensitive
sub-population a sufficient head start, limiting the ascent of the resistant competitors.

It is possible that during infection, de novo resistance emergence may occur, at any point of
the dynamics. Moreover, the probability of de-novo emergence of resistance through a muta-
tion rate per unit of time should apply to each parental strain: the sensitive and resistant bacte-
ria. In fact, it has been shown that already-resistant strains may have higher mutation rates to
develop new resistances [74]. However, to describe the subsequent dynamics of these newly
emergent strains within host, one would need to make further assumptions about what the cost
and fitness benefits of such new mutations may be with regards to the present infection. In this
process, one may choose to explicitly simulate emergence, or could track, for example, the
overall probability of new (generic) resistance emergence over the entire infection period,

Pemergence ¼ 1� e�y
R D

0
BðtÞdt , with θ denoting mutation rate per unit of time, and examine criteria

to restrict this quantity. Following [75], a critical threshold for this probability could be the
value 1 − e−1, above which emergence would be expected almost certainly in a semi-stochastic
setting. To constrain such probability of emergence, basically implies a restriction on the total
bacterial burden over infection, in relation to the particular value of the mutation rate, and this
could be readily investigated with the current framework.

In the future, it will be essential to address the process of mutational input to the system in
more detail, and analyze the different phenotypes that may emerge, their mutual correlation,
and their consequences for infection dynamics. These include drug resistance to the current
and other drugs [74], with the worst scenario being an increase in non-susceptibility (1 − a
parameter in our model), persister phenotypes [76], compensatory mutations reducing fitness
cost [34], virulence, and interaction with the host immune system. It is likely that some of our
findings may not hold in all scenarios, and this remains an open avenue, to be explored on a
case-by-case basis. In specific bacterial systems displaying drug resistance, empirically derived
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distributions of mutation effects [77] can eventually be used to inform realistic model exten-
sions. Another line of exploration remains the process of horizontal gene transfer, where the
rates of resistance exchange through mobile elements have been shown to be orders of magni-
tude higher than those of point mutation [78].

Future prospects
In the interest of generality and clarity, several simplifications were necessary to obtain analyti-
cal insight. Focusing on the principal fitness differences between resistant and sensitive bacte-
ria, we did not further consider separate in-host compartments for bacterial growth as in [31].
We also focused on exponentially growing pathogen in the absence of treatment, although pre-
vious studies have accounted for logistic growth imposed by resource limitation [24, 30, 31].
Logistic growth changes the dynamics of untreated infections in a major qualitative manner,
allowing for acute infections, as well as persistent colonization states, typically observed with
enteric bacteria [79]. Among other issues, this qualitative change would require a rethinking of
the optimality criteria for antibiotic treatment, and of the interplay with host defenses. We
believe an understanding of how logistic growth parameters may interact with the host immu-
nity threshold and treatment parameters deserves a deeper study of its own, where systematic
analysis of different scenarios can reveal new results.

Using a deterministic approach, in line with existing studies on the topic [29, 30], we also
did not explicitly model demographic stochasticity of bacteria within host, beyond the assump-
tion of an extinction threshold. We decided to focus on understanding the mechanisms of
infection dynamics and the selective processes operating during treatment. Naturally, for
greater realism and applicability of the model in practical settings, all factors contributing to
stochasticity and bacterial growth in different organs and host compartments must be
accounted for in the future (see [80] for a data-driven example on Salmonella infection, and
[81] for a recent computational tool developed for TB treatment). As previous models have
shown, drug concentration heterogeneity in different body compartments may yet be another
factor impacting drug resistance evolution within host [82].

Notice that we do not deal with secondary infections in this paper. Immune kinetics over
consecutive encounters with the same pathogen is complex, and the precise relationship
between memory cells and those of the primary response is the subject of debate [83], and
many theoretical formulations. Stromberg and Antia [33] suggested a quick way to mathemati-
cally simulate reinfection, using the same model structure, but assuming that the first immune
cell compartment represents pre-existent memory (instead of naive precursors), initialized at
the level of memory cells (Mfinal) obtained or remaining from the primary response. Upon new
pathogen encounter, these cells would then acquire effector function and drive rapid pathogen
clearance, boosting adaptive immunity. Another way of extending the current model to accom-
odate secondary infection and the action of immune memory would be to modify the equations
by adding a direct contribution into the E compartment byM cells, as a function of their stimu-
lation by antigen (see S1 Text, part III). In the time scale considered in this paper, such conver-
sion process (M! E) is broadly inconsequential for overall clearance dynamics. Our main
results, highlighting the treatment-immunity interplay during primary infection, remain
robust to this assumption. Yet, when simulating scenarios of secondary vs. primary infection
(S10 Fig), the biological importance of pre-existing memory becomes clear, in particular the
trade-off between host immunization and pathology reduction induced by antibiotic treatment
during primary infection. More detailed conversion processes between effector and memory
cell compartments could of course be modelled depending on data availability and the precise
question.
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In future studies, critical attention must be devoted to the optimality targets for treatment.
If quantities to be optimized differ across settings, then optimal treatments will vary and may
be difficult to compare in a standard manner. We show that different infection features have
different sensitivity to treatment parameters. Thus, it is important to inform these control tar-
gets in a bottom-up fashion from clinical and medical considerations, but also from the
broader epidemiological context of specific pathogens. For example, what is the order of prior-
ity for optimizing different health indicators? How does the symptom threshold, when patients
seek specialized help, relate to the host immunity threshold? What is the upper bound for path-
ogen load within individual hosts to prevent onward transmission? What is a tolerable range
for immunopathology? All these questions require integrative approaches at the medical-
computational biology-and-immunology interface. Ideally, these should be achieved through
the analysis of resistance evolution in vivo, empirical data from clinical outcomes of specific
diseases, and integration with theoretical models.

Along similar lines, caution must be taken regarding the literal interpretation of the drug
doses used in our model, reflecting more what bacteria ‘experience’. The translation of the
modelled antibiotic dose to clinical prescriptions requires pharmacodynamic considerations
[84]. A constant level of drug concentration, as the one assumed here, is unrealistic for real
infection, except for cases of intravenous administration [85]. Yet, the behaviour described by
our model, and the suggested trends, regarding the critical dose range and the susceptibility
spectrum of co-infecting bacteria, are expected to be maintained, regardless of the correspond-
ing real drug concentrations. Calibration of the model structure and parameters to real data
from in vivo, in vitro, and clinical studies is a natural next step for validation.

Matching the in-vitro susceptibility of the pathogen and clinical prescription has been
shown to be an important prognostic factor in real clinical settings [17, 86]. Our findings point
to yet another dimension: accounting for the quantitative contribution of host immune
responses, whether in immune competent or immunocompromised state. Depending on the
type of infection, and host status, the optimal treatment parameters may vary. For some infec-
tions, such as Staphylococcus aureus bacteraemia or enterococcal endocarditis, prolonged treat-
ment is recommended to prevent relapse [87]. Conversely, in other situations including otitis
in children [88], the treatment of gonorrhoea [89], uncomplicated urinary tract infections in
women [90], and uncomplicated cases of community acquired pneumonia [61], the roles for
short courses of antibiotics appear well established.

We restricted our analysis to antigen-dependent immunity (type I), as this is likely to be
most vulnerable to interference by the antibiotic treatment. Action of antigen-independent
immunity (type II) could be included in our model as a reduction in net growth rate of bacteria
within host (e.g. via a constant factor, or a function of time [31]). Alternatively, to account for
the initial trigger by pathogen density, followed by programmed lymphocyte division, model
extensions like those in [33, 37] could be adopted. In principle, programmed immune defenses,
when added to the system, should weaken the competition between the drug and the other
immune responses that are coupled to pathogen density, facilitating infection clearance, espe-
cially in scenarios of antibiotic-driven relapses. When only programmed immune defenses are
available instead, then optimal therapies should approach aggressive treatment scenarios (Eq
19), where the interaction with the drug would occur only in one direction, from immunity to
the drug, possibly through a time-dependent net growth rate of the pathogen.

As our understanding of pathogen population dynamics within host increases, by incorpo-
rating in higher quantitative detail the action of the immune system, a more promising and
sustainable line of personalized antimicrobial therapy can be foreseen: the one based on a syn-
ergy between antimicrobial drugs and host immunity, whenever possible. In the future it will
be important to robustly validate the sensitivity of treatment dynamics to pathogen and host
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parameters, initial conditions at treatment onset, and concentration of antibiotics. By empha-
sizing the dependence of therapeutic success on these crucial quantities, across classical and
adaptive treatment regimes, our study calls for more empirical attention to host’s natural
defenses in fighting drug-resistant infections.

Supporting Information
S1 Text. I.Model analysis: Equilibria and stability. II. Contraction phase of the immune
response after adaptive treatment. III. Extending the model to represent secondary infection.
(PDF)

S1 Fig. Effects of antibiotic therapy as a function of the time of treatment onset. A) c = 2.2
(high cost of resistance, as in Table 1). B) c = 0.1 (small cost of resistance). Other parameters as
in Table 1. Infections were simulated for 30 days. The different lines depict the proportional
reduction (on a log-scale) in different infection measures, relative to no-treatment:M(D) refers
to final immune memory, Htot to cumulative immunopathology, and Rtot to overall resistance.
We see a maximum effect at intermediate delays for moderate doses below and within the criti-
cal range ½A�

m;A
��
m �, signalling the benefit of host immunity involvement in clearance. This ben-

efit does not apply when aggressive doses are deployed.
(PDF)

S2 Fig. Dose-duration interaction, for 2 treatment delays. A) τ1 = 2 days. B) τ1 = 4 days.
Parameters as in Table 1. Top panel shows log-10 Rtot and bottom panel shows log-10 Htot,
where infections were simulated for 30 days. The same outcomes can be obtained by trading
off dose and treatment duration. When treatment onset exceeds the time required for immune
stimulation (B), lower dose-duration (Am, τ2) combinations become more effective.
(PDF)

S3 Fig. Dose-delay interaction determines multiple infection outcomes. A) a = 0.1 (high
resistance of Br). B) a = 0.2 (lower resistance of Br). Parameters as in Table 1. Top panel shows
log-ratios Rtot between treated and untreated infection, and bottom panel shows log-ratioHtot

between treated and untreated infection, where infections were simulated for 30 days. Negative
values imply an improvement relative to no-treatment.
(PDF)

S4 Fig. Resistance selection window for Fig 5 in the paper, related to classical treatment.
We plot more clearly the range of dose-delay treatment combinations that lead to selection of
the resistant sub-population, relative to an untreated infection. All parameters as specified in
Fig 5 of the paper.
(PDF)

S5 Fig. Treatment duration and time to clearance for Fig 5 in the paper, related to classical
treatment.We show a contourplot of the duration of treated infection across a range of dose-
delay treatment combinations, for the case of a = 0.1. The cost of resistance is: A)-B) c = 2.2, C)-
D) c = 1, E)-F) c = 0.1. The MSW is given by the region confined within the white dashed line.
All parameters as specified in Fig 5 of the paper. The two columns correspond to the first and
third column in Fig 5 respectively for treatment duration of 7 days and 15 days. Above the
MSW, treatment duration reduces time to clearance for the same dose-delay combinations.
Below the MSW, increasing treatment duration has no major effect. Notice that increasing treat-
ment duration around the critical inhibitory dose for Br, namely around A��

m ¼ r1
ad0

can worsen

treatment outcomes, inducing oscillatory dynamics (infection still persisting after 30 days).
(PDF)
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S6 Fig. Optimal classical treatments and non-waning immunity, h = 0.We show the resis-
tance selection over treated infections, for different combinations of dose Am and delay τ1 in
the classical regime. The simulated values of Am correspond to 30 doses in the range
½0:1A�

m; 2A
��
m �. The proportional change in the resistance burden over treated infection Rtot is

measured relative to the one in untreated infection, as a function of antibiotic dose and timing
of treatment onset for the same range of treatment scenarios as in Fig 5 of the paper. The resis-
tance selection window is defined by the dashed white line (contour line corresponding to a
proportional change of 1). Superimposed are treatment combinations that maintain infection
duration within a factor of 1.1 relative to no treatment (yellow dots), and those that, in addi-
tion, satisfy a reduction in immunopathology by at least 2-logs order of magnitude (red dots).
All parameters as in Table 1, unless otherwise stated. We vary the growth rate of the resistant
bacteria to reflect different costs of resistance c = r0 − r1 (different rows). Duration of classical
treatment is fixed to 7 days, except in C, F, I. We see again that moderate dose-delay combina-
tions, applied below MSW at each infection, can be effective in clearing the pathogen, in syn-
ergy with host immune responses. The aggressive high doses instead are effective without
relying on the contribution by the immune system.
(PDF)

S7 Fig. Immunity growing during adaptive treatment over a range of O and σ.We plot how
total immunity changes during simulations of adaptive treatment with O> k, (blue lines) and
superimpose the dynamics approximated by Eq 20 in the paper, in red. There is a clear match
between the two, confirming the validity of this approximation. The range for O is [105, 106],
while the rate of immune growth σ varies in [2, 4]. Parameters as in Table 1.
(PDF)

S8 Fig. The duration of adaptive treatment(days) over a range of scenarios. A) Simulated.
B) Theoretical expectation from Eq 21 in the paper. When strength of host immunity increases,
clearance by adaptive treatment can be achieved starting at lower symptom thresholds. Param-
eters as in Table 1. The dose used is the minimum required to stop growth of the dominant
sub-population at treatment onset (section 3.5 of paper), in this case drug-sensitive bacteria,
because the assumed cost of resistance is high (c = 2.2). A similar plot can be obtained when
the cost of resistance is lower, but in that case, the minimal inhibitory dose would be higher Am

= [r1 − dI(tO)]/(aδ0). The estimated duration of adaptive treatment will be insensitive to
changes in c, as long as the right dose for no-growth is used.
(PDF)

S9 Fig. Comparison of classical and adaptive regimes, for lower cost of resistance (c = 0.1).
Analogous to Fig 9 of the paper. Different dose-delay treatment scenarios are simulated up to
T = 30 days. In the classical regime, treatment duration is 7 days, while in the adaptive regime,
drug uptake is related to bacterial density above the threshold O = B(τ1). Parameters as in
Table 1, except for r1. A) Clearance of infection by 30 days can be obtained: via classical treat-
ment only (red), via adaptive treatment only (green) or using either regime (blue). B) The
amount of drug deployed in each treatment and the associated time to clearance. C) Treatment
outcomes in those cases where both regimes clear infection (mean ± sd). D) Treatment out-
comes when only one of the two regimes yields clearance (mean ± sd). Compared to Fig 9 of
the paper, here, adaptive treatment achieves clearance also at sub-optimal delays, because for
the same doses, growth during treatment of resistant bacteria, stimulates more immunity.
(PDF)

S10 Fig. Secondary infection scenarios withM! E activation added to the basic model.
Top row depicts primary infection in untreated and treated hosts. All parameters as in Table 1.
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Bs is depicted in blue, Br in dashed red line, and I in thin black line. Treatment parameters are:
Am = 32 and Am = 3 in the classical aggressive and moderate case, respectively with treatment
duration of 7 days; and Am = (r0 − dI)/δ0 in the adaptive regime. Dynamics after primary infec-
tion are run until T = 30 at which point a second infection is initiated with the same B(0) (Rows
2–4). The level of immune cells across all compartments at that time point is used to initialize
the values for reinfection dynamics. Primary infection dynamics are robust to inclusion/omis-
sion ofM! E activation.M! E conversion has major importance for subsequent infections.
Rows 2–4 depict secondary infection of the same host for different parameters of immune mem-
ory activation. As immune memory activation in an already immunized host becomes stronger
and more efficient, the pathogen load experienced by the host during a second infection is
reduced. At such low densities, and perhaps more generally during secondary response, addi-
tional immune mechanisms may enhance pathogen control and facilitate clearance.
(PDF)
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