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Abstract

Coronary artery disease represents the leading cause of mortality in the developed world. 

Percutaneous coronary intervention (PCI) involving stent placement remains disadvantaged by 

restenosis or thrombosis. Vascular gene-therapy-based methods may be approached, but lack a 

vascular gene delivery vector.

We report a safe and efficient long-term transduction of rat carotid vessels after balloon-injury 

intervention with a translational optimized AAV2.5 vector. Compared to other known AAV 

serotypes, AAV2.5 demonstrated the highest transduction efficiency of human coronary artery 

vascular smooth muscle cells (VSMC) in vitro. Local delivery of AAV2.5-driven transgenes in 
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injured carotid arteries resulted in transduction as soon as day 2 after surgery and persisted for at 

least 30 days. In contrast to adenovirus 5 vector, inflammation was not detected in AAV2.5-

transduced vessels. The functional effects of AAV2.5-mediated gene transfer on neointimal 

thickening were assessed using the sarco/endoplasmic reticulum Ca2+ ATPase (SERCA2a) human 

gene, known to inhibit VSMC proliferation. At 30 days, human SERCA2a mRNA was detected in 

transduced arteries. Morphometric analysis revealed a significant decrease of neointimal 

hyperplasia in AAV2.5-SERCA2a transduced arteries: 28.36±11.30 (n=8) vs 77.96±24.60 (n=10) 

μm2, in AAV2.5-GFP-infected, p<0.05.

In conclusion, AAV2.5 vector can be considered as a promising safe and effective vector for 

vascular gene therapy.

Introduction

Coronary heart disease represents the leading cause of mortality and morbidity in the 

developed world, accounting for approximately 1 of every 6 deaths in the United States in 

2006. It is estimated that every 25 seconds someone in the US will have a coronary event, 

with 1 in 4 of these events being fatal1. Atherosclerosis leads to the development of flow-

limiting lesions that result in clinical symptoms such as angina pectoris or intermittent 

claudication. Moreover unstable lesions undergoing plaque rupture and thrombosis result in 

myocardial infarction. Percutaneous coronary intervention (PCI) involving coronary stenting 

corresponds to the major medical intervention in the developed world for both acute 

coronary syndromes and symptomatic chronic coronary artery disease and remains 

refractory to pharmacological therapy2,3. Bare metal stents (BMS) efficacy was severely 

hampered by proliferating vascular smooth muscle cells (VSMCs), and the resultant 

neointimal hyperplasia, which is the only mechanism responsible for in-stent restenosis 

(ISR) after metal stent placement4. The advent of drug-eluting stents (DES, stent eluting 

drugs targeting VSMC proliferation) significantly reduced neointimal proliferation. 

However, anti-proliferative properties of DES impair and/or delay re-endothelialization, 

hence leading to late stent thrombosis. Consequently, there is a medical need for 

improvements in PCI outcomes and gene therapy is considered as a promising approach for 

the prevention of ISR and late-state thrombosis.

Numerous genes were identified using in vitro proof of concept experiments as a potential 

target for gene therapy of ISR2,3. Inhibiting cell proliferation and migration by arresting 

VSMCs in G0/G1 phase of the cell cycle has been a common approach using cell cycle 

regulatory proteins, or manipulation of mitogens, transcription factors, cytokines, and 

growth factors, promoters of apoptosis or antioxidants. Preclinical gene therapy studies 

targeting intimal/neointimal hyperplasia in multiple diverse animal models have 

demonstrated the feasibility and potential of a gene therapy approach2,5. Among potential 

gene therapy targets, the sarco/endoplasmic reticulum calcium ATPase isoform 2a 

(SERCA2a)1 was reported to prevent neointimal thickening in a rat carotid injury model and 

in a human ex vivo ISR model performed in an organ culture of the internal mammary 

1SERCA2a gene was approved for gene therapy use in human; two clinical trials have been initiated aimed using SERCA2a as a 
target to treat heart failure6, 7.
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artery8-10. The molecular mechanism responsible for this effect involves the normalization 

of calcium cycling in VSMCs and shutting of the calcium-dependent transcription factor 

NFAT, resulting in cell cycle arrest in G0/G18,11. SERCA2a expression is specific for 

contractile VSMCs. Forced expression of SERCA2a in contractile VSMCs prevents injury-

induced de-differentiation towards a synthetic/proliferating/inflammatory/migratory 

phenotype, whereas forced expression of SERCA2a in synthetic VSMCs has no effect on 

phenotype but prevents the proliferative/migratory response to extracellular stimuli8,9,11.

The limiting factor in the development of local gene therapies for ISR is the lack of a safe 

and efficient vector system to transduce vascular cells within the arterial wall2. The optimal 

delivery vector for vascular tissue should be efficient in transducing target vascular cells 

with minimal transduction of non target cells, have low toxicity and immunogenicity and 

allow sufficient longevity of transgene expression so that an adequate and sustained clinical 

response can be obtained2.

Successful gene transfer in vascular cells in vitro and in vivo has been reported using 

adenovirus vector serotype 5 (Ad5), causing it to be the principal vector of choice in many 

preclinical studies2,12. However, Ad vectors induced immunological responses to transduced 

cells along with an extensive inflammation in the vessel wall13,14. Transduced cells are 

rapidly eliminated through cytotoxic T-cell mediated clearance resulting in a transient in-

vivo gene expression which peaks at 7-14 days and is lost by 28 days15-17. Moreover, 

clinical efficacy of Ad5 vectors is hampered by pre-existing immunity (neutralising 

antibodies) and high interactions with cellular and non-cellular blood factors. Indeed, 

intravascular administration of Ad5 vectors has been found to induce high levels of 

cytokines, tumor necrosis factor α, interleukin-6, interleukin-12, interferon γ, interleukin-1 

and the monocytes chemoattractant protein-1 (MCP-1)18-20.

Recombinant viral vectors based on the nonpathogenic parvovirus, Adeno Associated Virus 

(AAV), which has gained popularity as a vector for gene therapy applications, have a 

number of attractive features for vascular gene therapy: 1) AAV can infect a wide range of 

host cells, including both dividing and non-dividing cells; 2) AAV has not been associated 

with any human or animal diseases and are relatively non-immunogenic; 3) AAV evokes 

sustained gene expression in vivo21. AAV-based vectors are approved to use in humans and 

several clinical trials have been undertaken using AAV-directed gene transfer6,7,22.

A total of 12 different AAV human-tissue-derived serotypes are known (AAV1 through 

AAV12); each AAV serotype, determined by its capsid proteins, interacts with specific 

receptors and may account for the differential tissue tropism21. For example, tropism of 

AAV2 is defined by binding to the HSPG (heparan sulphate proteoglycan) receptor23. 

rAAV2 has been shown to transduce VSMCs and endothelial cells (ECs) in vitro but its use 

in the vasculature in vivo has produced conflicting results, including relatively insufficient 

transduction24-27. rAAV1 and rAAV5, that bind to sialic acid residues from the cell surface, 

have demonstrated to be more effective than rAAV2 to transduce primary ECs and VSMCs 

in vitro28-30. Genetic engineering of the AAV capsid allows modifications of its 

immunogenicity, tissue-retargeting and efficiency, allowing the possibility for the 

development of novel vectors optimized for therapeutic administration.
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Recently, a chimeric AAV capsid variant (designated AAV2.5) was developed by a rational 

design strategy 22,31 intended to improve the muscle transduction capacity of AAV1 with 

reduced antigenic crossreactivity against both parental serotypes, while maintaining AAV2 

receptor binding. The initial development of AAV2.5 capitalized on the fact that AAV2 was 

the only serotype approved for clinical use, and AAV1 was the only other AAV serotype 

under serious consideration for clinical studies. AAV2.5 was generated from the AAV2 

capsid with five mutations from AAV1, namely, four substitutions of AAV1 amino acids in 

the AAV2 VP1 background along with one insertion (Q263A, N705A, V708A, T716N, 

T265, AAV2 numbering)31. Recently, the AAV2.5-mediated minidystrophin delivery to 

skeletal muscle provided a preliminary insight to the clinical tolerability of this approach, 

with no vector related adverse events observed22. While the AAV2.5 vector now appears to 

have significant potential for direct skeletal muscle gene transfer, it is still unclear whether 

this vector will be able to provide sufficient transduction efficiency in vascular muscle cells, 

which would make it the vector of choice for clinical trials in ISR.

In the present study we report that AAV2.5 demonstrated low latency and the highest 

efficiency in terms of in vitro transduction of human coronary artery VSMCs. In the rat 

carotid artery model, AAV2.5 mediated a safe, effective and long-term transduction of 

medial VSMCs. Furthermore, we report that AAV2.5-driven gene transfer of SERCA2a 

following injury of the rat carotid artery prevented neointimal hyperplasia in the injured 

segments.

Results

1. Vascular healing in the rat carotid artery model of restenosis

The rat carotid injury model is a widely used animal model that reproduces the vessel wall 

changes seen in ISR. Balloon injury destroys the EC layer and places medial VSMCs in 

contact with blood serum and growth factors, which induces VSMCs dedifferentiation, 

migration and proliferation, resulting in neointimal thickening2. Vascular healing consists of 

re-endothelialisation of the injured segments and re-differentiation of VSMCs to contractile/ 

quiescent phenotype. In order to identify the critical period for successful gene therapy 

intervention, we elucidate step-by–step processes of post-injury healing in a rat carotid 

model (Figure 1). We monitored the processes of re-endothelialisation by immunolabelling 

with CD31 (PECAM-1, platelet/endothelial cell adhesion molecule 1, a marker of ECs) and 

trans-differentiation of VSMCs by immunolabelling with smooth muscle myosin heavy 

chains 1 and 2 (a-SMMS) from day 2 to day 30 post-injury. As expected, in control carotids 

the luminal part of the vessel is covered by an impenetrable EC layer (red) positioned 

directly on the internal elastic lamina (IEL) (Figure 1, left panel). Medial VSMCs, located 

between IEL and external elastic laminas (EEL), exhibited a quiescent contractile 

phenotype, as indicated by immunolabelling with a-SMMS (red) (Figure 1, right panel). As 

expected, balloon injury destroyed the EC layer and damaged the IEL: indeed, two days 

2The intima is the tunic of internal arterial vessel. In normal arteries the intima consists of an epithelium squamous single layer 
(endothelium) positioned on a on the basal internal elastic lamina (IEL). The neointima typically refers to scar tissue that forms 
within blood vessels post-injury as a result of VSMC migration trough IEL followed by proliferation in the luminal space.
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after injury CD31 was undetectable in injured segments and several gaps were observed on 

the IEL, giving the possibility for blood growth factors to infiltrate the media3.

De-differentiation of VSMCs from a contractile to a synthetic phenotype was already 

initiated by arterial injury with a resultant loss of SMMS (Figure 1, right panel). Four days 

after injury most of the medial VSMCs acquired a synthetic/proliferating/inflammatory 

phenotype. At day 4, CD31-positive cells appeared to be sitting or hanging on the IEL, 

suggesting proliferation of remaining ECs or homing circulating EC precursors in the site of 

the injury. Seven days after injury, the luminal part of the injured vessel was entirely 

recovered by CD31-positive cells; importantly, the medial cells from the luminal part of the 

vessel were also identified as CD31-positive, suggesting trans-differentiation of a part of 

medial VSMCs into CD31-positive endothelial-like cells (Figure 1). However, the majority 

of medial VSMCs still exhibited a synthetic phenotype (SMMS-negative). At Day 14 the 

luminal part of the vessel was recovered by a thin CD31-positive cell layer situated on the 

neointima; the majority of medial and neointimal VSMCs were SMMS-positive, suggesting 

growth arrest and re-acquisition of contractile phenotype. No difference was detected 

between 14 and 30 days post-injury for these analyzed parameters (Figure 1).

This dynamic of vascular healing was confirmed by real-time quantitative RT-PCR analysis 

for α-smooth muscle actin (α-SMA), another marker of contractile VSMCs (Figure 2A). 

Relative expression of α-SMA in injured segments dramatically decreased from 2 to 4 days 

after injury and slowly recovered at day 7 reaching the normal level at day 14. As expected, 

histological examination revealed a significant increase in intimal thickness associated with 

a slight increase in medial thickness at day 30 post injury, suggesting the proliferation of 

VSMCs in both the media and neointima.

Altogether these data demonstrated that in the rat carotid model the formation of neointimal 

lesions and vascular healing were completed at day 14. The decisive period for neointimal 

proliferation occurs within 2-14 days after injury, when the EC layer is destroyed and medial 

VSMCs undergo dedifferentiation. Therefore, this period can be considered suitable for gene 

therapy intervention.

2. Identification of the virus vector appropriate for gene therapy of restenosis

To identify the AAV vector appropriate for vascular gene therapy in humans, we compared 

the efficiency of different natural AAV serotypes (AAV1, AAV2, AAV5, AAV8 and 

AAV9) with the synthetic AAV2.5 serotype and Ad5 to transduce human coronary artery 

SMCs (hCASMCs). Cultured hCASMCs were transduced with 105 MOI of different rAAV 

viruses, all carrying Green Fluorescent Protein (GFP). The transduction efficiency of 

hCASMCs with different rAAV serotypes was estimated as a percentage of transduced cells 

on day 7 after transduction (Figure 3A). Flow cytofluorimetric analysis demonstrated that at 

this time-point AAV2.5 induced transduction of hCASMCs ten times higher compared to 

the most vascular-tropic AAVs which include AAV1, AAV5 and AAV2. Next, we 

compared the latency of AAV1, AAV2.5 and Ad5 vectors in hCASMCs. The cells were 

3In rat model of carotid dilatation by a PCTA ballon catheter, the first step in allowing VSMC proliferation and migration to the 
intima is the occurrence of IEL rupture 32..
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transduced with 105 MOI of the indicated AAV vector or with 100 MOI of Ad5 vector. The 

percentage of GFP-positive cells was determined 48h after transduction (Figure 3B). As 

expected, a robust efficiency in the transduction of hCASMCs was observed with the Ad5 

vector (~80% of cells). The AAV2.5 vector demonstrated in vitro a low latency, since it was 

detected at high levels (50% of GFP-positive cells) as soon as 48h after infection compared 

to only ~ 10% with AAV1 hCASMCs-transduced cells (Figure 3B&C). Next, we compared 

the efficacy of AAV2.5 and Ad5 vectors in in vivo vessel transduction in the rat carotid 

injury model.

3. Transduction of the rat carotid artery with local delivery of AAV2.5 and Ad5 virus 
vectors

To compare the particularities of AAV2.5-GFP and Ad5-GFP in vessel transduction in vivo, 

we performed balloon injury of the rat left carotid artery followed by transduction with 

equivalent genome particles of both vectors (1010 particles/rat). The animals were sacrificed 

2, 4, 7 and 30 days after surgery. The right carotid arteries were used as controls of non-

injured, non-infected arteries. Since elastin and collagen, both abundantly present in the 

vessel wall, exhibit green auto-fluorescence when excited at 488 nm, we analysed the 

efficacy of GFP transduction by immunolabelling with an anti-GFP antibody (red) (Figures 
4, 1S&2S). GFP expression was never observed in the non-injured, non-infected arteries. In 

injured and AAV2.5-transduced arteries, GFP expression was observed only in the extreme 

luminal part of the vessel 2 days following injury (Figure 4, left panel). In contrast, when 

the arteries were transduced with Ad5, all the medial cells were GFP-positive (Figure 4, 
right panel). Four days after surgery, GFP was expressed in the entire medial layer in the 

arteries transduced with both vectors (Figures 4, 1S&2S). In AAV2.5 transduced arteries, a 

high level of GFP expression was observed throughout the media in all the experimental 

animals, but only a few positive cells were present in the adventitia and in the neointimal 

layer (Figure 4, left panel), confirming high affinity of AAV2.5 for muscular cells22. In 

contrast, transduction of the vessels with Ad5 was not specific to VSMCs, as GFP-positive 

cells were also present in the adventitia (Figure 4, right panel).

Transduction of the medial cells with AAV2.5 remained stable up to 30 days after injury 

(the last time point examined), as attested by GFP expression detected only in the medial 

layer (Figure 4, left panel). In contrast to the AAV2.5 vector, vessels-transduced with Ad5-

GFP exhibited a transient expression pattern: seven days after injury, only ~ 50% of medial 

cells were GFP-positive and at day 14 only few GFP-positive cells were detected in injured 

vessels (Figure 4, right panel). These differences in vessel transduction for both vectors 

were also confirmed by quantitative real-time RT-PCR analysis of GFP expression in 

injured vessels (Figure 5A). The relative expression of GFP mRNA levels was increased at 

day 2 and day 4 post-injury for both vectors. At day 7 post-infection, Ad5-mediated GFP 

expression was low and was undetectable at day 14, whereas AAV2.5–mediated GFP 

expression was still detectable 30 days after vector delivery (Figure 5A).

Next we assessed the inflammatory response associated with the carotid injury and virus 

transduction in both experimental protocols by analyzing the relative expression of 

interleukin-1 beta (Il-1β) (Figure 5B). As expected, vascular injury induced a local 
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inflammatory response, as attested by increased Il-1β expression in injured segments 

compared to control segments. In accordance with previous observations13,14 Ad5 

transduction is responsible for an extensive inflammation observed within 2-7 days in 

injured and infected vessels. Importantly, AAV2.5 did not cause an additional inflammatory 

response (Figure 5B).

Thus, these results demonstrated a high in vivo VSMC transduction efficacy of AAV2.5 

with two considerable advantages compared to the Ad5 vector: a long-term expression and 

an absence of inflammatory response.

4. Effect of AAV2.5-SERCA2a gene transfer on cultured rat VSMCs

We have previously demonstrated that Ad5-driven SERCA2a gene transfer to synthetic 

cultured VSMCs restored SERCA2a expression to the levels observed in contractile VSMCs 

and prevented their proliferation and migration through the inhibition of the transcription 

factor NFAT8,11. Here we tested whether a similar physiological effect could be obtained by 

using AAV2.5-driven SERCA2a gene transfer. Cultured rat aortic VSMCs were transduced 

with 105 MOI of either AAV2.5-SERCA2a or AAV1-βGal (control virus, Figure 3S). In 

accordance with previous observations8,33, un-infected (not shown) and AAV1-βGal-

transduced synthetic VSMCs exhibited low to undetectable SERCA2a expression (Figure 
6A). Following AAV2.5-SERCA2a gene transfer, SERCA2a protein expression was 

markedly increased at day 4 (Figure 6A). Two weeks after the beginning of the 

experiments, SERCA2a expression in AAV2.5-SERCA2a transduced cultures was almost as 

high as in contractile VSMCs of the rat aorta (Figure 6A). Notably, immunofluorescence 

analysis demonstrated that SERCA2a-positive cells poorly express NFAT down-stream 

signaling protein Cyclin D14 (Figure 6B), confirming the previous observations obtained 

with Ad5-SERCA2a transduced VSMCs8. As expected, AAV2.5-mediated SERCA2a gene 

transfer inhibited rat aortic VSMC proliferation and NFAT transcriptional activity (Figure 
6C&D). Altogether these data demonstrated that in cultured rat aortic VSMCs, AAV2.5-

SERCA2a gene transfer restored a stable long-term expression of functional SERCA2a 

protein to the levels observed in contractile VSMCs in vivo and prevented NFAT 

transcriptional activation and VSMC proliferation in the presence of serum.

5. Effect of AAV2.5 directed SERCA2a gene transfer on post injury healing

We have previously reported that Ad5-mediated human SERCA2a gene transfer prevented 

neointimal proliferation in the rat carotid injury model8,10. Here we tested the functional 

effect of AAV2.5-mediated human SERCA2a gene transfer on neointimal proliferation in 

the same model. Balloon injured left carotid arteries were infected with AAV2.5-SERCA2a 

or AAV2.5-GFP (control virus) for 30 min directly after the injury and the animals were 

sacrificed 30 days later. At the end-point the endothelial regeneration of injured segments 

was complete in all groups of animals (Figure 4S). No difference in endothelial 

regeneration was observed within saline-treated, AAV2.5-GFP or AAV2.5-SERCA2a 

transduced vessels. Expression of human SERCA2a mRNA in injured and infected arteries 

4Cyclin D1 mediates SMC proliferation and migration in NFAT-dependent manner 34.
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was attested in all infected animals (n=9) by real time PCR performed with primers designed 

for the human SERCA2a isoform (Figure 7A).

Morphometric analysis was performed on hematoxylin/eosin stained carotid artery cross 

sections (Figure 8). Adventitial thickness was increased in all injured arteries as a 

consequence of injury. One month after injury, abundant neointimal proliferation and medial 

thickening were observed in all injured saline-injected (n=3) and AAV2.5-GFP-transduced 

vessels (n=10). No differences were observed for these parameters between saline and GFP 

groups (neointima: 72.56±19.26 vs 77.97±24.59 μm2, p=ns; media: 127.15±20.99 vs 

148.98±16.05 μm2, p=ns). The overall neointima area in injured and AAV2.5-SERCA2a 

infected arteries was significantly less than in GFP-transduced arteries (28.36±11.30 vs 

77.96±24.60 μm2, p<0.05, Mann Whitney test). (Figure 8B). The media area and total 

vessel wall area (media + neointima area) were also significantly decreased in SERCA2a 

infected arteries compared to GFP-infected arteries. Thus, AAV2.5-SERCA2a expression 

significantly reduced post-injury proliferation and neointimal formation in the rat carotid 

injury model.

Discussion

We report a safe and effective long term transduction of injured vessels in vivo with a 

translational optimized vector AAV2.5. Furthermore, in vitro, AAV2.5 provides 10-fold 

higher transduction efficacy of hCASMCs compared to all of the other tested serotypes.

The traditionally used rAAV2 has very limited tropism to ECs and SMCs (less than 10% of 

exposed VSMCs and ECs were infected)25,30,35, whereas rAVV1 and rAAV5, which bind to 

sialic acid residues from the cell surface, were reported to have higher tropism than rAAV2 

for ECs and SMCs in vitro and in vivo28-30. In the present study, we did not detect any 

significant differences between the rAAV serotypes 1, 2 or 5 in terms of in vitro 

transduction of hCASMCs: less than 10% of exposed cells were transduced with the above 

viruses. Numerous earlier studies undertaken to increase AAV tropism to VSMCs and ECs 

by genetic modification of the capsid proteins-which included the incorporation of VSMC-

specific and EC-specific peptide ligands isolated with the use of phage display into the 

rAAV2 capsid have been reported to only modestly improve transduction in vascular 

cells 36-38. Developed by rational design, the AAV2.5 vector combines the improved muscle 

transduction capacity of AAV1, while maintaining AAV2 receptor binding22,39, making it 

the most potential vector for both skeletal and vascular smooth muscle gene transfer.

Here we report that local delivery of AAV2.5 in injured vessels mediated efficient gene 

transfer to VSMCs. In vitro, GFP expression was observed as early as 48 h after infection 

and was stable for at least 14 days. These results are in agreement with previous in vitro 

studies demonstrating a stable (at least 1 month) rAAV transduction of ECs and SMCs25,35. 

AAV2.5-mediated transgene expression started as early as 2 days and was stable for at least 

1 month after delivery of AAV2.5 in vivo in balloon-injured rat carotid arteries. These data 

are consistent with those stating that in vivo rAAV-driven reporter gene expression can be 

observed from day 4 after transduction and persist for up to 100 days13,35. We observed 

stable transduction of mainly medial VSMCs and not the adventitia in injured segments 
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transduced with the AAV2.5 vector. Other groups have reported efficient rAAV1, rAAV2 

and rAAV5-mediated reporter gene expression in both the media and adventitia in balloon-

injured rat and rabbit carotid arteries30,35. This confirms that AAV2.5 has a high tropism for 

VSMCs. However, we cannot assure that AAV2.5 will reach the media in uninjured vessel 

because the ECs and IEL might prevent AAV penetration into the medial layer of the 

vessel26,40. Furthermore, in agreement with previous observations made for rAAV2-

mediated reporter gene expression in injured vessels, no expression of AAV2.5-mediated 

transgene was detected in the neointima of injured vessels30,35. Restriction of AAV2.5-

infected cells to the media layer of injured vessels suggests that there is no propagation of 

genetically modified cells.

In the present study, efficient transduction of VSMCs from injured segments was obtained 

by local administration of AAV2.5 vector for only 30 min. We cannot exclude, that direct 

intracoronary injection of a virus vector during PCI could incite systemic spread that can 

increase immune responses against the vector or its gene product, as well as increase the risk 

for side effects arising from gene expression in off-target regions. Local delivery of virus 

vectors from gene-eluting stent surfaces could greatly increase AAV2.5 selectivity and 

reduce possible off target gene transfer. Viral vectors can be combined with biomaterials in 

coated stents either through encapsulation within the material or immobilization onto a 

material surface. Subsequent biomaterial-based delivery can increase the vector's residence 

time within the target site, thereby potentially providing localized delivery and enhancing 

selectivity of transduction41. Bare-metal endovascular stents coated with a synthetic 

complex for reversible binding of the virus vector were already successfully tested on 

animal models of restenosis42,43.

Proliferation of VSMCs and resultant neointimal hyperplasia is the only mechanism 

responsible for restenosis after stent placement2. Whereas some neointima formation is 

necessary for vessel healing after stenting in order to imbed the stent within the vessel wall 

and to prevent exposure to blood flow, excessive neointima formation narrows the lumen44. 

In both rats (this paper) and humans45, de-differentiation of medial VSMCs occurs within 

2-4 days after surgery. In this paper we demonstrated that AAV2.5-driven proteins were 

already expressed in transduced carotid vessels within the critical period for VSMC 

proliferation induction: the first 2-4 days after surgery.

The transition of VSMC phenotype from contractile to synthetic is associated with down-

regulation of functional protein entities associated with the contractile response; we refer to 

voltage activated L-type calcium channels (LTCC), SR calcium release channel RyR and 

“fast” isoform of SR calcium pump SERCA2a 46. On the other hand, the expression of the 

molecular entities modulating the plasma membrane store operated channel (SOC) 

functioning, such as ORAI1-3, STIM1 and to the IP3 receptor channel, is highly up-

regulated; leading to the increase of the whole cell Ca2+ current 46. This translates into a 

long lasting increase of cytosolic calcium critical for the activation of the Ca2+-sensitive 

transcription factor NFAT (nuclear factor of activated T lymphocytes), required for 

proliferation and migration of VSMCs 46. We have previously reported that forced 

SERCA2a expression prevents de-differentiation of contractile VSMCs in injured 

vessels 8,9. It is worth mentioning that SOC influx following agonist stimulation is not 
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observed in contractile VSMCs, naturally expressing SERCA2a 46, once again highlighting 

the importance of the SERCA isoform(s) expressed in VSMCs. Conversely, gene transfer of 

SERCA2a to synthetic cultured VSMCs had no effect on VSMC phenotype or on the 

expression of SOC sub-units, but prevented functional association of STIM1 and ORAI1/2 

thereby preventing SOC functioning and NFAT activity 11. Transcriptional inhibition of 

NFAT is sufficient to prevent proliferation and migration of synthetic VSMCs 8,11.

Efficient long term transduction of rat VSMCs was observed with AAV2.5-SERCA2a, 

which was sufficient to translate the functional effects of SERCA2a, such as inhibition of 

NFAT transcriptional activity, reduction of VSMC proliferation and neointimal hyperplasia, 

reported previously with Ad5-driven SERCA2a transduction of VSMCs8-11. It is worthy to 

mention that somatic overexpression of SERCA2a has no effect on the expression of 

endogenous SERCA2b isoform8,11, supporting the hypothesis that distinct SERCA isoforms 

are implicated in different physiological functions46.

Considering that in the present study the virus vector was administrated locally and under 

pressure to denudated carotid vessels, we assume that in our model VSMCs were principally 

infected. On the other hand we cannot exclude that endothelial cells (ECs) adjacent to the 

site of injury could also be transduced in this model. We have recently reported that AAV1-

directed SERCA2a overexpression in ECs enhances eNOS expression and activity40. 

Exogenous NO was shown to inhibit VSMC proliferation by specifically changing the 

expression and activity of cell cycle regulatory proteins47. Thus, the probable transduction 

of adjacent ECs in our model could also contribute to reducing neointimal thickening.

We also documented the formation of moderated neointima in AAV2.5-SERCA2a 

transduced rat carotid arteries, suggesting that vascular healing and re-endothelialisation 

could be possible when SERCA2a gene transfer is used. Indeed, in contrast to cytotoxic 

drugs delivered by DES, SERCA2a controls VSMC physiological functions, allowing the 

possibility of vascular healing8,11. Significantly, rigorous assessment of the safety of the 

intracoronary injection of AAV1-SERCA2a vector was performed in numerous pre-clinical 

and clinical trials, demonstrating safety and suggested benefits on heart failure in the 

absence of any organ damage or inflammatory response6,7,48-50.

Likewise, we considered the effect of balloon injury or balloon injury followed by 

transduction with Ad5 or AAV2.5 vectors on the pro-inflammatory changes in the vascular 

secretory phenotype, by using Il-1β expression in carotid arteries segments as an indicator. 

Indeed, increased production of pro-inflammatory cytokines, including Il-1β, is a cell-

autonomous mechanism that contributes to the pro-inflammatory changes in vascular wall, 

even in the absence of infiltrating immunocytes51. We have demonstrated that in contrast to 

the Ad5 vector, AAV2.5 does not provoke any specific pro-inflammatory changes in the 

vessel wall. Our data are in agreement with a recent study demonstrating the absence of a 

cellular immune response to AAV2.5 capsid following vector injection into the bicep of 

patients22. Thus AAV2.5 can be considered as the vector of choice for clinical trials of ISR.

We recognize that the transition to the clinical trial will highlight the variations in responses 

to treatments due to differences between diseased human coronary arteries of patients and of 
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the rat carotid artery. Specifically, human atherosclerotic plaques demonstrate certain 

advanced features, such as ruptures, erosions, and hemorrhages that are not presently 

mimicked by an animal model. Furthermore, in advanced human atherosclerotic plaques, 

dense fibrous matrix may serve as a barrier for virus vector mediated gene transfer52,53. 

Moreover the increased generation of reactive oxygen species in diseased human 

atherosclerotic vessels has been implicated in vasospasm, exaggerated neointima formation 

and enhanced thrombosis54, potentially worsening the expected clinical outcome.

Several clinical trials have been undertaken to investigate the safety and feasibility of 

percutaneous intracoronary gene transfer in humans, using either VEGF coding sequence or 

antisense-ODN to the cell-cycle regulator c-myc as a target55-58. All these trials suggested 

safety and feasibility of ISR gene therapy however were not efficient in preventing ISR. The 

main reason for the lack of efficacy likely includes poor transduction efficiency of VSMCs 

in human atherosclerotic lipid-rich lesions with liposomes or Ad5 resulting in a potentially 

harmful biodistribution of the therapeutic gene. In addition, the presence of neutralizing 

antibodies to the Ad vector and interaction with circulating blood components also 

accounted for the lack of efficacy in preventing ISR in above clinical trials2.

In conclusion, AAV2.5 demonstrated the highest transduction efficacy of VSMCs in both 

rats and humans, low latency and reduced immunogenicity after in vivo gene transfer in the 

rat ISR model. Although balloon injury in rat carotid arteries models only some aspects of 

human ISR, the present study suggests that AAV2.5 has great potential to be a new vector 

for future clinical trials aiming gene transfer to the vasculature.

Materials and Methods

Virus vectors

Adenovirus vector serotype 5 carrying green fluorescent protein (GFP) gene and beta- 

galactosidase gene under human cytomegalovirus early (CMV) promoter was generated by 

R. Hajjar59. Adenovirus titer is expressed in MOI defined as the number of virus particles 

per cell. Following rAAV vectors were used: various AAV serotypes (rAAV1, rAAV2, 

rAAV2.5, rAAV8 and rAAV9, packaging genomes with AAV2 Inverted Terminal Repeats) 

carrying green fluorescent protein (GFP) gene under human cytomegalovirus early (CMV) 

promoter and AAV1-βGal, carrying beta-galactosidase (βGal) gene under CMV promoter. 

Two AAV2.5 vectors (AAV2.5-GFP and AAV2.5-SERCA2a) carried GFP gene or human 

SERCA2a coding sequence, respectively under human CMV promoter. AAV2.5 is a 

chimeric capsid described in detail previously22. AAV2.5 is a chimeric AAV2 capsid variant 

in which four residues were substituted with AAV1 amino acid (Q263A, N705A, V708A, 

T716N, AAV2 numbering) and one AAV1 amino acid (T265, AAV1 numbering) was 

inserted22. These mutations are all on the VRs of the virion surface (VR I and VR IX). 

AAV2.5 offers improved muscle transduction properties of AAV1 with minimal recognition 

by serum neutralizing antibodies22. All these rAAV vectors were generated by Gene 

Therapy Center, University of North Carolina (Chapel Hill, USA). AAV titer in units of 

vector genomes is expressed in MOI determined as the number of virus genome per cell.
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Flow cytofluorimetric analysis

Human coronary artery smooth muscle cells (hCASMC) (Lonza) were infected with 105 

MOI/cell with different rAAV-GFP serotypes or 100 MOI Ad5-GFP. Two or seven days 

after transduction cells were fixed with 1% paraformaldehyde-containing PBS and subjected 

to flow cytofluorimetric analysis (Cell Quest Pro software, BD Biosciences). GFP was 

excited by an argon laser and fluorescence was detected using a 530/30 nm band pass filter 

in the FL1 channel.

Rat carotid artery injury and gene delivery

The left external carotid artery from adult male Sprague-Dawley rats (Charles River, Mass) 

weighing 350 to 400 g was injured using a 2F Fogarty embolectomy catheter (Baxter 

Healthcare Corp) that was introduced into the common carotid artery through the external 

carotid and inflated to 2 atmospheres 3x 20 s. After both the proximal common and the 

proximal internal carotid arteries were clamped, viral infusion mixtures containing ~ 1010 

particles of virus vectors (Ad-GFP, AAV2.5-GFP, or AAV2.5 SERCA2a), diluted to a total 

volume of 100 μL was instilled between the 2 clamps, and the external carotid artery was 

then ligated. The viruses were maintained in the artery for 30 min under pressure. Perfusion 

was restored through the internal and the common carotid artery after 30 minutes of 

instillation, and the neck incision was closed. 2, 4, 7, 14 and 30 days after surgery the 

animals were sacrificed. The left and right carotid arteries were dissected, flushed with 

saline, included in cryomatrix and frozen at –80°C.

Real-time quantitative reverse transcription–polymerase chain reaction (RT-PCR) assays

Relative gene expression was determined using two-step quantitative real-time PCR. Total 

RNA was isolated with TRIzol reagent (Invitrogen) followed by a cleanup step as described 

in the RNeasy Isolation kit (Qiagen) with on-column DNase I treatment to eliminate 

contaminating genomic DNA with RNase-free DNase Set (Qiagen). After annealing oligodT 

(1 μM) to template RNAs (0.5 μg) at 70°C for 5 minutes, primer extension was initiated by 

adding the RT-MMLV enzyme plus 0.5 mM dNTP, 1U RNAsin and 10 mM dithiothreitol 

(DTT), and carried out for 45 minutes at 37°C. Quantitative PCR was performed using the 

LightCycler LC480 (Roche Diagnostics). The PCR mix included 5 μl of each reverse 

transcriptase (diluted 1:25) and 300 nM of each primer in 1× LightCycler DNA SYBR 

Green 1 Master Mix. The forward and reverse primer sequences for complementary DNA 

(cDNA) were designed with the Primer Express software according to European Molecular 

Biology Laboratory accession numbers: the human SERCA2a, 5’-

CTGTCCATGTCACTCCACTTCC-3 ’ and 5 ’-AGCGGTTACTCCAGTATTGCAG-3’; the 

rat β-actingene: 5′-GGGAAATCGTGCGTGACATT-3′ and 5 ′-

GCGGCAGTGGCCATCTC-3′; the rat hypoxanthine phosphoribosyltransferase, HPRT, 

gene: 5′-AGGACCTCTCGAAGTGT-3′ and 5′-ATCCCTGAAGTGCTCATTATA -3′; the 

rat smooth muscle α-actin, α-SMA, gene: 5′-ACCCAGATTATGTTTGAGACC-3′ and 5 ′-

CAGAGTCCAGCACAATACCA-3′ ; the rat interleukin 1-beta, IL-1β, gene: 5′-

CACCTCTCAAGCAGAGCACAG-3′ and 5 ′-GGGTTCCATGGTGAAGTCAAC-3′; the 

green fluorescent protein, GFP, gene: 5′-CACATGAAGCAGCACGACTTCTT-3′ and 5′-

AACTCCAGCAGGACCATGTGAT-3′. The PCRs were performed using the following 
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thermal settings: denaturation and enzyme activation at 95°C for 5 minutes, followed by 40 

cycles of 95°C (10 s), 60°C (15 s), and 72°C (15 s). Post-amplification dissociation curves 

were performed to verify the presence of a single amplification product and the absence of 

primer dimers. Controls and water blanks were included in each run; they were negative in 

all cases. Real-time quantitative PCR data represent the amount of each target messenger 

RNA (mRNA) relative to the amount of HPRT gene mRNA or β-actin , gene mRNA, 

estimated in the logarithmic phase of the PCR. Serial dilutions were used to determine the fit 

coefficients of the relative standard curve.

Morphometric analysis

Hematoxylin/eosin staining was performed on cross sections. Specimens were measured by 

using Lucia G computer software on Leica microscope. We have measured the area of 

media and intima layers of vessels. The following groups were analysed: 1) injured-non 

infected (saline); 2) injured + AAV2.5 GFP; 3) injured + AAV2.5 SERCA2a; 4) the right 

carotid arteries were used as non-injured.

Confocal Immunofluorescence

Immunostaining was performed using the following primary antibodies: a-GFP (Abcam), a-

SERCA2a 60; a-cyclin D1 (556470,BD Biosciences); a-CD31 (Abcam); a-SMMS, smooth 

muscle myosin heavy chains 1 and 2 (Abcam); a-eNOS, endothelial nitric oxide synthase 

(Abcam) and secondary antibodies conjugated to Alexa-546 or Alexa-488. To avoid the 

auto-fluorescence of GFP the arteries were fixed on acetone 9. Slides were examined with a 

Leica TCS4D confocal scanning laser microscope equipped with a 25 mW argon laser and a 

1 mW helium-neon laser, using a Plan 10X objective or Plan Apochromat 63X objective 

(NA 1.40, oil immersion). Green fluorescence was observed with a 505-550 nm band-pass 

emission filter under 488 nm laser illumination. Red fluorescence was observed with a 560 

nm long-pass emission filter under 543 nm laser illumination. Pinholes were set at 1.0 Airy 

units. Stacks of images were collected every 0.4 μm along the z-axis. To allow comparison, 

all settings were defined on control arteries and were kept constant for all recording. For 

double immunofluorescence, dual excitation using the multitrack mode (images taken 

sequentially) was achieved using the argon and He/Ne lasers.

Cell culture, proliferation (BrdU) and NFAT-reporter assay

Rat aortic VSMC were isolated from the media of the thoracic aorta from male Wistar rats 

and cultured as described8. To characterize rat aortic VSMCs we used smooth muscle 

myosin heavy chain 1&2, smooth muscle alpha-actin, SM22, calponin, and caldesmon, as 

preiously described8,61. Cells were infected with rAAV at100 pfu/cell. Proliferation was 

measured 4 days after transduction by BrdU incorporation during 48 h using Cell 

Proliferation ELISA, BrdU (colorimetric) assay kit (Roche). For NFAT-reporter assay, cells 

were infected with AAV for 4 days, then transfected with NFAT-promoter-luciferase 

construct (NFAT-Luc, Stratagene). The luciferase activity was measured by using 

commercial kit (Promega) in relative luciferase units (RLU), normalized to the protein 

content and expressed as percentage of values in control wells. Beta-galactosidase activity 

was measured using commercial kit (Promega). All quantitative data presented as a means ± 

SEM of at least three independent experiments.
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Protein preparation and immunoblot analysis

Rat aortic VSMC were infected with 100 MOI/cell of AAV2.5-SERCA2a or AAV2.1-βGal 

and then cultured en DMEM medium supplemented with serum (10%). Cells were harvested 

2, 4 and 14 days after transduction. Proteins were extracted by using Cell Extraction Kit 

(PromoKine, Promocell). Protein concentration was determined using a Bradford assay. 

30μg of proteins were then run on 10% SDS-PAGE gels and transferred on PVDF 

membrane. Following primary antibodies were used for immunoblotting (a-GAPDH 1/2500, 

a-SERCA2a 1/2000). Proteins were visualized by using the ECL+ (Amersham Biosciences) 

and Ettan™ DIGE Imager (GE Healthcare).

Statistical analysis

All quantitative data are presented as mean of at least 3 independent experiments ± SEM. 

Data were analyzed by using GrafPad Prism 5 software. A one-way ANOVA followed by 

Tukey's multiple comparisons test was performed for comparison of multiples values. 

Statistical comparison of 2 groups was done by a nonparametric Mann-Whitney test or an 

unpaired Student's t-test. Differences were considered significant for values with P<0.05.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Healing of injured segments in rat carotid model of restenosis
Confocal immunofluorescence of rat carotid artery cross sections showing the expression of 

CD31, a marker of endothelial cells, (red, left panel) and SMMS, a marker of contractile 

VSMC, (red, right panel) at different time-points after injury of rat carotid artery. Control – 

non injured vessel. Green- elastin autofluorescence. Typical pattern of fluorescence 

observed in carotid artery cross sections of injured animals (n=3). Bar – 20 μm. 

Abbreviations: a – adventitia; m – media; ni – neointima; ec – endothelial cells; EEL - 

internal elastic lamina; IEL - external elastic lamina.
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Figure 2. Transient trans-differentiation and neointima formation in rat carotid model of 
restenosis
A. Relative expression of α-SMA (α-smooth muscle actin, a marker of contractile VSMC) 

in injured carotid segments at different time-point after injury. Real-time quantitative PCR 

analysis. At least 3 different rat carotid samples were pooled for each time-point. B. 

Representative hematoxylin/eosin staining of carotid artery cross-section. Objective X10 

(upper panel), X60 (lower panel); ni – neointima; m – media; a – adventitia, lm -lumen. C. 

Morphometric analysis of carotid artery cross-sections. Bars represent the mean ± SEM of 
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mean values obtained for each animal. At least 5 individual measures were performed for 

each animal on different carotid cross sections.
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Figure 3. Transduction efficiency of human coronary artery smooth muscle (hCASMC) with 
different types of AAV and adenovirus type 5
HCASMC were transduced with different AAV serotype vectors or Ad5 vector encoding 

GFP protein using an equal number of viral genomic particles per cell (MOI). A. HCASMCs 

were transduced with 105 MOI. The percent of GFP-positive cells in each culture was 

determined at Day 7 after transduction. B. HCASMCs were transduced with 105 MOI of 

indicated AAV vector or 100 MOI of Ad5 vector. The percent of GFP-positive cells in each 

culture was determined 48h after transduction. Bar-grafs presented as a mean ± SD of three 

independent experiments; ***: p<0.001 **: p<0.01 *: p<0.05. C. Dot plot representation of 

flow cytometry, gating on GFP-positive and -negative cells. GFP-gated FACS contour plots 
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are shown. The percentage of GFP+ cells was elevated in the AAV2.5-GFP and Ad5-GFP 

infected hCASMC.
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Figure 4. Transduction of vessels with AAV2.5-GFP (left panel) and Ad5-GFP (right panel) in 
rat carotid injury model
Confocal immunofluorescence showing GFP expression (red) on cross sections of a rat 

carotid artery at different time-points after injury and transduction. Green-elastin 

autofluorescence. Typical pattern of spots observed in carotid artery cross sections of all 

infected animals (at least tree rats were used per time-point). Bar – 20 μm. Total vessel wall 

transduction. Abbreviations: a – adventitia; m – media; ni – neointima.
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Figure 5. Real-time quantitative RT-PCR analysis of virus vessel's transduction (A) and 
inflammation (B) at different time-points after injury and transduction of rat carotid arteries 
either with AAV2.5-GFP or with Ad5-GFP
Efficacy of virus transduction was determined by GFP expression (A), inflammation was 

measured by interleukin-1β (Il-1β) expression (B). At least three rat samples were pooled for 

each time point. Control – non injured, non infected carotids. Ad5-GFP group of animals 

was monitored until 14 days (last point), AAV2.5-GFP and saline groups were monitored 

until 30 days post-injury (last point).
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Figure 6. Effect of AAV2.5-directed SERCA2a gene transfer on cultured rats aortic VSMC
A. Immunoblot analysis of SERCA2a expression in rat aorta and cultured aortic VSMC (left 

panel). Right panel: bar-graph demonstrating relative normalized expression (SERCA2a/

GAPDH ratio) of SERCA2a. Cells were infected either with AAV1-βGal or with AAV2.5-

SERCA2a for 2, 4 and 14 days. Total protein extract of rat aorta media was used as a control 

for SERCA2a expression. 30 μg of protein were loaded on each line.

B. Left panel: confocal immunofluorescence with a-SERCA2a (red) and a-Cyclin D1 

(green) of cultured rat SMC infected with AAV2.5-SERCA2a at 10 part/cell for 4 days. 
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Nuclei were identified with DAPI staining (blue). Objective: X 60. Right panel: bar-graph 

demonstrating correlation of SERCA2a and Cyclin D1 (cyc) expression.

C. Effect of AAV2.5-SERCA2a gene transfer of cell proliferation (BrdU incorporation). 

Cells were transduced for 4 days with indicated virus vector then BrdU was added for 48h. 

BrdU incorporation is presented as a percentage of value in control (non infected) cells 

cultured with 10% of serum (FCS).

D. NFAT-promoter-luciferase reporter assay. Cells were transduced for 4 days with 

indicated virus vector, then transfected with plasmide encoding luciferase gene under 

NFAT-responsive promoter for 48h. Data are expressed in relative luciferase units (RLU) as 

a percentage of value in control cells (non infected).

Lompré et al. Page 27

Gene Ther. Author manuscript; available in PMC 2014 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. Transduction of vessels with AAV2.5-SERCA in vivo: long-term RNA expression
Real-time RT-PCR analysis of SERCA2a mRNA expression in rat carotid arteries 1 month 

after injury and transduction. SERCA2a mRNA was normalized to β-actin mRNA and 

compared to mRNA in sham operated carotid arteries.
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Figure 8. Effect of AAV2.5-driven SERCA2a gene transfer on post-injury vascula healing
Two groups of animals were analyzed: sham-operated control, injured and AAV2.5-GFP 

(n=10) or AAV2.5-SERCA2a (n=8) infected carotid artery 1 month after surgery. A. 

Representative hematoxylin/eosin staining of carotid artery cross-section. Objective X10 

(upper panel), X60 (lower panel); ni – neointima; m – media; a – adventitia, lm -lumen. B. 

Morphometric analysis of carotid artery cross-sections. Bars represent the mean ± SEM of 
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mean values obtained for each animal. At least 5 individual measures were performed for 

each animal on different carotid cross sections.
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