

CRYSTALLOGRAPHIC COMMUNICATIONS OPEN ∂ ACCESS

Crystal structure of (*E*)-2-benzylidene-4-[(3-phenyl-4,5-dihydroisoxazol-5-yl)methyl]-2*H*-benzo[*b*][1,4]thiazin-3(4*H*)one

Nada Kheira Sebbar,^a Mohamed Ellouz,^a El Mokhtar Essassi,^{a,b}* Mohamed Saadi^c and Lahcen El Ammari^c

^aLaboratoire de Chimie Organique Hétérocyclique URAC 21, Pôle de Compétence Pharmacochimie, Av. Ibn Battouta, BP 1014, Faculté des Sciences, Université Mohammed V, Rabat, Morocco, ^bMoroccan Foundation for Advanced Science, Innovation and Research (MASCIR), Rabat Design Center, Rue Mohamed Al Jazouli, Madinat El Irfane, 10100 Rabat, Morocco, and ^cLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V, Avenue Ibn Battouta, BP 1014, Rabat, Morocco. *Correspondence e-mail: em_essassi@yahoo.fr

Received 19 May 2015; accepted 20 May 2015

Edited by E. R. T. Tiekink, University of Malaya, Malaysia

In the title compound, $C_{25}H_{20}N_2O_2S$, the dihydroisoxazole ring exhibits an envelope conformation with the methine atom being the flap, while the 1,4-thiazine ring displays a screw-boat conformation. The six-membered ring fused to the 1,4-thiazine ring makes dihedral angles of 63.04 (2) and 54.7 (2)° with the mean planes through the five-membered heterocycle and the attached phenyl ring, respectively. The phenyl group connected to the 1,4-thiazine ring is disordered over two sites [major component = 0.57 (2)]. The most prominent interactions in the crystal structure are $C-H\cdots O$ hydrogen bonds that link molecules, forming inversion dimers, and $C-H\cdots N$ hydrogen bonds that link the dimers into columns parallel to the *b* axis.

Keywords: crystal structure; benzothiazine; dihydroisoxazole; C— H···O,N hydrogen bonding.

CCDC reference: 1402017

1. Related literature

For the biological activity and pharmaceutical properties of benzothiazines and their derivatives, see: Fringuelli *et al.* (1998); Rathore & Kumar (2006); Barazarte *et al.* (2008); Bakavoli *et al.* (2007). For related structures, see: Saeed *et al.* (2010); Afrakssou *et al.* (2011); Sebbar *et al.* (2014*a*,*b*).

V = 2021.7 (3) Å³

Mo $K\alpha$ radiation

 $0.36 \times 0.31 \times 0.26 \text{ mm}$

 $\mu = 0.19 \text{ mm}^-$

T = 296 K

Z = 4

2. Experimental

2.1. Crystal data $C_{25}H_{20}N_2O_2S$ $M_r = 412.49$ Monoclinic, $P2_1/n$ a = 17.4463 (16) Å b = 5.3024 (4) Å c = 22.778 (2) Å $\beta = 106.370$ (5)°

2.2. Data collection

2.3. Refinement

Bruker X8 APEX diffractometer	27864 measured reflections
Absorption correction: multi-scan	4149 independent reflections
(SADABS; Bruker, 2009)	1980 reflections with $I > 2\sigma(I)$
$T_{\min} = 0.504, \ T_{\max} = 0.748$	$R_{\rm int} = 0.095$

$R[F^2 > 2\sigma(F^2)] = 0.057$	321 parameters
$wR(F^2) = 0.145$	H-atom parameters constrained
S = 1.00	$\Delta \rho_{\rm max} = 0.48 \text{ e } \text{\AA}^{-3}$
4149 reflections	$\Delta \rho_{\rm min} = -0.26 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C21 - H21 \cdots O1^{i}$	0.93	2.43	3.339 (4)	166
$C18 - H18B \cdots N2^{ii}$	0.97	2.56	3.526 (3)	178

Symmetry codes: (i) -x + 1, -y, -z + 1; (ii) x, y - 1, z.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEPIII* (Burnett & Johnson, 1996) and *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *PLATON* (Spek, 2009) and *publCIF* (Westrip, 2010).

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and the University Mohammed V, Rabat, Morocco, for financial support.

Supporting information for this paper is available from the IUCr electronic archives (Reference: TK5368).

References

- Afrakssou, Z., Haoudi, A., Capet, F., Rolando, C. & El Ammari, L. (2011). Acta Cryst. E67, 01363–01364.
- Bakavoli, M., Nikpour, M., Rahimizadeh, M., Saberi, M. R. & Sadeghian, H. (2007). *Bioorg. Med. Chem.* 15, 2120–2126.

- Barazarte, A., Camacho, J., Domínguez, J., Lobo, G., Gamboa, N., Rodrigues, J., Capparelli, M. V., Alvarez-Larena, A., Andujar, S., Enriz, D. & Charris, J. (2008). *Bioorg. Med. Chem.* 16, 3661–3674.
- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burnett, M. N. & Johnson, C. K. (1996). *ORTEPIII*. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Fringuelli, R., Schiaffella, F., Bistoni, F., Pitzurra, L. & Vecchiarelli, A. (1998). Bioorg. Med. Chem. 6, 103–108.
- Rathore, B. S. & Kumar, M. (2006). Bioorg. Med. Chem. 14, 5678-5682.
- Saeed, A., Mahmood, Z., Yang, S., Ahmad, S. & Salim, M. (2010). Acta Cryst. E66, 02289–02290.
- Sebbar, N. K., El Fal, M., Essassi, E. M., Saadi, M. & El Ammari, L. (2014b). Acta Cryst. E70, 0686.
- Sebbar, N. K., Zerzouf, A., Essassi, E. M., Saadi, M. & El Ammari, L. (2014a). Acta Cryst. E70, 0614.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2015). E71, o423-o424 [doi:10.1107/S2056989015009755]

Crystal structure of (*E*)-2-benzylidene-4-[(3-phenyl-4,5-dihydroisoxazol-5-yl)methyl]-2*H*-benzo[*b*][1,4]thiazin-3(4*H*)-one

Nada Kheira Sebbar, Mohamed Ellouz, El Mokhtar Essassi, Mohamed Saadi and Lahcen El Ammari

S1. Comment

Recently, a number of pharmacological tests revealed that 2H-1,4- benzothiazine derivatives present various biological activities including antifungal (Fringuelli *et al.*, 1998), antimicrobial (Rathore *et al.*, 2006), antimalarial (Barazarte *et al.*, 2008) and 15-lipoxygenase inhibition properties (Bakavoli *et al.*, 2007). In this work, we aim to prepare new derivatives of 3,4-dihydro-2H- benzo[b]1,4-thiazine for biological evaluation, as in the previous studies (Saeed *et al.*, 2010; Afrakssou *et al.*, 2011; Sebbar *et al.*, 2014*a*, 2014*b*. In the reaction, the oxime reacts with (E)-4-allyl-2-benzylidene-2H-benzo[b][1,4]thiazin-3(4H)-one in a biphasic medium (water-chloroform) at 0°C over 4 h to give a unique cycloadduct: (E)-2-benzylidene-4-((3-phenyl-4, 5-dihydroisoxazol-5-yl)methyl)-2H- benzo[b][1,4]thiazin-3(4H)-one (Scheme 1).

The molecule of the title compound is build up from two fused six-membered rings linked, *via* two $-CH_2$ - groups, on the one hand to a phenyl ring and on the other hand to the 3-phenyl-4,5-dihydroisoxazole system as shown in Fig. 1. The (C1 to C6) benzene cycle form dihedral angles of 63.04 (2)\ and 54.7 (2)° with the mean planes through the five-membered heterocycle and the attached phenyl ring, respectively. In the crystal, the molecules are linked by hydrogen bond (Table 1) in the way to build a dimers as shown in Fig. 2.

S2. Experimental

To a solution of (*E*)-4-allyl-2-benzylidene-3,4-dihydro-2*H*- benzo[*b*]1,4-thiazine (1 g, 3.4 mmol) and benzaldoxime (0.81 ml, 6.8 mmol) in chloroform (30 ml) was added dropwise a 24% sodium hypochlorite solution (10 ml) at 273 K. Stirring was continued for 4 h. The organic layer was dried over Na₂SO₄ and the solvent was evaporated under reduced pressure. The residue was then purified by column chromatography on silica gel using a mixture of hexane/ethyl acetate (v/v = 80/20) as eluent. Colourless crystals were isolated when the solvent was allowed to evaporate (yield: 74%).

S3. Refinement

The H atoms were located in a difference map and treated as riding with C—H = 0.93-0.98 Å, and with $U_{iso}(H) = 1.2 U_{eq}$. The phenyl group connected to the 1,4-thiazine ring is disordered over two sites [major component = 0.57 (2)].

Figure 1

Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small circles. One phenyl ring is disordered over two positions.

(E)-2-Benzylidene-4-[(3-phenyl-4,5-dihydroisoxazol-5-yl)methyl]-2H-benzo[b][1,4]thiazin-3(4H)-one

Crystal data	
$C_{25}H_{20}N_{2}O_{2}S$ $M_{r} = 412.49$ Monoclinic, $P2_{1}/n$ $a = 17.4463 (16) Å$ $b = 5.3024 (4) Å$ $c = 22.778 (2) Å$ $\beta = 106.370 (5)^{\circ}$ $V = 2021.7 (3) Å^{3}$ $Z = 4$	F(000) = 864 $D_x = 1.355 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4149 reflections $\theta = 1.7-26.4^{\circ}$ $\mu = 0.19 \text{ mm}^{-1}$ T = 296 K Block, colourless $0.36 \times 0.31 \times 0.26 \text{ mm}$
Data collection	
Bruker X8 APEX diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2009) $T_{\min} = 0.504, T_{\max} = 0.748$	27864 measured reflections 4149 independent reflections 1980 reflections with $I > 2\sigma(I)$ $R_{int} = 0.095$ $\theta_{max} = 26.4^{\circ}, \ \theta_{min} = 1.7^{\circ}$ $h = -21 \rightarrow 21$ $k = -6 \rightarrow 6$ $l = -28 \rightarrow 25$
Refinement	
Refinement on F^2	Hydrogen site location: inferred from

Least-squares matrix: fullneighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.057$ H-atom parameters constrained $wR(F^2) = 0.145$ $w = 1/[\sigma^2(F_o^2) + (0.0437P)^2 + 0.9738P]$ S = 1.00where $P = (F_o^2 + 2F_c^2)/3$ 4149 reflections $(\Delta/\sigma)_{max} = 0.008$ 321 parameters $\Delta\rho_{max} = 0.48$ e Å⁻³0 restraints $\Delta\rho_{min} = -0.26$ e Å⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
C1	0.17593 (18)	0.5680 (6)	0.36708 (14)	0.0498 (8)	
C2	0.1174 (2)	0.6377 (7)	0.31368 (19)	0.0693 (11)	
H2	0.0834	0.7719	0.3146	0.083*	
C3	0.1096 (2)	0.5102 (9)	0.25999 (18)	0.0784 (12)	
Н3	0.0717	0.5614	0.2244	0.094*	
C4	0.1577 (2)	0.3074 (8)	0.25874 (16)	0.0707 (11)	
H4	0.1512	0.2177	0.2226	0.085*	
C5	0.21579 (19)	0.2357 (6)	0.31078 (14)	0.0543 (9)	
Н5	0.2479	0.0968	0.3096	0.065*	
C6	0.22670 (17)	0.3703 (5)	0.36516 (14)	0.0418 (7)	
C7	0.28231 (19)	0.3227 (6)	0.47719 (16)	0.0529 (8)	
C8	0.21687 (19)	0.4767 (6)	0.48721 (15)	0.0542 (9)	
C9	0.1957 (2)	0.4326 (7)	0.53875 (16)	0.0659 (10)	
H9	0.2239	0.3061	0.5641	0.079*	
C10A	0.1328 (11)	0.561 (4)	0.5602 (8)	0.051 (3)	0.57 (2)
C11A	0.1042 (10)	0.781 (3)	0.5504 (5)	0.084 (3)	0.57 (2)
H11A	0.1229	0.8915	0.5258	0.101*	0.57 (2)
C12A	0.0437 (9)	0.861 (3)	0.5768 (6)	0.099 (4)	0.57 (2)
H12A	0.0224	1.0218	0.5680	0.118*	0.57 (2)
C13A	0.0161 (10)	0.713 (5)	0.6139 (12)	0.082 (6)	0.57 (2)
H13A	-0.0329	0.7447	0.6210	0.098*	0.57 (2)
C14A	0.0602 (15)	0.521 (5)	0.6399 (13)	0.094 (6)	0.57 (2)
H14A	0.0499	0.4360	0.6726	0.113*	0.57 (2)
C15A	0.1232 (12)	0.447 (3)	0.6169 (9)	0.090 (5)	0.57 (2)
H15A	0.1593	0.3255	0.6374	0.108*	0.57 (2)
C10B	0.1358 (18)	0.506 (5)	0.5683 (14)	0.060 (8)*	0.43 (2)
C11B	0.0671 (10)	0.674 (4)	0.5314 (8)	0.075 (5)	0.43 (2)
H11B	0.0663	0.7241	0.4920	0.090*	0.43 (2)
C12B	0.0078 (11)	0.752 (4)	0.5551 (8)	0.077 (5)	0.43 (2)
H12B	-0.0347	0.8505	0.5328	0.092*	0.43 (2)
C13B	0.0151 (18)	0.671 (8)	0.6186 (18)	0.108 (14)	0.43 (2)
H13B	-0.0142	0.7420	0.6428	0.129*	0.43 (2)
C14B	0.068 (3)	0.483 (9)	0.6378 (19)	0.17 (2)	0.43 (2)
H14B	0.0702	0.4082	0.6751	0.206*	0.43 (2)
C15B	0.1193 (14)	0.393 (7)	0.6073 (16)	0.142 (14)	0.43 (2)
H15B	0.1421	0.2345	0.6179	0.171*	0.43 (2)
C16	0.36034 (17)	0.1736 (5)	0.41243 (13)	0.0474 (8)	
H16A	0.3559	0.1496	0.3694	0.057*	
H16B	0.3637	0.0085	0.4313	0.057*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C17	0.43583 (17)	0.3205 (5)	0.44203 (14)	0.0460 (8)
H17	0.4441	0.3324	0.4863	0.055*
C18	0.50908 (17)	0.2106 (5)	0.42840 (14)	0.0468 (8)
H18A	0.5548	0.2102	0.4645	0.056*
H18B	0.4994	0.0405	0.4124	0.056*
C19	0.52051 (17)	0.3901 (5)	0.38119 (13)	0.0419 (7)
C20	0.57826 (18)	0.3586 (5)	0.34590 (14)	0.0464 (8)
C21	0.6339 (2)	0.1683 (7)	0.35988 (16)	0.0677 (10)
H21	0.6341	0.0567	0.3914	0.081*
C22	0.6896 (2)	0.1410 (8)	0.3275 (2)	0.0860 (13)
H22	0.7278	0.0140	0.3380	0.103*
C23	0.6888 (3)	0.2994 (8)	0.2803 (2)	0.0869 (13)
H23	0.7264	0.2807	0.2587	0.104*
C24	0.6332 (3)	0.4842 (8)	0.26472 (19)	0.0900 (13)
H24	0.6323	0.5905	0.2321	0.108*
C25	0.5777 (2)	0.5156 (7)	0.29715 (18)	0.0725 (11)
H25	0.5398	0.6431	0.2862	0.087*
N1	0.28861 (14)	0.3038 (4)	0.41850 (11)	0.0447 (6)
N2	0.47581 (16)	0.5856 (4)	0.37434 (12)	0.0526 (7)
01	0.33070 (14)	0.2170 (5)	0.51952 (10)	0.0720 (7)
O2	0.42730 (13)	0.5703 (3)	0.41480 (10)	0.0562 (6)
S1	0.18110 (6)	0.72501 (16)	0.43621 (5)	0.0680 (3)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0428 (19)	0.0534 (19)	0.053 (2)	-0.0024 (16)	0.0122 (17)	0.0073 (16)
C2	0.053 (2)	0.078 (2)	0.074 (3)	0.011 (2)	0.013 (2)	0.031 (2)
C3	0.058 (3)	0.117 (3)	0.049 (3)	0.000 (2)	-0.002 (2)	0.031 (2)
C4	0.060 (2)	0.098 (3)	0.047 (2)	-0.008 (2)	0.0034 (19)	0.003 (2)
C5	0.048 (2)	0.062 (2)	0.047 (2)	-0.0018 (16)	0.0042 (17)	-0.0010 (18)
C6	0.0375 (18)	0.0419 (16)	0.044 (2)	-0.0032 (14)	0.0086 (15)	0.0042 (15)
C7	0.043 (2)	0.059 (2)	0.055 (2)	-0.0010 (17)	0.0116 (18)	0.0007 (18)
C8	0.050(2)	0.063 (2)	0.046 (2)	-0.0028 (17)	0.0077 (17)	-0.0047 (17)
C9	0.056 (2)	0.084 (3)	0.054 (2)	0.007 (2)	0.0101 (19)	-0.002 (2)
C10A	0.056 (7)	0.063 (10)	0.035 (7)	0.004 (6)	0.016 (5)	0.006 (6)
C11A	0.085 (9)	0.094 (8)	0.081 (7)	-0.015 (7)	0.036 (6)	-0.027 (6)
C12A	0.087 (9)	0.114 (8)	0.095 (8)	0.000(7)	0.025 (7)	-0.043 (7)
C13A	0.060 (9)	0.122 (14)	0.081 (13)	0.024 (9)	0.049 (9)	0.004 (9)
C14A	0.091 (11)	0.102 (9)	0.120 (17)	0.033 (8)	0.080 (11)	0.033 (9)
C15A	0.142 (14)	0.096 (7)	0.059 (9)	0.057 (7)	0.072 (9)	0.032 (6)
C11B	0.055 (9)	0.105 (11)	0.067 (8)	0.009 (8)	0.021 (7)	0.001 (8)
C12B	0.061 (9)	0.105 (11)	0.070 (10)	0.024 (8)	0.027 (7)	0.010 (8)
C13B	0.12 (2)	0.123 (19)	0.08 (2)	-0.070 (18)	0.028 (15)	-0.035 (17)
C14B	0.19 (3)	0.26 (4)	0.08 (2)	0.07 (2)	0.07 (2)	0.03 (2)
C15B	0.058 (12)	0.28 (4)	0.096 (17)	0.007 (15)	0.035 (10)	-0.01 (2)
C16	0.047 (2)	0.0446 (17)	0.046 (2)	0.0058 (15)	0.0060 (16)	-0.0037 (15)
C17	0.0451 (19)	0.0443 (17)	0.0435 (19)	0.0034 (15)	0.0042 (15)	-0.0010 (15)

C18	0.0439 (19)	0.0441 (17)	0.048 (2)	0.0064 (15)	0.0052 (15)	-0.0003 (15)
C19	0.0416 (18)	0.0341 (15)	0.0426 (19)	-0.0021 (14)	-0.0003 (15)	-0.0037 (14)
C20	0.0431 (19)	0.0451 (17)	0.047 (2)	-0.0032 (15)	0.0053 (16)	-0.0015 (16)
C21	0.072 (3)	0.070 (2)	0.066 (3)	0.019 (2)	0.028 (2)	0.0122 (19)
C22	0.082 (3)	0.091 (3)	0.095 (3)	0.030 (2)	0.042 (3)	0.013 (3)
C23	0.084 (3)	0.097 (3)	0.095 (3)	0.007 (3)	0.050 (3)	0.004 (3)
C24	0.097 (3)	0.096 (3)	0.089 (3)	0.005 (3)	0.046 (3)	0.027 (3)
C25	0.069 (3)	0.067 (2)	0.084 (3)	0.010 (2)	0.024 (2)	0.019 (2)
N1	0.0421 (15)	0.0516 (15)	0.0388 (16)	0.0008 (12)	0.0085 (13)	-0.0021 (12)
N2	0.0543 (17)	0.0399 (14)	0.0595 (19)	0.0019 (13)	0.0095 (15)	-0.0023 (13)
01	0.0622 (16)	0.1030 (19)	0.0471 (15)	0.0177 (14)	0.0093 (13)	0.0139 (14)
O2	0.0586 (14)	0.0385 (12)	0.0724 (16)	0.0094 (11)	0.0200 (13)	-0.0006 (11)
S1	0.0727 (7)	0.0573 (5)	0.0770 (7)	0.0094 (5)	0.0258 (5)	-0.0015 (5)

Geometric parameters (Å, °)

C1—C6	1.381 (4)	C11B—C12B	1.360 (15)
C1—C2	1.400 (4)	C11B—H11B	0.9300
C1—S1	1.761 (3)	C12B—C13B	1.48 (5)
C2—C3	1.370 (5)	C12B—H12B	0.9300
С2—Н2	0.9300	C13B—C14B	1.35 (7)
C3—C4	1.369 (5)	C13B—H13B	0.9300
С3—Н3	0.9300	C14B—C15B	1.36 (5)
C4—C5	1.378 (4)	C14B—H14B	0.9300
C4—H4	0.9300	C15B—H15B	0.9300
C5—C6	1.395 (4)	C16—N1	1.469 (3)
С5—Н5	0.9300	C16—C17	1.515 (4)
C6—N1	1.424 (3)	C16—H16A	0.9700
C7—O1	1.224 (4)	C16—H16B	0.9700
C7—N1	1.376 (4)	C17—O2	1.453 (3)
С7—С8	1.473 (4)	C17—C18	1.514 (4)
C8—C9	1.347 (4)	C17—H17	0.9800
C8—S1	1.750 (3)	C18—C19	1.491 (4)
C9—C10B	1.45 (3)	C18—H18A	0.9700
C9—C10A	1.49 (2)	C18—H18B	0.9700
С9—Н9	0.9300	C19—N2	1.280 (3)
C10A—C11A	1.26 (2)	C19—C20	1.465 (4)
C10A—C15A	1.48 (2)	C20—C21	1.373 (4)
C11A—C12A	1.418 (14)	C20—C25	1.386 (4)
C11A—H11A	0.9300	C21—C22	1.384 (5)
C12A—C13A	1.34 (3)	C21—H21	0.9300
C12A—H12A	0.9300	C22—C23	1.361 (5)
C13A—C14A	1.31 (5)	C22—H22	0.9300
C13A—H13A	0.9300	C23—C24	1.354 (5)
C14A—C15A	1.40 (3)	C23—H23	0.9300
C14A—H14A	0.9300	C24—C25	1.383 (5)
C15A—H15A	0.9300	C24—H24	0.9300
C10B—C15B	1.17 (4)	C25—H25	0.9300

C10B—C11B	1.54 (3)	N2—O2	1.418 (3)
C6—C1—C2	119.4 (3)	C14B—C13B—C12B	113 (3)
C6—C1—S1	121.0 (2)	C14B—C13B—H13B	123.4
C2—C1—S1	119.5 (3)	C12B—C13B—H13B	123.4
$C_{3}-C_{2}-C_{1}$	120.6 (4)	C13B—C14B—C15B	126 (4)
C3—C2—H2	119.7	C13B—C14B—H14B	117.1
C1-C2-H2	119.7	C15B— $C14B$ — $H14B$	117.1
C4-C3-C2	119.0 (3)	C10B $C15B$ $C14B$	123 (4)
C4 - C3 - H3	120.0	C10B $-C15B$ $-H15B$	118.6
C2_C3_H3	120.0	C14B $C15B$ $H15B$	118.6
$C_2 = C_3 = H_3$	120.0	N1 C16 C17	110.0
$C_3 = C_4 = C_3$	110.9	NIC16L16A	111.9(2)
C_{5} C_{4} H_{4}	119.0	NI = C10 = H16A	109.2
C_{3} C_{4} C_{5} C_{6}	119.0	C1/-C16 $U16D$	109.2
C4 - C5 - C6	120.4 (5)	NI = CI0 = HI0B	109.2
C4—C5—H5	119.8		109.2
C6—C5—H5	119.8	H16A - C16 - H16B	107.9
C1 - C6 - C5	119.2 (3)	02-017-018	104.7 (2)
C1—C6—N1	120.0 (3)	02	107.9 (2)
C5—C6—N1	120.8 (3)	C18—C17—C16	112.9 (2)
O1—C7—N1	120.4 (3)	O2—C17—H17	110.4
O1—C7—C8	121.6 (3)	C18—C17—H17	110.4
N1—C7—C8	118.0 (3)	C16—C17—H17	110.4
C9—C8—C7	117.0 (3)	C19—C18—C17	101.2 (2)
C9—C8—S1	125.1 (3)	C19—C18—H18A	111.5
C7—C8—S1	117.5 (3)	C17—C18—H18A	111.5
C8—C9—C10B	140.4 (11)	C19—C18—H18B	111.5
C8—C9—C10A	128.0 (7)	C17—C18—H18B	111.5
С8—С9—Н9	116.0	H18A—C18—H18B	109.3
С10А—С9—Н9	116.0	N2-C19-C20	121.0 (3)
C11A—C10A—C15A	113.4 (15)	N2-C19-C18	113.8 (3)
C11A—C10A—C9	131.0 (14)	C20-C19-C18	125.1 (3)
C15A—C10A—C9	112.0 (14)	C21—C20—C25	118.2 (3)
C10A—C11A—C12A	120.2 (12)	C21—C20—C19	120.4 (3)
C10A—C11A—H11A	119.9	C25—C20—C19	121.4 (3)
C12A—C11A—H11A	119.9	C20—C21—C22	120.7(3)
C13A - C12A - C11A	122.4 (13)	C20—C21—H21	119.7
C13A - C12A - H12A	118.8	$C_{22} = C_{21} = H_{21}$	119.7
C_{11A} C_{12A} H_{12A}	118.8	$C_{22} = C_{21} = C_{21}$	120.2(4)
C14A - C13A - C12A	118.2 (14)	C_{23} C_{22} C_{22} H_{22}	119.9
$C_{14A} = C_{13A} = H_{13A}$	120.9	$C_{23} = C_{22} = H_{22}$	119.9
$C_{12A} = C_{13A} = H_{13A}$	120.9	$C_{21} = C_{22} = 1122$	119.9 120.1(4)
C12A - C13A - C15A	120.7 118 (2)	$C_2 = C_2 $	120.1 (4)
C13A C14A U14A	121.0	$C_{27} = C_{23} = 1123$	120.0
C15A = C14A = H14A	121.0	$C_{22} = C_{23} = \Pi_{23}$	120.0 120.2(4)
C14A = C14A = C10A	121.0 120.5 (17)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	120.3 (4)
C14A - C15A - C10A	120.3 (17)	$C_{23} = C_{24} = H_{24}$	119.9
CI4A—CI5A—HI5A	119.8	$C_{23} - C_{24} - H_{24}$	119.9
UIUA-UISA-HISA	119.8	C24—C25—C20	120.5 (4)

C15B—C10B—C9	125 (3)	C24—C25—H25	119.7
C15B—C10B—C11B	113 (3)	С20—С25—Н25	119.7
C9—C10B—C11B	117 (2)	C7—N1—C6	124.2 (3)
C12B—C11B—C10B	121.4 (16)	C7—N1—C16	115.4 (2)
C12B—C11B—H11B	119.3	C6—N1—C16	119.8 (2)
C10B—C11B—H11B	119.3	C19—N2—O2	109.2 (2)
C11B—C12B—C13B	115.7 (17)	N2—O2—C17	108.8 (2)
C11B—C12B—H12B	122.1	C8—S1—C1	99.02 (15)
C13B—C12B—H12B	122.1		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
C21—H21…O1 ⁱ	0.93	2.43	3.339 (4)	166
C18—H18 <i>B</i> ····N2 ⁱⁱ	0.97	2.56	3.526 (3)	178

Symmetry codes: (i) -*x*+1, -*y*, -*z*+1; (ii) *x*, *y*-1, *z*.