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Abstract: The ability to separate enzymes, or cells or viruses, from a mixture is important and can be
realized by the incorporation of the mixture into a macromolecular solution. This incorporation may
lead to a spontaneous phase separation, with one phase containing the majority of one of the species
of interest. Inspired by this phenomenon, we studied the theoretical phase behavior of a model
system composed of an asymmetric binary mixture of hard spheres, of which the smaller component
was monodisperse and the larger component was polydisperse. The interactions were modeled in
terms of the second virial coefficient and could be additive hard sphere (HS) or nonadditive hard
sphere (NAHS) interactions. The polydisperse component was subdivided into two subcomponents
and had an average size ten or three times the size of the monodisperse component. We gave the set of
equations that defined the phase diagram for mixtures with more than two components in a solvent.
We calculated the theoretical liquid–liquid phase separation boundary for the two-phase separation
(the binodal) and three-phase separation, the plait point, and the spinodal. We varied the distribution
of the polydisperse component in skewness and polydispersity, and we varied the nonadditivity
between the subcomponents as well as between the main components. We compared the phase
behavior of the polydisperse mixtures with binary monodisperse mixtures for the same average
size and binary monodisperse mixtures for the same effective interaction. We found that when the
compatibility between the polydisperse subcomponents decreased, the three-phase separation became
possible. The shape and position of the phase boundary was dependent on the nonadditivity between
the subcomponents as well as their size distribution. We conclude that it is the phase enriched in the
polydisperse component that demixes into an additional phase when the incompatibility between
the subcomponents increases.

Keywords: polydispersity; hard spheres; phase behavior; virial coefficient

1. Introduction

The ability to separate enzymes or other compounds such as cells or viruses from
their mixture is important. This separation can be realized by the incorporation of the
mixture into a polymeric solution after which a spontaneous asymmetric partitioning over
two macromolecular solutions may occur, where the majority of the compound of interest
resides in one of the phases [1]. For modeling such a separation, we consider mixing two
different types of macromolecules in an aqueous phase. The demixing depends on the
polydispersity of the macromolecules. Regarding separating enzymes and similar com-
pounds, the prediction of the phase separation is important. Apart from such applications,
the separation of aqueous phases within the cytoplasm has also received interest [2]. Inter-
estingly, the preassembly mechanism during evolution [3] may be speculatively related to
the same separation mechanisms. In the study of the phase behavior of binary mixtures,
the components are usually assumed to be pure and monodisperse; however, in nature,
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most components are not that neatly monodisperse. Many components show a size and
charge variation or contain hard-to-remove particles that can influence their phase behavior
in binary mixtures. In experimental work, Sager [4] reported that even small impurities
can lead to drastic shifts in the position of the phase boundary. Moreover, the compatibility
between components can depend on the temperature [5], salt concentration or pH of the
solution [6].

To learn more about the underlying mechanisms regarding the separation of enzymes,
for example, from another macromolecular compound, where both are in an aqueous
phase, one may, to a first approximation, model these molecules as spheres. In a simplified
picture, the interactions can be distinguished to emerge from two different physical mech-
anisms. The first one involves only excluded volume interactions between the spheres.
In this mechanism, the minimal distance between the particles is determined by the sum
of their respective radii [7]. This is the so called additive hard sphere interaction (HS).
With this mechanism, the phase separation is driven by a size asymmetry between the
particle sizes [8]. This asymmetry leads to the depletion of small spheres around the
large spheres and as a result, to an effective attraction (depletion interaction) between the
larger spheres [9]. For more information on depletion interactions, we refer to a book by
Lekkerkerker and Tuinier [10]. We note that the solvent molecules present are still much
smaller than the spheres under consideration and are effectively integrated out of the
analysis. The other mechanism is when the distance between the particles of a different
species can be larger or smaller than the sum of their respective radii. This is referred to as
nonadditive hard sphere (NAHS) interaction. Previous research has shown that already at
small degrees of nonadditivity, it becomes possible for components with no size asymmetry
to demix [11,12]. Either way, upon phase separation, the mixture will demix into two (or
more) phases, each enriched in one of the components. In a previous article, we focused on
the first type of interaction [13]. We investigated the influence of size polydispersity on the
phase behavior of an additive binary asymmetric mixture. In this work, we focus on the
second type, binary (polydisperse) mixtures where the distance between the particles of
different species can be larger or smaller than the sum of their respective radii.

Piech and Walz [14] studied the effect of size polydispersity and charge heterogeneity
on the depletion interaction in a colloidal system. They found that the size distribution
in the larger particle had a different effect on the depletion attraction for charged and
noncharged hard sphere systems, for the depletion attraction decreased between the larger
particles at constant volume fraction due to the polydispersity. This effect was further
enhanced by the presence of a charge. Polydispersity significantly lowered the magnitude
of the repulsive barrier.

The nonadditivity is usually described by the nonadditivity parameter ∆ (with ∆ ≥ −1).
When ∆ = 0, the mixture has an additive hard sphere interaction, and the closest approach
of the particles is the sum of their radii. When ∆ < 0, the two particles experience more
attraction and can come closer to each other than the sum of their radii, while when ∆ > 0,
the two particles have more repulsion, and their distance of closest approach is larger
than the sum of their respective radii. It is clear that this can have enormous effects on
their phase behavior. Particles with a negative ∆ tend to be more compatible with each
other, while particles with a positive ∆ are less compatible and tend to demix at lower
concentrations. Already at the relatively low ∆ = 0.1, it becomes possible for components
with the same size to demix [15].

Paricaud [16] studied the phase behavior of polydisperse colloidal dispersions. Their
mixture consisted of a monodisperse component and a polydisperse component. The in-
teraction between the monodisperse and polydisperse components was assumed to be
NAHS (with the same ∆ for all polydisperse spheres), while the interaction between the
polydisperse components amongst themselves was assumed to be additive HS. They found
that the critical point of a polydisperse mixture was at a lower solution pressure than for
completely monodisperse mixtures. For mixtures with a large variation in the size of the
polydisperse mixtures, they observed the possibility of a three-phase system. The phase
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behavior of a colloid and a polydisperse polymer was studied by Sier and Frenkel [17]. They
used the Asakura–Osawa model for the interactions between the different components.
They found that increasing the polydispersity increased also the extent of the fluid–fluid
coexistence. They reasoned that the introduction of larger polymer coils was the driving
force towards phase separation.

In this study, we aim to get a better understanding of how nonadditive interaction
influences the phase behavior of binary mixtures with some polydispersity or impurities.
We study the position of the phase separation boundary, the spinodal, and the critical point.
Moreover, we aim to predict the fractionation of the polydisperse component between
the different phases. We model the interactions between the different components using
the second virial coefficient (Section 2.1). In Section 2.2, we describe the equations for
the spinodal; in Section 2.3, we describe the equations for the critical point; and finally, in
Section 2.4, we describe the equations defining the phase boundary. With the expressions
in Section 2, we have enough to calculate the phase diagram for a variety of mixtures
described in Section 3. First, we introduce nonadditivity between the main components in
the binary mixtures (Section 3.1); subsequently, we introduce nonadditivity between the
subcomponents in the polydisperse component (Section 3.2); and finally, we combine both
in Section 3.3. In Section 3.4, we look into the fractionation of some of the mixtures from
Section 3.2 at a specific parent concentration.

2. Theory

We show the equations used for the calculations of the phase diagram of the different
studied systems: the set of equations defining the stability boundary, the critical point,
and phase boundaries of a mixture. All sets of equations were solved in Matlab R2017b.
For a more detailed derivation of the equations, we refer to an earlier reference [13].

2.1. Osmotic Virial Coefficient

The osmotic pressure, Π, of a solution at a temperature T, can be written as a virial
expansion, similar to the virial expansion of the universal gas law for real gasses [18]:

βΠ = ρ + B2(T, µs)ρ
2 + B3(T, µs)ρ

3 + ... (1)

with β =
1

kT
, k the Boltzmann’s constant, ρ the number density of the component

(
Nν

V

)
,

B2 the second virial coefficient, and B3 the third virial coefficient. The second virial coeffi-
cient accounts for the increase in osmotic pressure due to particles’ pairwise interaction.
The third virial coefficient accounts for the interaction between three particles in a variety
of configurations. The equation can be expanded for higher densities with Bn, the nth virial
coefficient, which accounts for the interaction between n different particles.

In this work, we limit the virial expansion to the second virial coefficient, which is
given by [10]:

B(T, µs) = 2π
∫ ∞

0
r2(1 − exp [−βW(r)])dr (2)

in which µs is the chemical potential of the solution, W(r) is the interaction potential
between the particles, and r is the distance.

For an additive hard sphere (HS) interaction, the interaction potential for two particles
(of the same species or different species) is given by:

W(r)HS =

{
0, r > σij
∞, r ≤ σij

(3)

with σij = (σi + σj)/2 the distance between the centers of the two particles.
For nonadditive hard spheres (NAHS), the distance of the closest approach of the

centers of the two particles of different species can be closer or further than the distance
between their centers [11]. The closest distance then becomes: σij = ((σi + σj)/2)(1 + ∆),
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in which ∆ (≥ −1) accounts for the nonadditivity of the interaction between the particles.
When ∆ > 0, the distance of closest approach of both spheres increases and when ∆ < 0,
the distance of closest approach decreases compared to that due to the HS interaction only.
For the additive hard sphere interaction, ∆ = 0.

In a mixture with n distinguishable components in a solution, there are two main
types of two-particle interactions that can occur: between particles of the same species and
particles of different species.

For the second virial coefficient given by Equation (2), using the interaction potential
defined in Equation (3), we find:

Bxx =
2π

3
(σx)

3 (4)

Bxy =
2π

3

((
σx + σy

2

)
(1 + ∆)

)3
(5)

where Bxx is the second virial coefficient for particles of the same species (assumed to be
HS) and Bxy is the second virial coefficient of particles of different species, which can be HS
or NAHS.

The general equation for the osmotic pressure for a dilute mixture is given by [13]:

βΠ = ρ + B11ρ2
1 + 2B12ρ1ρ2 + 2B13ρ1ρ3...

= ρ +
n

∑
i

n

∑
j

Bijρiρj + ... (6)

In this article, we focus on binary mixtures in which one of the components consists of
subcomponents (Figure 1). By increasing the number of subcomponents, the number of
equations to solve for the phase diagram increases. Just as in the previous article [13], we
also compare the results to the number average virial coefficients of the different compo-
nents. The number average virial coefficient was chosen because it allows for a comparison
to experiments, e.g., the virial coefficient obtained from osmometric measurements [19].

Figure 1. Graphical representation of a simple polydisperse mixture, in which the polydisperse
component consists of two subcomponents (a and b, n = 3); second virial coefficients are indicated.
The distance of closest approach is influenced by ∆: ∆ > 0 increases this distance, ∆ < 0 decreases
this distance.
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The number average second virial coefficient of a mixture can be written as:

Bmix = B11x2
1 + 2B12x1x2 + 2B13x1x3...

=
m

∑
i

m

∑
j

Bijxixj
(7)

in which Bii is the second virial coefficient of the ith particle, Bij is the second cross virial
coefficient of the ith particle and the jth particle, and xi is the fraction of the ith particle,
∑ xi = 1.

Using this definition, we can map the binary mixture consisting of, for example,
a monodisperse component 1 and a component 2 subdivided into two subcomponents
(a and b) by a 2 × 2 matrix of virial coefficients. We refer to this 2 × 2 matrix as the effective
virial coefficient matrix.

B11e f f = B11

B12e f f = xaB12a + xbB12b

B22e f f = x2
a B2a2a + 2xaxbB2a2b + x2

b B2b2b (8)

The effective virial coefficient matrix for this mixture then becomes:

Be f f =

B11e f f B12e f f

B12e f f B22e f f

 (9)

2.2. Stability of a Mixture

The stability of a mixture is dependent on the second derivative of the free energy.
If the second derivative of the mixture becomes zero, the mixture is at the boundary of
becoming unstable. Unstable mixtures have a negative second derivative [20,21].

The differential of the free energy of a mixture is given by [18]:

dA = −SdT − pdV +
n

∑
i

µidNi (10)

in which µi and the chemical potential (the first partial derivative of the free energy with
respect to number of particles (Ni)) for component i is given by:

µi = µ0
i + kT ln(ρi) + 2kT

(
n

∑
j

Bijρj

)
(11)

For a mixture with n distinguishable components, the second partial derivatives can
be represented by a n × n matrix of the first partial derivatives of the chemical potential of
each component.
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This results in the following general stability matrix:

M1 =


∂µ1

∂N1
· · · ∂µ1

∂Nn
...

. . .
...

∂µn

∂N1
· · · ∂µn

∂Nn



=


2B11 +

1
ρ1

· · · 2B1n

...
. . .

...

2B1n · · · 2Bnn +
1
ρn

 (12)

The mixture is stable when all eigenvalues are positive [22]; when, on the other hand,
one of the eigenvalues is not positive, the mixture becomes unstable. The limit of stability is
reached when the matrix has one zero eigenvalue and is otherwise positive definite, and is
referred to as the spinodal [23].

When there are only two components in the mixture (n = 2), the spinodal is defined by
the condition det M1 = 0. When the number of components is larger (n > 2), det M1 = 0
can have more than one solution [22]. The spinodal can be found by checking whether
det M1 changes sign for small changes in the concentrations of the components.

2.3. Critical Points

In a binary mixture, the critical point is a stable point which lies on the stability
limit (spinodal) [23] and where the phase boundary and spinodal coincide. In mixtures
of more components, these critical points become plait points. Critical points and plait
points are in general concentrations at which two phases are in equilibrium and become
indistinguishable [24].

There are two criteria that can be used to find critical points. The first one is det(M1) = 0,
which is the equation for the spinodal. The other criterion is based on the fact that at
the critical point, the third derivative of the free energy should also be zero. For a mul-
ticomponent system, this criterion can be reformulated using Legendre transforms as
det(M2) = 0 [21,25], where:

M2 =


∂µ1

∂N1
· · · ∂µn

∂Nn
...

. . .
...

∂M1

∂N1
· · · ∂M1

∂Nn

 (13)

Matrix M2 is matrix M1 with one of the rows replaced by the partial derivatives of the
determinant of matrix M1. Note: it does not matter which row of the matrix is replaced.

2.4. Phase Boundary

When a mixture becomes unstable and demixes into two or more phases, the chemical
potential of each component and the osmotic pressure is the same in all phases [18].

βΠI = βΠI I = · · ·
βµI

1 = βµI I
1 = · · ·

...

βµI
n = βµI I

n = · · ·

(14)

where the phases are denoted by I, I I, ....
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For a mixture containing n distinguishable components, which demixes into two
phases, this results in n + 1 equations and 2 × n unknowns. If the mixture demixes into
three phases, this results in 2 × n + 2 equations and 3 × n unknowns. To solve the set of
equations without having to fix the concentration of one component and the ratio between
the other components for at least one of the phases, we need extra equations. For the extra
set of equations, we build on the fact that no particles are lost and no new particles are
created during phase separation, and the fact that we assume that the total volume does
not change.

For a system that separates into three phases, we then obtain:

ρ =
n

∑
i

ρi =

n
∑
i

Ni

V
=

n
∑
i

N I
i +

n
∑
i

N I I
i +

n
∑
i

N I I I
i

V I + V I I + V I I I

which can be rewritten as [13]:

ρ = αI
n

∑
i

ρI
i + αI I

n

∑
i

ρI I
i + (1 − αI − αI I)

n

∑
i

ρI I I
i

with

αI =
V I

f
∑
i

Vi

in which f denotes the number of phases.
This results in the following set of equations:

βΠI = βΠI I = · · ·
βµI

1 = βµI I
1 = · · ·

...

βµI
n = βµI I

n = · · ·

ρ1 = αIρI
1 + · · ·+

(
1 −

f−1

∑
i

αi

)
ρ

f
1

...

ρn = αIρI
n + · · ·+

(
1 −

f−1

∑
i

αi

)
ρ

f
n

(15)

With this set of equations, we have 2 × n + 1 unknowns and 2 × n + 1 equations for
mixtures that separate into two phases. For mixtures that demix into three phases, we have
3 × n + 2 unknowns and 3 × n + 2 equations. Therefore, this set of equations allows the
calculation of the concentration of each component in each of the phases for any given
parent concentration, given that the mixture will demix at this concentration.

3. Results and Discussion

In this work, we calculated the phase diagram for a variety of binary nonadditive
mixtures of a small hard sphere A and a larger hard sphere B with a size ratio q = σA/σB.
Component B was subdivided into two subcomponents and was characterized by a degree
in polydispersity (PD), defined by:

PD =

√
∑ (σBi − σB)2 × NBi /NB

σB
× 100
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We varied the nonadditivity between the particles of component A and B (∆AB),
and between the subcomponents of B (∆BaBb ). In addition, we varied the degree of polydis-
persity (PD) of component B and the distribution between the subcomponents as well as
the size ratio (q) between components A and B.

For all particles, the concentrations were expressed as a dimensionless parameter

according to η =
πρσ3

6
. We calculated the critical point, the phase separation boundary,

and the spinodal of the various mixtures. Moreover, we also investigated the composition of
the child phases, volume fraction of the phases (α), and the fractionation of the polydisperse
component B for a specific parent mixture (η = (0.010, 0.200)), for mixtures with a size
ratio q = σA/σB = 1/10 and ∆AB = 0, while varying the nonadditive interaction between
the subcomponents of B (∆BaBb ).

3.1. Nonadditive Interaction between Components A and B (∆AB)

For the first set of mixtures (see Figure 2), we calculated the phase diagram for
binary mixtures with a nonadditive interaction between monodisperse component A and
slightly polydisperse component B, with two subcomponents and a PD = 4.00. These two
subcomponents were additive hard spheres in two sizes (both present in the same amount),
with the number average size of the mixture equal to 10 times the size of component A.
The mixture therefore consisted of three components of different sizes. We varied the
nonadditivity between components A and B (∆AB, the same for both subcomponents) from
−0.1 to 0.5 with a step size of 0.1. When ∆AB = 0, the interaction between all components
was equivalent to an additive hard sphere interaction. We calculated the phase diagram
using both the simplified 2 × 2 effective virial coefficient matrix described in the theory (we
refer to this as the effective mixture B) and the full 3 × 3 virial coefficient matrix (to which
we refer as the polydisperse mixture B). These mixtures were also compared to mixtures
in which component B was monodisperse with a size equal to the average particle size of
component B (we refer to this as the monodisperse mixture B).

With increasing ∆AB, the phase boundary, spinodal, and critical point shifted towards
lower concentrations, for the monodisperse mixture, effective mixture, and polydisperse
mixture. This was in line with research on nonadditive binary mixtures [26]. The difference
between the phase boundary, spinodal, and critical point of the monodisperse mixture and
the effective mixture was negligible, for all ∆AB. We saw however that the introduction
of the polydispersity caused the critical point to shift to a higher volume fraction of
component B and that, especially at a lower volume fraction of component B, the phase
separation boundary shifted towards slightly lower packing fractions. This effect was more
pronounced when ∆AB was small.

When the PD of component B increased, or the distribution of the subcomponents
of B varied, we saw the same pattern as in Figure 2 (see the Supplementary Materials).
However, we see that, as discussed in [13], the critical point shifted towards higher concen-
trations of B for the polydisperse mixtures depending on the size and concentration of the
largest subcomponent of B, and the difference between the effective and the monodisperse
mixtures increased with the size of the largest subcomponent of B.

3.2. Nonadditive Interaction within Polydisperse Component B (∆BaBb )

In the next set of mixtures, we kept the interaction between the components A and B
as hard-sphere additive, but we introduced some nonadditivity in the interaction between
the subcomponents of B. We varied ∆BaBb from −0.10 to 0.10 with a step size of 0.05.
When ∆BaBb was small, the subcomponents were more compatible with each other; when,
on the other hand, ∆BaBb increased and became positive, the compatibility between the
subcomponents decreased. When ∆BaBb > 0, it became possible for components of similar
size to phase-separate [26].
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Figure 2. Phase diagram for binary (components A and B) nonadditive hard sphere mixture with size
ratio q = σA/σB = 1/10 plotted as a function of the partial packing fractions, ηA and ηB; as indicated
in the inset, component A is monodisperse, component B is polydisperse (PD = 4.00). The symbols
σA and σB refer to the diameters of species A and B, respectively. The interaction between components
A and B is nonadditive, the nonadditivity parameter ∆AB was varied from −0.1 to 0.5 with a step
size of 0.1 (the arrow indicates increasing ∆AB). The interaction between the subcomponents of
B is additive. The spinodal (solid line) and binodal (dashed line) meet each other at the critical
point (diamond).

In Figure 3, we plotted the phase diagram for the binary mixtures with PD = 4.00
and ∆AB = 0, and we varied ∆BaBb . When ∆BaBb > 0, the compatibility between the
subcomponents decreased and the phase separation into three phases became possible
(depicted as the dotted line in the figure). Mixtures with a smaller ∆BaBb demixed into two
phases at lower concentrations compared to the completely hard sphere mixture. Mixtures
with a larger ∆BaBb demixed into two phases at higher packing fractions compared to the
completely hard sphere mixture, and also had a three-phase boundary. The three-phase
boundary was at lower concentrations for larger ∆BaBb and came close to the two-phase
boundary for the mixture with ∆BaBb = 0.10. The critical point of the polydisperse mixtures
changed depending on the nonadditivity of the subcomponents: the critical point was at
its lowest concentrations of A for negative ∆BaBb , its lowest concentration of B when the
interaction between the subcomponents of B became more like HS, and the concentration
of the critical point for B increased with ∆BaBb .
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Figure 3. Phase diagram for binary (components A and B) nonadditive hard sphere mixture with size
ratio q = σA/σB = 1/10, plotted as a function of the partial packing fractions, ηA and ηB; component
A is monodisperse, component B is polydisperse (PD = 4.00). The symbols σA and σB refer to
the diameters of the species A and B, respectively. The interaction between components A and B
is additive, the interaction between the subcomponents B is nonadditive, and the nonadditivity
parameter ∆Ba Bb was varied from −0.1 to 0.1 with a step size of 0.05 (the arrow indicates increasing
∆Ba Bb ). The spinodal (solid line) and binodal (dashed line) meet each other at the plait point (diamond),
the three-phase boundary is indicated with a dotted line and meets the spinodal at the plait point
(diamond). The two right-hand smaller figures represent zoomed-in sections of the main figure.

In Figure 4, we increased the PD for component B to 8.00 and 12.00, respectively, we
kept ∆AB = 0, and we varied ∆BaBb as before. With an increased PD, the two-phase bound-
ary of the polydisperse mixture shifted towards lower packing fractions for all mixtures.
The effect of ∆BaBb on the position of the two-phase boundary became smaller at lower con-
centration of B; however, at higher concentrations of B, we see that the two-phase boundary
for positive ∆BaBb bent towards the y-axis, and this effect was more pronounced for higher
PD. The polydispersity of B also had an effect on the position of the three-phase boundary.
With increased PD, the position of the three-phase boundary became less dependent on
∆BaBb and the difference in the position of the two-phase boundary and the three-phase
boundary increased for the mixtures with ∆BaBb = 0.10. For the mixtures with PD = 12.00,
the difference between the three-phase boundary for the mixtures that phase-separated into
three phases became negligible. We saw similar trends in the critical points for the more
polydisperse mixture as in Figure 3; however, with increased polydispersity and especially
increased incompatibility between the subcomponents (∆BaBb > 0), the critical point shifted
towards higher concentrations of B. For the mixtures with larger ∆BaBb , the critical point
could shift to ηBcrit > 0.5.
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(a) PD = 8.00

(b) PD = 12.00

Figure 4. Phase diagram for binary (component A and B) nonadditive hard sphere mixture with size
ratio q = σA/σB = 1/10 plotted as a function of the partial packing fractions, ηA and ηB; component
A is monodisperse, component B is polydisperse (PD = 8.00 or PD = 12.00). The symbols σA and σB

refer to the diameters of the species A and B, respectively. The interaction between components A
and B is additive, the interaction between the subcomponents B is nonadditive, the nonadditivity
parameter ∆Ba Bb was varied from −0.1 to 0.1 with a step size of 0.05 (the arrow indicates increasing
∆Ba Bb ). The spinodal (solid line) and binodal (dashed line) meet each other at the plait point (diamond),
the three-phase boundary is indicated with a dotted line. The two right-hand smaller figures represent
zoomed-in sections of the main figure.

In Figures 5 and 6, we varied the ratio between the subcomponents of B. The ratio
between the subcomponents of B was 25/75 with a PD = 6.93 in Figure 5 (both left and
right skewed) and 10/90 with a PD = 4.80 in Figure 6 (both left and right skewed). These
mixtures can be seen as a model for mixtures that contain some impurities, from a similar
material but at different sizes when ∆BaBb = 0 or a material that is less compatible with the
main component (when ∆BaBb > 0) or more compatible with the main component (when
∆BaBb < 0). The PD was the same for both the left-skewed and the right-skewed mixtures.
For both types of mixtures, we see that the two-phase boundaries were closer to each other
for the left-skewed mixtures (large amount of the largest subcomponent) compared to the
right-skewed mixtures. Moreover, these left-skewed mixtures also showed a larger bend in
the two-phase boundary towards the y-axis for ∆BaBb > 0. The mixture in Figure 6a with
∆BaBb = 0.05 did not have a three-phase boundary, even though mixtures with these sizes
can phase-separate into three phases: the distribution of the subcomponents made these
concentrations unattainable in the range of concentrations we focused on.
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(a) Left skewed

(b) Right skewed

Figure 5. Phase diagram for binary (component A and B) nonadditive hard sphere mixture with size
ratio q = σA/σB = 1/10 plotted as a function of the partial packing fractions, ηA and ηB; component
A is monodisperse, component B is polydisperse (PD = 6.93), . The symbols σA and σB refer to
the diameters of the species A and B, respectively. The interaction between components A and B is
additive, the interaction between the subcomponents B is nonadditive, the nonadditivity parameter
∆Ba Bb was varied from −0.1 to 0.1 with a step size of 0.05 (the arrow indicates increasing ∆Ba Bb ).
The spinodal (solid line) and binodal (dashed line) meet each other at the plait point (diamond),
the three-phase boundary is indicated with a dotted line. The right-hand smaller figures represent
zoomed in versions of the left larger figures.

(a) Left-skewed

Figure 6. Cont.
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(b) Right-skewed

Figure 6. Phase diagram for binary (component A and B) nonadditive hard sphere mixture with
size ratio q = σA/σB = 1/10 versus the partial packing fractions, ηA and ηB; component A is
monodisperse, component B is polydisperse (PD = 4.80), . The symbols σA and σB refer to the
diameters of the species A and B, respectively. The interaction between components A and B is
additive, the interaction between the subcomponents B nonadditive, the nonadditivity parameter
∆Ba Bb was varied from −0.1 to 0.1 with a step size of 0.05 (the arrow indicates increasing ∆Ba Bb ).
The spinodal (solid line) and binodal (dashed line) meet each other at the plait point (diamond),
the three-phase boundary is indicated with a dotted line. The smaller right-hand figures represent
zoomed in versions of the left larger figure.

For the right-skewed mixtures, we see that the three-phase boundary for mixtures
with ∆BaBb = 0.10 came very close to the two-phase boundary and for mixtures with
∆BaBb = 0.05 the three-phase boundary showed a bend back towards lower concentrations
of A at low concentrations of B. This is due to the shape of the three-phase surface and can
also be seen on a small level in the mixture ∆BaBb = 0.10 in Figure 3.

Furthermore, [27] found the possibility of three-phase separation for polydisperse com-
ponents. According to them, the transition between the two-phase and three-phase region
proceeds via a second critical point. This second critical point is polydispersity induced.

3.3. Mixtures with Nonadditivity between Subcomponents of B (∆BaBb ), and between A and B (∆AB)

In Figure 7, we plotted the phase diagram for mixtures with varying ∆BaBb , with a
size ratio between component A and B of q = 1/3, and a nonadditive interaction between
A and B ∆AB = 0.075. This was in fact a combination of the cases in Sections 3.1 and 3.2
at a lower size ratio between A and B. The polydispersity of B was 4.00 (for mixtures
with more variety in PD and ∆AB, we refer the reader to the Supplementary Materials).
The phase diagram of these mixtures showed a lot of similarities with the phase diagram
of the mixtures in Figure 3, though at different ηA due to the different size ratio. Since
the mixtures in Figure 3 had the same PD, we concluded that the three-phase boundary
position and shape was largely dependent on the interaction between the subcomponents
of B. The interaction between the subcomponents was determined by both the PD and the
nonadditivity parameter ∆BaBb .
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Figure 7. Phase diagram for binary (component A and B) nonadditive hard sphere mixture with size
ratio q = σA/σB = 1/3 plotted as a function of the partial packing fractions, ηA and ηB; component
A is monodisperse, component B is polydisperse (PD = 4.00). The symbols σA and σB refer to the
diameters of the species A and B, respectively. The interaction between components A and B is
nonadditive with a nonadditivity parameter ∆AB = 0.075, the interaction between the subcomponents
B is nonadditive, the nonadditivity parameter ∆Ba Bb was varied from −0.1 to 0.1 with a step size of
0.05 (the arrow indicates increasing ∆Ba Bb ). The spinodal (solid line) and binodal (dashed line) meet
each other at the plait point (diamond), the three-phase boundary is indicated with a dotted line.

3.4. Fractionation

When a parent mixture demixes into two or more phases, each component (and also
their subcomponents) in the mixture finds its preferential phase in order to minimize the
Helmholtz free energy of the system. This leads each phase to be enriched in one of the
components, whilst being depleted by the other component(s). The other components are
then present only at low volume fractions. We investigated the phase separation for the
mixtures in Section 3.2 for a specific parent mixture (ηAparent = 0.010, ηBparent = 0.200) in
terms of the volume fraction of both components in each phase, the degree of polydispersity
of component B, the average size of component B in the child phases compared to the
average size of component B in the parent phase and the volume fraction of the phases
(α), see Table 1 for the mixtures from Figure 3 (mixtures with PD = 4.00). For other
mixtures, we refer the reader to the Supplementary Materials. The composition histograms
for each phase are given in Table 2 for the same mixture; for other mixtures we refer the
reader to the Supplementary Materials. Since at this parent concentration, the mixture with
nonadditivity parameter ∆BaBb = 0.10 separates into three phases, we also calculated the
child phases for mixtures with between ∆BaBb = 0.10 and ∆BaBb = 0.05 to investigate the
behavior of the subcomponents B depending on the nonadditivity.
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Table 1. Critical points are given for the different binary mixtures, depending on the nonadditivity
of component B (see also Figure 3), phase-separated concentrations, and volume fraction α of the
different mixtures for a specific parent concentration (ηAparent = 0.010, ηBparent = 0.200), depending on
the nonadditivity of component B. See also Table 2 for a distribution of component B in each phase.

∆BaBb ηcrit Top Phase Middle Phase Bottom Phase

0.100 (0.007, 0.323) η (0.011, 0.074) η (0.006, 0.596) η (0.004,0.953)
PD: 3.35, Size: 0.97,
α : 0.817

PD: 3.84, Size: 0.99,
α : 0.097

PD: 2.62, Size: 1.03,
α : 0.087

0.0875 (0.007, 0.303) η (0.011, 0.064) η (0.005, 0.733) η (0.004, 0.813)
PD: 3.39, Size: 0.98,
α : 0.804

PD: 3.94, Size: 1.01,
α : 0.138

PD: 3.65, Size: 1.02,
α : 0.058

0.075 (0.007, 0.294) η (0.011, 0.057) η (0.005, 0.767)
PD: 3.42, Size: 0.98,
α : 0.799

PD: 3.91, Size: 1.01,
α : 0.201

0.05 (0.007, 0.285) η (0.011, 0.047) η (0.004, 0.800)
PD: 3.44, Size: 0.98,
α : 0.797

PD: 3.94, Size: 1.01,
α : 0.203

0 (0.007, 0.280) η (0.011, 0.034) η (0.004, 0.881)
PD: 3.45, Size: 0.98,
α : 0.804

PD: 3.97, Size: 1.00,
α : 0.196

−0.05 (0.006, 0.281) η (0.011, 0.026) η (0.004, 0.966)
PD: 3.45, Size: 0.98,
α : 0.815

PD: 3.98, Size: 1.00,
α : 0.185

−0.1 (0.006, 0.285) η (0.011, 0.020) η (0.003, 1.051)
PD: 3.45, Size: 0.98,
α : 0.825

PD: 3.99, Size: 1.00,
α : 0.175

For all mixtures, the top phase, which was also the largest phase in volume, was
enriched in component A. The volume fraction of the top phase was dependent on the
nonadditive interaction between the subcomponents of B. It increased with both more
compatibility between the subcomponents as well as less compatibility, with a minimum
volume fraction at ∆BaBb = 0.05. We also found this dependence in volume fraction on
the nonadditivity parameter ∆BaBb for the other mixtures; however, the minimum volume
fraction was at different ∆BaBb depending on the sizes and the ratio of the subcomponents
a and b of B. For the mixtures (∆BaBb > 0.075) that phase-separated into three phases at
this parent mixture concentration, we concluded that it was mostly the bottom phase that
demixed into an additional phase (the middle phase). The bottom phase was enriched in
the largest subcomponent of B, while the top phase (and middle phase to a lesser extent)
was enriched in the smaller subcomponent of B. We also saw this behavior for the other
mixtures with a different composition of B.

The fractionation of the subcomponents of B was dependent on the nonadditivity
parameter ∆BaBb . When ∆BaBb < 0, the subcomponents a and b were more compatible with
each other and this led to less fractionation, as can be seen in Table 2, while on the other
hand, when ∆BaBb > 0, the subcomponents were less compatible with each other and more
fractionation occurred, even leading to additional phase separation at higher ∆BaBb . This is
something we also saw for the other mixtures (see Supplementary Material).
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Table 2. Phase separation of different mixtures and fractionation of component B for a specific parent
distribution (ηAparent = 0.010, ηBparent = 0.200), depending on the nonadditivity of component B, see
also Figure 3.

∆BaBb Parent Dist. Top Phase Middle Phase Bottom Phase

0.1

0.0875

0.075

0.05

0

−0.05

−0.1

4. Conclusions

We found that when the compatibility between component A and B was decreased,
the phase diagram (the critical point, phase boundary, and spinodal) shifted towards lower
volume fractions. This was in line with the literature on the phase behavior of NAHS binary
monodisperse mixtures. The interaction between A and B was driven by the size ratio (q)
between A and B and the nonadditivity parameter ∆AB.

When the compatibility between the subcomponents of the polydisperse component B
was altered, the phase diagram changed more drastically. When the compatibility between
the subcomponents was decreased, the mixture could demix into three phases, each en-
riched in one of the (sub)components of the parent mixture. The shape and position of the
three-phase boundary was mainly dependent on the interactions between the subcompo-
nents of B. This meant that it was dependent on the nonadditivity parameter (∆BaBb ) as well
as the size ratios and distribution of the subcomponents (the degree of polydispersity PD).
Moreover, depending on the size ratios and distribution of the subcomponents, we also saw
that the binodal and spinodal bent towards the y-axis for higher volume fractions of B when
∆BaBb increased. For the mixtures with a more pronounced bend in the phase boundary
and spinodal, we found that the critical point shifted to volume fractions ηBcrit > 0.5. This
behavior was driven to a large extent by the nonadditivity parameter (∆BaBb ) as well as the
size ratios and distribution of the subcomponents (the degree of polydispersity PD), and to
a lesser extent, by the interaction between A and B. When the compatibility between the
subcomponents was increased, the mixture demixed at slightly lower packing fractions
compared to the HS mixture. The fractionation of the polydisperse subcomponents of B
was also dependent on the nonadditivity parameter ∆BaBb . Less fractionation occurred
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when ∆BaBb < 0 and more fractionation occurred when ∆BaBb > 0. At higher ∆BaBb , this
could even lead to additional phase separation, creating a third phase.

The virial coefficient approach for polydisperse mixtures allows for the prediction
of the phase behavior of polydisperse or impure binary mixtures. Not only does it allow
for plotting the phase diagram, it also allows for the calculation of the composition and
fractionation of each component in each phase.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27196354/s1.
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