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CD4+ T cells, also known as T helper (Th) cells, contribute to the adaptive immunity both in
the periphery and in the central nervous system (CNS). At least seven subsets of Th cells
along with their signature cytokines have been identified nowadays. Neuroinflammation
denotes the brain’s immune response to inflammatory conditions. In recent years, various
CNS disorders have been related to the dysregulation of adaptive immunity, especially the
process concerning Th cells and their cytokines. However, as the functions of Th cells are
being discovered, it’s also found that their roles in different neuroinflammatory conditions,
or even the participation of a specific Th subset in one CNS disorder may differ, and
sometimes contrast. Based on those recent and contradictory evidence, the conflicting
roles of Th cells in multiple sclerosis, Alzheimer’s disease, Parkinson’s disease, epilepsy,
traumatic brain injury as well as some typical mental disorders will be reviewed herein.
Research progress, limitations and novel approaches concerning different
neuroinflammatory conditions will also be mentioned and compared.

Keywords: Th cells, neuroinflammation, multiple sclerosis, alzheimer’s disease, parkinson’s disease, epilepsy,
traumatic brain injury (craniocerebral trauma), mental disorders
INTRODUCTION

As proposed by Nobel Laureate Sir Perter Medawar, the central nervous system (CNS) is an
immune-privileged site with tightly regulated immune responses. Dysregulated or imbalanced
immune functions in the CNS could incur severe pathogenesis or complications of both
neurological and psychological diseases. By the convenience of recent developments in
neuroscience and immunology, accumulating evidence has emphasized the role of adaptive
immunity in CNS diseases of immunological etiologies (e.g., multiple sclerosis), and also revealed
the involvement or possible dominance of immunocytes and their cellular products in those CNS
disorders that were once considered immune-unrelated.

Upon activation, naïve CD4+ T cells can differentiate into several types of professional cytokine-
producing T helper (Th) cells, which contribute to host defense against pathogens. However, under
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certain circumstances they could also elicit tissue damage which
further leads to chronic inflammatory disorders. Although
proved present within the CNS in normal physiological
conditions, Th cells are actually able to infiltrate and abound
in the ‘immune-privileged site’ under various pathological
conditions, including autoimmune CNS disorders, epilepsies,
neurodegenerative disorders, traumatic brain injuries, mental
disorders, and admittedly, many other CNS disorders. As their
roles emerge, it’s also found that functions of one specific Th cell
subset may vary regarding different CNS diseases, or even not
remain constant in the same pathological condition. Thusly, a
question arises: whether Th cells are saviors or sinners when the
mysterious CNS is confronting pathological threats. Based on
this dichotomy of “savior or sinner”, the participation of Th cells
and their cytokines in several major CNS disorders will be
reviewed with an emphasis on those controversial and recent
discoveries. It should be noted that immunity against CNS
malignancy or neoplasm will not be discussed herein.
TH CELLS: THE BASICS

Subsets and Functions of Th Cells
Up to now, there are at least seven major Th cell subsets that are
characterized by their lineage-defining cytokines including Th1,
Th2, Th17, Th9, Th22, follicular T helper (Tfh) and regulatory T
(Treg) cells, and these cells have distinct functions in immune
responses (1–3). Th1 cells were first discovered in the late 1980s
(4, 5). They are primarily responsible for defending against
intracellular infections as well as the development of organ-
specific autoimmunity. Th1 cells activate macrophages by
producing interferon-g (IFN-g) and promoting the generation
of opsonizing antibodies (Abs), which are considered as their
major functions (6, 7). Th2 cells cause B-cell immunoglobulin
(Ig) flipping toward IgG1 and IgE by releasing interleukin-4 (IL-
4) (8), attract eosinophils by producing IL-5 (9) and also increase
smooth muscle cell movement and mucus generation by
epithelial cells through producing IL-13 (10–12). Th2 cells can
also lead to macrophage activation by producing IL-4 and IL-13
(13). Th17 cells were discovered in 2005 (14), and they have a
critical role in defending against extracellular pathogens like
bacteria and fungi (15), as well as contributing to
immunopathology in autoimmune disorders. Th17 cells secrete
various cytokines including IL-17A, IL-17F, IL-21 and IL-22
(16). By increasing the expression of inflammatory cytokines and
chemokines, as well as encouraging neutrophil recruitment in
inflammatory regions, IL-17A and IL-17F act on multiple cell
types, including macrophages, epithelial cells, and endothelial
cells (17, 18). The successful amplification of Th17 cell
population depends on the positive-feedback loop established
by IL-21 (19). IL-22 is a vital cytokine for inducing the secretion
of antimicrobial substances, as well as proinflammatory
cytokines and chemokines, which are released by cells at
mucosal barriers (20).

Sakaguchi et al. discovered in 1995 a CD4+CD25+ T cell
fraction capable of suppressing effector T cells and maintaining
Frontiers in Immunology | www.frontiersin.org 2
immune tolerance (21), which is denoted as Treg cells. Two types
of Treg cells have been identified. Natural Treg cells (nTreg),
expressing the transcription factor forkhead box P3 (FoxP3),
grow in the thymus in response to self-antigen recognition (22).
The other type is named as inducible Treg cells (iTreg),
which develop from naïve CD4+ T cells at certain TCR-
stimulating circumstances in a specific cytokine milieu. FoxP3+

Treg cells, IL-10-producing type 1 regulatory (Tr1) T cells, as
well as transforming growth factor-b (TGF-b)-producing
Th3 cells, are all considered as subsets of iTreg cells (23). Treg
cells govern the differentiation and functioning of effector T cells,
thereby maintaining immunological tolerance and controlling
the intensity of immune reaction (3, 18, 24, 25).

Early research from the 1990s suggested that the generation of
IL-9 was primarily associated with Th2 cells (22). However, IL-4,
in combination with TGF-b and IL-2, has been found to drive
naïve CD4+ T cells to generate IL-9 in vitro, but no other Th2
signature cytokines (26). In 2008, the existence of a CD4+ T cell
population that produces predominantly IL-9 in vivo (referred to
as Th9 cells) was confirmed, and thereafter Th9 cells commenced
to be linked to antitumor immunity, allergies, as well as
autoimmune disorders (27). A distinct Th cell subgroup that
secretes IL-22, known as Th22, was discovered in 2000 (28).
Several other cell types, including Th17 cells, natural killer (NK)
cells (29, 30), and macrophages, are also biological sources of IL-
22 (31). IL-22 mainly act on non-hematopoietic cells (e.g.,
epithelial cells) to enhance epithelial barrier activities and
promote the regeneration and proliferation of epithelial
cells (32).

During immune responses, CD4+ T cells also play an
important role by assisting B cells in producing antibodies and
Ig class switching. Tfh cells, known as the CD4+ Th cells present
in the B-cell follicle, have been proven crucial to these responses
(24). Tfh cells are distinguished from Th1, Th2, Th17 as well as
Treg cells, and are regarded as another Th cell subset (33). Tfh
cells are divided into at least two categories, one of which
produces IFN-g and another produce IL-4. Truly, Tfh cells
make up the majority of Th cells that produce IL-4 in the
organism (34). Tfh cells that produce IL-4, unlike typical Th2
cells, do not express IL-13 (35). It’s worth noting that Tfh cells
are a major source of memory Th cells, which are able to trans-
differentiate into traditional Th effector cells upon
reactivation (36).

Rather recently, a distinct granulocyte-macrophage colony-
stimulating factor (GM-CSF)+ Th cell subset was identified and
named ThGM cells, which are primed to acquire a Th1
phenotype and cause neuroinflammation. TNF, IL-2, IL-3, and
CCL20 comprise the major secretion profile of ThGM cells, and
simultaneously they lack the production of Th lineage–specific
cytokines and transcription factors (37).

Differentiation of Th Cells
Antigen-presenting cells (APCs) activate naïve CD4+ T cells by
presenting pathogen-derived peptides linked with MHC II,
which, when combined with costimulatory molecules, increase
T cell proliferation and the production of polarizing cytokines (7,
38), thus inducing naïve CD4+ T cells to differentiate into distinct
June 2022 | Volume 13 | Article 872167
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Th subsets (Figure 1). T-cell receptor (TCR) signaling is essential
for Th cell differentiation, a process wherein polarizing cytokines
can induce the activation and/or up-regulation of certain
transcription factors.

The role of TCR signaling in Th differentiation has long been
investigated (39, 40). Soon after the report of Th1 and Th2 cells,
it was discovered that peptide affinity as well as dosage, which
could describe the strength of TCR signal, were pivotal factors in
the differentiation of naïve CD4+ T cells (39, 40). In particular,
low-dose peptide stimulation enhances Th2-cell differentiation
(41). TCR signal strength also has a role in Th17 versus Treg cell
differentiation (42). Treg cells prefer low TCR signal strength to
initiate their differentiation, while Th17 cells need high TCR
signal strength to differentiate (43–47). Pathogens also determine
Th differentiation by altering TCR signal strength (48). The
following studies have shed light on the mechanisms of how TCR
signal strength affects Th cell differentiation. By activating
specific signaling pathways downstream of TCR (42), TCR
signal can mediate the expression of unique genomic programs
including defined transcriptional factors and special epigenetic
regulations (49). For example, interferon regulatory factor 4
(IRF4) regulates the differentiation of several types of Th cells,
including Th2, Th17, and Tfh cells (50). cMyc and forkhead box
transcription factor O1 (FoxO1) are also transcription factors
(TFs) in the downstream of TCR signaling that play essential
roles in Th cell differentiation (51, 52).

It is widely known that cytokines, in addition to TCR
signaling strength, are essential for Th cell differentiation as
well. Certain cytokines trigger the expression of lineage-specific
master transcription factors. Indeed, and at least in vitro, IL-12
and IFN-g can promote Th1-cell differentiation (53). APCs, such
Frontiers in Immunology | www.frontiersin.org 3
as macrophages and dendritic cells, release IL-12 which
subsequently stimulates Th1 cell differentiation by activating
the transcription factor signaling transducer and activation of
transcription 4 (STAT4) (54, 55). Th1 cell differentiation is
assisted by IFN-g, which is generated by Th1 cells per se and
activates STAT1 (56, 57). These regulatory events ultimately
induce the cytoplasmic expression of the master transcription
factor, T-box transcription factor 21 (T-bet), to regulate a variety
of Th1-specific genes directly (53). According to a recent study,
the transcription factor p73 could inhibit Th1 differentiation by
negatively regulating IFN-g production (58). STAT6 is activated
by IL-4 and can further cause Th2-cell differentiation (59, 60). In
addition to IL-4, IL-2 is also required for Th2 cell differentiation
in vitro by activating STAT5 (41, 61). GATA binding protein 3
(GATA3) is a master transcription factor that regulate the
differentiation of Th2 cells (62, 63), and it may promote Th2
cell differentiation through several mechanisms (64), including
direct binding to the promoter region and regulating epigenetic
modification of Th2-specific genes (65, 66). TGF-b, together with
IL-6, IL-1b, IL-23, or IL-21, plays an essential role in promoting
the expression of the master transcription factor retinoic acid-
related orphan receptor gt (RORgt) and Th17 cell differentiation
through activating STAT3 (67–69). However, STAT5 activation
mediated by IL-2 inhibits Th17 cell differentiation (70). In
multiple sclerosis, Qian et al. discovered that zinc-finger E
homeobox-binding 1 (ZEB1), a transcription factor, enhances
JAK-STAT4/3 signaling during Th1/Th17 differentiation by
suppressing the production of a JAK2-targeting miRNA (71).
TGF-b, retinoic acid, and IL-2 in the periphery promote Treg cell
differentiation, and its master transcription factor is Foxp3 (72–
74). STAT3 activation, probably by IL-21, is required for Tfh cell
FIGURE 1 | Subsets, transcriptional regulators and key cytokines of Th cells. APCs activate naïve CD4+ T cells by presenting antigens. The activation also requires
combination with costimulatory molecules, which triggers the production of polarizing cytokines and subsequent differentiation of naïve CD4+ T cells into distinct
effector Th and Treg subsets. The polarized differentiations are characterized by lineage-specific regulators and the secretion of key cytokines. The early response of
those T cells is regulated by STATs. STATs can further influence the expression of master transcription factors. Positive regulators are shown in black, while negative
regulators are shown in red. Th cells, T helper cells; APCs, antigen presenting cells; Treg cells, regulatory T cells; STAT, signaling transducer and activation of
transcription molecules; Ag, antigen; TCR, T-cell receptor; IL, interleukin; TGF-b, transforming growth factor b; TNF, tumor necrosis factor; Tfh cells, follicular T helper
cells; T-bet, T-box transcription factor 21; ROR-gt, retinoic acid-related orphan receptor gt; Foxp3, forkhead box P3; IRF4, Interferon Regulatory Factor 4; IFN-g,
interferon g.
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differentiation, but STAT5, which is activated by IL-2 decreases
Tfh cell differentiation (33, 75). The master transcription factor
for Tfh cell differentiation is Bcl-6 (76).

Th cell differentiation is a positive feedback loop reinforced by
various cytokines. For instance, IFN-g generated by Th1 cells
could induce IFN-g non-producers to secrete IFN-g during Th1
cell differentiation. IL-4 secreted during Th2-cell differentiation
can also cause IL-4 non-producers to express IL-4. Thusly, the
differentiation of Th1 and Th2 cells are enforced by such positive
feedback loops. TGF-1 and TGF-3 are both produced by Th17
cells and could act as positive signals for Th17 cell development
(77). Apart from theses closed loop regulations, active
transcriptional factors in one lineage frequently influence the
expression of transcription factors implicated in other lineage
decisions, which is called cross-regulation. T-bet overexpression,
for example, reduces GATA3 function and decreases Gata3
transcription (78). T-bet and RORgt (79) as well as Foxp3 and
RORgt, have also been discovered to possess such cross-
regulation properties (80, 81). Besides cytokines, metabolites
can also profoundly influence the fate and functions of Th
cells, which has been well reviewed elsewhere (82).

Blood-Brain Barrier Permeabilization of
Th Cells
Th cells perform diversified tasks in the CNS, and one
prerequisite is their permeabilization through the blood-brain
barrier (BBB). The BBB protects peripheral toxic substances and
immune system elements from invasion and thusly maintains
immunological homeostasis in the CNS. The BBB is primarily
composed of brain endothelial cells that are tightly linked
together by unique protein complexes, and it simultaneously
exhibit a high enzymatic activity, which allows them to
selectively transfer substances from the bloodstream to the
CNS (83). Intercellular and vascular adhesion molecules such
as intercellular adhesion molecule-1 (ICAM-1) and vascular cell
adhesion molecule 1 (VCAM-1), as well as P- and E-selectin, are
vital structures expressed by BBB endothelial cells. Those
adhesion molecules, together with various cytokines, tightly
regulate this guardian of the CNS.

However, peripheral immune system components are capable
of crossing the BBB in several pathological conditions. ICAM-1
and ICAM-2 are involved in the migration of Th1 and Th17 cells
across the BBB. ICAM-1/-2-deficient mice exhibited ameliorated
symptoms of both conventional and atypical experimental
au to immune encepha lomye l i t i s (EAE) caused by
encephalitogenic Th1 and Th17 cells (84). Interestingly, it was
proved that the tight connections of the BBB were disrupted
when IL-17 and IL-22 attached to the corresponding receptors
expressed on BBB endothelial cells (85). After recognizing
antigens presented by APCs, activated Th17 cells were shown
to reach the perivascular region and produce IL-17, which
suggest that perivascular Th17 cells might affect BBB integrity
and increase leucocyte migration (86, 87). Another study
discovered that pro-inflammatory cytokines increased the
synthesis of CCL2 and CXCL1 in brain endothelial cells, while
CCL2, CCL5, CCL20, and IL-17 could stimulate Th17 cell
Frontiers in Immunology | www.frontiersin.org 4
migration (88). Th1 cells migrate slower than Th2 cells, owing
to differed chemokine/chemokine receptor interactions (89).
TH CELLS IN NEUROINFLAMMATION

Autoimmune CNS Inflammation
The pathogenesis of autoimmune diseases results from a
compromised immune tolerance toward a specific self-antigen.
Multiple sclerosis (MS) is an autoimmune CNS disorder
characterized by inflammatory demyelination and axonal
transection (90). The worldwide prevalence of MS ranges from
5 to 300 per 100 000 people and increases at higher latitudes (91).
The role of Th1 cells in MS pathogenesis has long been
pronounced based on various studies with EAE animal models
and MS patients. As a pro-inflammatory subset of Th cells, Th1
cells were found to abode and abound in brain lesions of EAE
animals (92), as well as to cause M1-phenotype-oriented
differentiation in CNS resident microglia (93). IFN-g, which
could be produced by Th1 cells, was also found abundant in
brain lesions of MS patients (94). Subsequent evidence
supplementarily questioned this Th1-dominance theory as the
susceptibility to EAE still existed in animals with incomplete Th1
function (impaired IL-12 or IFN signaling) (95–97). After the
discovery of Th17 cells (14) and with the understanding of IL
subunits (98), it was proved that knockout of either the subunit
shared by IL-12 and IL-23 (p40) (99) or the subunit exclusive to
IL-23 (p19) (100), but not the subunit exclusive to IL-12 (p35)
(95, 99), could induce resistance to EAE in rodents (Figure 2).
Thusly, the conversion toward a Th17-dominance was initiated
and has been well established nowadays. A study proved that
knockout of IL-17A could induce resistance to EAE in mice
(101). Actually, evidence also suggested that Th1 and Th17
might mediate distinct types of EAE, as transfer of either
MOG-specific Th1 or Th17 cells prepared in vitro could
induce EAE in mice although their severities differ (102).
Taken together, the synergy of Th1 and Th17 may be the
optimal description of the Th cell-mediated pathogenesis of
MS/EAE.

Prior understandings of Th17 functions in autoimmune
diseases such as MS/EAE, inflammatory bowel disease and
psoriasis have been thoroughly reviewed (103–110). Vis-à-vis
MS/EAE, a two-wave theory was proposed (111, 112) (Figure 3)
that upon a process named priming, naïve T cells in the
periphery become antigen-specific memory T cells (Th17 cells),
and at this point, the first wave strikes during which those Th17
cells infiltrate the subarachnoid space through the choroid plexus
(113). After being presented with antigens by APCs, those
infiltrated Th17 cells undergo clonal expansion, and further
induce a secondary wave characterized by the activation of the
BBB, as well as the subsequent recruitment and infiltration of
perivascular leukocytes.

Throughout the two waves, Th17 cells interact with other
resident or recruited cells in the CNS to cause direct or indirect
damages (Figure 3). T cells can enter the CNS through either the
epithelial blood cerebrospinal fluid barrier (BCSFB) within the
June 2022 | Volume 13 | Article 872167
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choroid plexus or the endothelial BBB (114). Actually, Th17 cells
exhibit BCSFB permeability under both inflamed and non-
inflamed conditions (114). Th17 cells also demonstrate
superior BBB permeability compared to Th1 cells as they
express certain surface molecules on their plasma membrane,
Frontiers in Immunology | www.frontiersin.org 5
such as CCR6, CD6 and CD49d, which mediate their
interactions with endothelial cells (115). However, Broux et al.
recently confirmed that IL-26, preferentially produced by Th17
cells, could enhance BBB integrity both in vitro and in vivo, and
also reduce the severity of EAE (116). It was proved that Th17
FIGURE 3 | The two-wave theory of MS pathogenesis and the interactions between Th17 and other cells. (1) in the priming process, naïve T cells in the periphery
become antigen-specific memory T cells. (2) those T cells infiltrate the blood-CSF barrier located in the choroid plexus. (3) after entering the subarachnoid space,
Th17 cells undergo clonal expansion. (4, 5) the second wave denotes the activation of the BBB and recruitment of perivascular leukocytes. Plasma membrane
molecules such as CCR6, CD6 and CD49d enables Th17 cells to cross BBB endothelium. Dendritic cells and macrophages could be recruited by GM-CSF secreted
by Th17 cells. (6) Th17 cells contact neuron directly and lead to neuron damage via affecting intra-neuron Ca2+ concentrations. (7) Th17 cells could damage
oligodendrocytes through direct contact or increased oxidative stress. (8, 9) various studies also demonstrated the effect of Th17 cells and their cytokines on
astrocytes and neurons. GM-CSF could directly act on astrocytes and promote their recruitment. MS, multiple sclerosis; Th, T helper; CSF, cerebrospinal fluid; BBB,
blood brain barrier; GM-CSF, granulocyte-macrophage colony-stimulating factor; APC, antigen-presenting cells; CNS, central nervous system.
FIGURE 2 | Th1, Th17 cells and EAE susceptibility. IL-12 and IL-23 respectively promotes the differentiation of Th1 and Th17 cells. IL-12 is composed of p35 and
p40 subunit, while IL-23 is composed of p19 and p40 subunit. Knock-out of p40 or p19 induced resistance to EAE in mice, yet p35-/- mice showed high
susceptibility to EAE. IL-17 is the signature cytokine secreted by Th17 cells. IL-17-dificient mice also showed resistance to EAE, which could be reversed by IL-1b or
IL-17 treatment. Both MOG-specific Th1 and Th17 cells could induce EAE after being transferred to mice, yet their severities differ. Th, T helper; EAE, experimental
autoimmune encephalomyelitis; IL, interleukin; MOG, myelin oligodendrocyte glycoprotein; KO, knock-out.
June 2022 | Volume 13 | Article 872167
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cells could contact neurons directly, leading to neuron damage
via affecting the intracellular Ca2+ concentration (117). On the
other hand, neuronal activation was found to promote
CCR2+CD4+ lymphocyte infiltration (118). Oligodendrocytes
(OLDs), the most endangered cell type in MS/EAE, were also
shown to be viciously influenced by Th17 cells, as evidenced by
the fact that Th17 cells could promote oxidative stress-mediated
OLD apoptosis (119), and in a more recent study, form
prolonged stable contact with OLDs and thereby induce the
release of glutamate and consequent demyelination in a CD29-
dependent manner (120). IL-17-related signaling was also
associated with the proliferation, differentiation and
functioning of OLDs (121–123). Dendritic cells and
macrophages could be recruited by granulocyte-macrophage
colony-stimulating factor (GM-CSF) secreted by Th17 cells
(124). Expressing IL-17 receptors, astrocytes are thought to be
closely related to neuropathology in EAE (125), and astrocyte-
specific silencing of IL-17 signaling could lead to EAE
amelioration (126). A recent study confirmed that CNS-
infiltrated CD4+ T cells could evoke a rapid and vigorous Ca2+

increase in astrocytes via promoting ATP release from glia (127).
Withal, Th17 cells could also promote the maturation of B cells
(128) and the formation of ectopic lymphoid follicles in target
organs (e.g., brains in MS/EAE) (129), allowing for the
production of antibodies (128). Apart from cellular types of
heterogeneity, Th17 cells could also impact CD4+ T cell
populations, as reported rather recently that IL-17 can directly
act on non-Th17 effector CD4+ T cells to induce resistance to
immunosuppression by CD8+ T cells (130).

However, the regulations and functions of Th17 cells are not
constant during MS/EAE. It was reported that IFN-b, a clinical
treatment for MS patients, had inflammatory effects in Th17-
induced disease through the production of IL-6 (131). Some
studies also suggested that IFN-b inhibited the differentiation
and function of Th17 cells (132). Agasing et al. reported in a
recent article that the impact of INF-b on Th17 cells is temporal
(133). During early Th17 development, IFN-b inhibits IL-17
production, yet during late Th17 differentiation, IFN-b
synergizes with IL-23 to promote a pathogenic T cell
population with both Th1 and Th17 characteristics that
expresses elevated levels of the potent inflammatory cytokines
IL-6 and GM-CSF, as well as their transcription factor BLIMP.
Certain types of phenotypic plasticity of Th17 cells are endowed
by the intricate regulation network of the adaptive immune
system. Th17 cells are able to acquire phenotypes similar to
Th1 cells (secreting IFN-g) (134, 135), Treg cells (secreting IL-
10) (136) or Tfh cells (secreting CXR5, ICOS and Bcl-6) (129).
However, plasticity is not a trait exclusive to Th17 cells amongst
all Th subsets. Regulatory T helper (Tfr) cells could exhibit Th1-,
Th2- or Th17- like phenotypes (137), and natural Treg cells
could convert to Th17 cells (138) under certain circumstances.

In normal physiological conditions, Th17 cells work
synergistically with other Th cells to maintain immunological
homeostasis. Accumulating evidence has shown that balances
between subsets of Th cells are sabotaged during autoimmune
disorders, including MS/EAE. The dichotomy of Th1 and Th2
Frontiers in Immunology | www.frontiersin.org 6
cells was orchestrated by another dichotomy of Th17 and Treg
cells after the discovery of Th17 in 2005 (14). The pro-
inflammatory roles of Th1 and Th17 cells, as well as the anti-
inflammatory roles of Th2 and Treg cells in the pathogenesis of
MS/EAE were well examined (139, 140). A phase 1 study on the
administration of Treg cells for 14 relapsing-remitting MS
patients was reported recently (141). Another imbalance
between Tfh and Tfr cells were also reported (142). IL-9, a
cytokine mainly secreted by macrophages, microglia and CD4+ T
cells in the brain, was confirmed to have beneficial effects in MS
(143, 144), as they decrease the activation state and promote the
anti-inflammatory functions of macrophages (144). Later, it was
also reported that IL-9 could mitigate EAE via suppressing GM-
CSF production by CD4+ T cells (145). Of note, a new subset of
Th cell, named ThGM, was reported recently (37). This subset
was characterized by the expression of GM-CSF but lacked
expression of signature transcription factors and cytokines of
established Th lineages. The study also proved that EAE mice
had increased numbers of ThGM cells in both the periphery and
CNS, and the encephalogenicity of ThGM cells requires T-
bet signaling.

In sum, the proinflammatory contribution of Th17 and Th1
cells, as well as the anti-inflammatory contribution of Th2 and
Treg cells have been well recognized in MS/EAE. However, as
more Th cell subsets emerge, the interaction or transformation
between these subsets, and the complex regulatory network of
adaptive immunity all point to a broader perspective of
understanding the primary drivers of MS/EAE. With more
precise control over these regulatory pathways, superior
therapeutic interventions could be further achieved.

Neurodegeneration
As a result of increasing numbers of senior people, the global
burden of senescence-related neurodegenerative diseases has
been underscored (146, 147). As the most common cause of
dementia, Alzheimer’s disease (AD) was estimated to affect
around 100 million of the population worldwide by the time of
2050 (148). The major pathological change of AD is the
formation of extracellular Ab plaques and intracellular
neurofibrillary tangles (149). These abnormal neurofibrillary
structures may be related to the abnormal phosphorylation
state of tau proteins. The exact mechanism of AD pathogenesis
is still elusive, yet neuroinflammation involvement has been
implicated, in that altered cytokine milieus, CNS and
peripheral lymphocyte profiles, as well as their activation state
were reported in both AD patients and animal models.
Moreover, Th cells also play controversial roles during the
attempt of vaccine development against AD.

Altered cytokine levels in AD patients and animal models
have been widely reported. It was suggested and validated that,
although the prominent pathological changes occur in the CNS,
AD is still a systemic inflammatory condition which incurs
changes of cytokine levels in the periphery. Compared to
normal groups, AD animals showed in the brain, nasal tissue,
spleen and cervical lymph nodes elevated levels of IFN-g and IL-
17, but not IL-4 (150). The serum of AD patients was shown to
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contain higher levels of IL-17 and IL-23 (151), suggesting a
possible Th17 polarization. Also, the amount of circulating
immune cells that produce IL-17, IL-6 and IFN-g was
increased in AD patients (152). Moreover, the increase of
peripheral Th17 cell proportion was correlated with the degree
of amyloidopathy (153) in AD patients, as well as early AD (154).
Treg cells, or cytokines related to Treg cells, on the other hand,
were shown to be down-regulated in AD (155, 156), and the
Th17/Treg ratio was also related to the disease state (157), with
Treg proportions positively related to neurodegeneration
markers (153). Although Th cell subpopulation may alter
during AD, a study suggested that the total number of CD4+

and CD8+ T cells showed no significant change in general (152).
The crosstalk between CNS changes in AD and peripheral
inflammatory responses could also be validated by the fact that
AD could exaggerate the natural shift of serum cytokine profiles
from Th1-related dominance toward others during senescence
(158). Actually, the impact of AD on the peripheral immune cells
seems more profound considering that naïve T cells isolated
from AD patients secret more proteins which include IL-21, IL-6,
IL-23 and RORgt (159). A recent study found tau-specific CD4+

T cell responses in both AD patients, age-matched controls, and
even in young controls (160).

The aforementioned studies present vital understandings and
hints on how Th cells and the cytokines that they secrete may
participate in the systemic inflammation of AD. The crosstalk
between peripheral immunocytes and AD neuropathology might
also be mediated by gut microbiota composition change (161),
which was observed in both AD patients and animal models, or
more directly, via the invasion of Th cells into the CNS (162–
164). It has been proved that a significant amount of peripheral
lymphocyte could infiltrate the CNS in the pathological setting of
AD (165) and Th17 cells, for instance, could achieve throughfare
via CCR6-CCL20 signaling (166). After infiltration, Th17 cells
further promote neuroinflammation and neurodegeneration by
secreting cytokines, or else cause damage to neurons by direct
contact and Fas-FasL signaling which induces autophagy (167–
169). GM-CSF, mainly secreted by Th17 cells, could further
enhance the function of microglia to act as APCs for presenting
Ab to T cells and priming T cell activation in AD (170).

Participation of Th cells in AD is not restricted to Th17 cells,
as the pro-inflammatory role of Th1 cells, anti-inflammatory role
of Th2 cells that could induce the production of anti-amyloid
antibodies as well as the roles of Treg cells were also described in
AD (171–176), with one study even finding that Th2 cells could
benefit AD amelioration without CNS infiltration (177).
Interestingly, one study reported destructive effects of Th2
responses in brain aging (178), and another study found that
transient depletion of Treg cells in AD mice could induce
clearance of Ab plaques as well as reversal of cognitive
decline (171).

Several studies focused on interfering with CNS Th cells or
their correspondent cytokine levels as an attempt to investigate
their participation during the pathogenesis. Although an elevated
level of IL-17 is a natural response observed in AD patients and
animal models (167, 179, 180), deliberate altering IL-17 levels
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incurred controversial results. Silencing IL-17 production in AD
mice through AAV intracranial injection resulted in
amelioration of AD symptoms and a significant increase of
ABCA1 (181), which is a transporter of Ab from brain to
blood. Cristiano et al. reported that neutralization of IL-17
could rescue neuropathological changes and memory
impairments in AD (182). However, Tfilin et al. reported
that intravenous administration of IL-17 to mice could
modulate neurogenesis and improve learning (183).
Intracerebroventricular (ICV) transfer of Ab-specific Th1 and
Th17 clones in APP/PS mice worsened pathological condition
through downregulating Treg cells in the periphery and CNS
(184). In another study, ICV injection of Ab-specific Th1 cells in
5XFAD mice promoted the differentiation of an MHCII+

microglia subset and was suggested to play a key role in AD
pathology (185). Similarly, ICV transfer of mixed Ab-T cells
resulted in decreased pathology (186) yet transfer of Ab-Th2 was
evidenced to cause no obvious inflammatory effect (164) or
could alleviated burden (177). However, Eremenko et al.
recently reported that engineered BDNF-expressing Ab-specific
CD4 T cells, upon ICV injection to the 5XFAD mouse
model of AD, could mitigate both amyloidopathy and CNS
inflammation (187).

As AD remains a disease affecting millions of people with still
no cure, the research for possible therapeutic targets and optimal
vaccination choices is still thriving. The first clinical trial of
vaccination was aborted because a small but significant portion
of patients showed severe encephalitis due to strong Th1
responses to all Ab (188). Since then, researchers suggested
that qualified vaccines against AD shall avoid strong activation
of Th1/Th17 cells while promote Th2 cells (189), which could be
possibly achieved via formulating with adjuvants that induce
effective Th2 responses (190). Donepezil, an acetylcholinesterase
inhibitor that’s commonly used as treatment for AD, was proved
to possess immune-modulating effects (191).

Parkinson’s disease (PD), which was proposed to be
the fastest growing in prevalence, disability and deaths
among certain neurological disorders (192), is another
neurodegenerative disorder that is estimated to affect millions
of people worldwide (146) and has also been related to
autoimmune responses, especially in its early stages (193, 194).
The signature neuropathology of PD is dopaminergic
neuron death in the substantia nigra pars compacta, which
is characterized by abnormal accumulation of Lwey bodies
and a-synuclein, as well as the initiation of a series of
neuroinflammatory responses (195–197).

Studies on Th cells and their cytokines in the field of PD
mainly include those focusing on their roles in the death of
dopaminergic neurons (198), as well as those reporting or
explaining the dynamic changes of Th cells during PD (199,
200) and their correlation with clinical parameters (201). In vitro
experiments proved that a-synuclein could promote dendritic
cell-induced polarization of CD4+ cells toward Th1,Th2 and
Th17 subsets (202), and the in vivo accumulation of a-synuclein
could also upregulate Th17-related immune response through
molecular chaperones and cytokines such as IL-6 and TNF-a
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(203), or through microglia activation and M1-oriented
differentiation (204). Similar to the case in AD, reactive T cells
are also able to infiltrate the CNS during PD (205–208), or even
years before presentation of motor symptoms (209), which is the
major diagnostic criteria of clinical PD. In fact, established
evidence reveals that peripheral T cell reactivity to a-synuclein
indeed starts early before clinical symptoms are present, yet those
responses start to drop after they peak around diagnosis (209).
The specific subset of those reactive T cells was not identified in
the original report. An intractable string of evidence from PD
patients demonstrates that the Th17 cell levels could be increased
(210, 211), decreased (212) or remain unchanged (213, 214), and
admittedly, methodological variation exists in those different
studies. Nonetheless, various studies on patients or MPTP-
induced animal models showed applicable facts of increased
Th17 and Th1 cells which might be pro-inflammatory (215, 216),
decreased Treg cells which might be anti-inflammatory (212,
215, 217), disrupted Th1/Th2, Th17/Treg, as well as Tfh/Tfr
balance in PD (218, 219).

Established evidence also provided a preclude to explorations
into the exact mechanisms of Th cel ls ’ mediat ing
neuroinflammation in PD. Liu et al. showed in MPTP-induced
PD mice of different genotypes that dopamine receptor 2 (DR2)
or CD4-specific DR2 knock-out, instead of DR1 knock-out,
could exacerbate phenotypical, pathological and inflammatory
changes related to PD (220). González and colleagues also
demonstrated that mice bearing DR3-deficient CD4+ T cells
were refractory to MPTP-induced neuroinflammation and
neurodegeneration (221). Liu et al. evidenced that blocking
either ICAM-1 in VM neurons or LFA in Th17 cells could
abolish Th17-induced neuronal death (222). Th2 cells, on the
other hand, were comparatively less reported. Kustrimovic et al.
reported reduced Th2 cells in the peripheral blood from PD
patients (212). In one study, the effect of IL-13 and IL-4 on
oxidative stress to dopaminergic cell lines were investigated
(223). They found that neither IL-13 nor IL-4 could alter
cytotoxicity. It was also reported that mice lacking IL-13Ra1
was protected from neuronal loss when compared to littermates
(224, 225), suggesting a neurotoxic role of its ligand IL-13 and or
IL-4.

Of note, amyotrophic lateral sclerosis (ALS) is considered as a
multisystem neurodegenerative disorder, and transgenic mice
overexpressing mutant Cu-Zn superoxide dismutase 1 are
utilized as the corresponding animal model. A study using
these mice identified a protective role of Th cells, as mice
lacking CD4+ T cells demonstrated exacerbated disease
progression and increased mRNA levels of proinflammatory
cytokines (226), thus implying a beneficial role of Th cells.

Neurodegenerative diseases, compared to other CNS
disorders discussed herein, relate closely to senescence.
Common topics concerning studies on neurodegenerative
diseases include the accumulation of specific antigens as well
as neuronal loss. Although the pro- or anti-inflammatory
impressions on Th cells have been generally established, their
roles in neurodegenerative diseases still seem controversial.
Apart from the differed study results reported by different
Frontiers in Immunology | www.frontiersin.org 8
research groups, the functions of a specific Th subset may
appear conflicting.

Epilepsy
Epilepsy is a spectrum of brain disorders marked by an enduring
proclivity for epileptic seizures, as well as the neurobiological,
cognitive, psychological, and social repercussions of this
condition (227). Epilepsy affects millions of people worldwide,
and it most usually begins before the age of 1 and increases after
the age of 50 (228). The established hypothesis of epileptogenesis
is focused on the excitatory-inhibitory imbalance in the central
nervous system. However, numerous studies have suggested the
possible roles of neuroinflammation in epileptogenesis
(229, 230).

Several original or meta- analysis on epilepsy patients
reported up-regulated IL-1a, IL-17, IFN-a, CCL4, CCL11,
CXCL10, CX3CL1, HMGB1, bFGF and down-regulated CD4+

percentage in the peripheral blood (231, 232). Up-regulated IL-
1a, IL-17, IL-13, CCL2, CCL5, CCL19 and CCL22 solely in the
brain (231), as well as up-regulated IL-1ra, IL-1b, IL-6 and
CXCL8/IL-8 ratio in peripheral blood, CSF and brain were also
suggested (231). However, it’s noteworthy to mention that,
unlike other neurological disorders discussed herein, epilepsy is
characterized by a continuum of ictal events (although there
might be relapses in MS, the ictal events in epilepsies are rather
temporary). The collateral pre-, post- as well as inter-ictal
physiological fluctuations and the subsequent stress-induced
responses might be comprehended as the consequences caused
by epilepsy per se (233, 234), thus studies specifying the timing of
sample harvesting were also conducted. For instance, it was
found that the postictal levels of IL-6 and IL-1ra were
significantly increased in the plasma of epilepsy patients (235–
237), suggesting a possible affecting or causing role of these
cytokines in ictal events.

Despite the enduring development of antiepileptic medications
over the last few decades, more than 30% of patients with epilepsy
have progressed to drug-resistant epilepsy (DRE), resulting in a
considerable increase in epilepsy morbidity and death (238). The
involvement of neuroinflammation in DRE has also been
investigated to identify the possible relevance between
immunological changes and drug resistance. Based on their
findings from the peripheral blood of pediatric DRE patients
that Th17 cell percentage and the expression of IL-17A and
RORgt were significantly higher, while the proportion of
circulating Tregs and expression of Foxp3, GITR, CTLA-4 were
significantly lower, yet these alterations could be further reversed
by ketogenic diet (which is a proved treatment to DRE), Ni et al.
concluded that Th17/Treg imbalance is characteristic of childhood
DRE, and this imbalance may contribute to DRE pathogenesis
(239). Kumar et al. reported in the peripheral blood of pediatric
DRE patients a change in CD4+ and CD8+ T cell subsets toward
IL-17 production, further implying the participation of IL-17 in
the pathogenesis of DRE (240). It has been confirmed that CD4+ T
cells can infiltrate epileptic lesions located in the brain
parenchyma (234). Xu et al. provided direct evidence that IL-17-
and GM-CSF-producing gdT cells were concentrated in
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epileptogenic lesions from brains of DRE patients, and their
numbers were positively related to disease severity, although the
numbers of Treg cells were inversely related (241). Other studies
involving pediatric DRE patients suggested significant changes of
intracellular IFN-g concentration among CD4+ T cell populations
(242), differentiated immunological parameters caused by
medication choices (243), and one study on DRE patients also
confirmed higher levels of PD-1 in the serum and CSF (244).

The most prevalent kind of DRE referred for epilepsy surgery
is temporal lobe epilepsy (TLE), which often responds well to
brain surgery (245). Direct evidence connecting Th cells and
epileptogenesis or epilepsy remains scarce. However, serological
studies suggest that distinct changes in peripheral cytokine
profiles could either be the cause or effect of epilepsy. As
compared to controls, patients with TLE were reported to
show significantly increased (235, 237, 246–249), marginally
increased (231) or not increased (231) levels of IL-6,
significantly increased IL-5 levels (246), as well as a decreased
postictal IL-1ra/IL-1b ratio (231). One study using blood
samples from 20 TLE patients together with 19 controls
suggested a negative correlation between the frequency of
CD4+ T cells and the age of seizure onset (250). Cytokines or
chemokines, including IL-1a, IL-1b, CCL-1, CCL3, CCL-4 and
CCL5, were also proved to be up-regulated in brain tissues from
TLE patients (251–253). Of note, CCL3, CCL4 and CCL5
expressions were also identified in TLE neurons instead of
normal control neurons (253). Studies on immunocyte
populations or functions also revealed epilepsy-related
difference. From the cytological aspect, higher expression levels
of HLA-DR, CD69, CTLA-4, CD25, IL-23R, IFN-g, TNF and IL-
17 in CD4+ lymphocytes were identified in TLE patients (250).

TLE is further subdivided according to different clinical or
pathological manifestations. One study concerning drug
resistant-TLE suggested that those patients could be subdivided
into two groups based on whether there was a peripheral increase
of CD4+CD38+ cells (246). Another study on both TLE-limbic
encephalitis (LE) and TLE-nonLE patients revealed that there
was a higher ratio of CD4/8+ T cells in the peripheral blood of
patients with TLE-LE as compared to TLE (254). Also, the study
correlated a comparatively low ratio of CD4/8+ T cells with a
blood-CSF barrier dysfunction in patients with TLE-LE.
Hippocampal sclerosis (HS) is a neuropathological diagnosis,
defined as severe hippocampal neuronal loss and gliosis (255,
256). HS is a well-known cause of TLE and is frequently linked to
seizure resistance. Several studies using blood, CSF or brain
samples from TLE-MS patients shed light on distinct
neuroinflammatory profiles associated with HS. It was reported
that there existed a postictal decrease of peripheral CD4+ cell
count by 13% (257), while this decrease was more pronounced in
patients with HS. The aforementioned increase of IL-1b in TLE
patients was also more pronounced in HS patients (258, 259).
Another study found increased frequency of CD4+ T
lymphocytes expressing IL-6 in the peripheral blood of mesial
TLE patients with HS when compared to healthy volunteers
(260). As hippocampal sclerosis is an indication for epilepsy
surgery, studies utilizing surgically resected HS tissues also
Frontiers in Immunology | www.frontiersin.org 9
suggested peripheral CD8+ and/or CD4+ T cell infiltration into
the hippocampi (261), the perivascular region (262), or diffusely
in the brain parenchyma (262). However, Lu et al. suggested rare
CD4+ T cell infiltration into the hippocampi from 30 HS patients
(263). One of these studies also showed a positive correlation
between the number of infiltrated CD8+ and CD4+ cells into the
sclerotic hippocampi (263).

The discovery of animal models mimicking human epilepsy
enabled further understanding of epileptogenesis, as well as the
development, screening, and evaluation for potential anti-
epileptic drugs. Genetically epilepsy-prone rats (GEPR) were
identified to possess a stable genetic predisposition to
audiogenic seizures. De Sarro et al. showed a predominance of
Th cells over CD8+ cells both in spleen and lymph nodes from
GEPR-9s that were previously subjected to acoustic stimulation
(264), suggesting that the altered T cell function could be
attributed to neuroendocrine modulation. Electrical stimulation
could also be adopted to induce seizures in rodents. Silverberg
et al. utilized extracranially placed electrodes to potentiate
seizures in mice, and they observed peripheral lymphocytes
(including Th cells) infiltration into the brain 24 h after a
maximal seizure, which peaked at 48 h and became
undetectable at 7 d (234). Avdic et al. utilized intracranial
electrode to induce non-convulsive status epileptics, a
prolonged epileptic seizure with subtle symptoms, in rats
(265). They reported increased levels of IL-6 in both brain and
serum 6 h after non-convulsive epileptic seizures, and after 4
weeks when 75% of those rats exhibited spontaneous seizures
(SS), they further compared those rats with SS to both those
without and unstimulated rats, finding a decrease of CD4+ T cells
in the peripheral blood. Some studies using the kainic acid model
of status epileptics suggested a possible role of Th cells in
epileptogenesis. Xu et al. reported ameliorated seizure activity
in both gd T cell and IL-17RA deficient mice, as well as in
recipients of Treg cells, while Treg depletion exacerbated seizure
severity (241). However, Deprez et al. showed that depletion of
CD4+ and/or CD8+ T lymphocytes by targeted gene deletion
results in a marked shortening of the delay prior to seizure onset,
and also demonstrated the worsening of epi lept ic
neuropathology due to CD4+ T cells transferred in MHCII-
knockout and RAG1-knockout mice (266). In vitro experiments
showed that both IL-17 and GM-CSF induced neuronal
hyperexcitability in brain slice cultures (241).

Based on the preceding discussion and existing evidence,
conclusive remarks on the roles of Th cells in epilepsy or
epileptogenesis are yet challenging to address due to the
following reasons. The term “epilepsy” intrinsically denotes a
spectrum of disorders with heterogeneous etiology (267), and
genetic as well as environmental factors are considered relevant
to the pathogenesis. Therefore, epilepsy disorders with different
etiologies or clinical/histopathological manifestations may
inherently involve immunological alterations to differed
degrees. This may also explain the above-listed incongruent
results. Also, in most epilepsy disorders, no specific antigens
can be identified. As a second thought, the “cause or effect” role
of Th cells in epileptogenesis may require a re-evaluation.
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Nonetheless, the participation of Th cells during epilepsy has
become an evident truth.

Traumatic Brain Injuries
Traumatic brain injuries, characterized by mechanical damage to
the parenchyma and/or meninges, are ensued by a series of
neuroinflammatory responses including the infiltration and
activation of a distinct spectrum of immune cells, as well as the
secretion of certain cytokines and growth factors. The
participation of these immune cells and molecules are not only
destined to restore homeostasis, but also exacerbate
inflammation in some cases.

The direct and primary damage in TBI is the mechanical force
or contusion exerted on the brain parenchyma. Upon exertion,
small blood vessels experience a shear injury, leading to BBB
dysregulation (268). The secondary injuries of TBI usually
denote those consequential injuries due to inflammatory and
metabolic responses. Cellular infiltration to the lesion usually
pursues blood brain barrier breakdown, with the infiltrate
comprising T cells, neutrophils and macrophages (269, 270).
Forsooth, evidence is that leukocytes begin to adhere to the CNS
endothelium hours after the injury (271).

One aspect of evidence concerning Th cells in TBI that
attracts researchers’ attention is that an intricate and highly
regulated array of interleukins exists in the whole pathological
duration after the initial injury. Cytokines, including those
mainly associated with Th1/2 cells (IL-2, IL-4, IL-6, IL-10, IL-
12, IFN-g) and with Th17 cells (IL-17), are differentially
regulated in the acute and chronic phases of either clinical or
experimental TBI, as excellently reviewed by Bao et al. in detail
(272). Moreover, some of these immunological parameters were
also clinically associated with the severity of the injury (273), the
recovery of certain neurological impairments (274), or even the
overall prognosis (275, 276). Downregulation of IL-2/sIL-2R
ratio was observed in clinical TBI (277), and a specific
downregulation of both IL-2 and sIL-2R was also identified
during 10-50 days post trauma (278). IL-6, the level of which
peaks at 6 h after injury (279), were also indicated as a prognostic
criterion (280). However, different research results revealed
seemingly controversial roles of IL-6 in the pathological
changes after TBI. Some suggested that high levels of IL-6
incurred and exacerbated brain damage (280), whereas some
also suggested a neuroprotective function of IL-6 in the healing
process (281). This evidence leads to a hypothesis that IL-6 may
be related to increased inflammatory response after TBI, since
IL-6 deficiency was shown to cause poor behavioral
performances in animal models (282). The peak of IL-10
occurs later when compared to IL-6 (at 24 h) (279), and it
maintains an elevated level throughout the acute phase of TBI
(283). IL-12 was shown to be upregulated for a post-trauma time
course of 14 days (284). Th17 cells were also correlated with the
secondary pathogenesis of TBI. The major cytokine secreted by
Th17 cells, namely IL-17, was described to be upregulated after
TBI (285). Considered as a distinct type of Th cells, Treg cells are
also indicated in the secondary damage after TBI, especially
when considered together with Th17 cells (286). Treg cell levels
are described to relate to the degree of neuro-recovery in both
Frontiers in Immunology | www.frontiersin.org 10
human and animal models (286, 287). Transfer of Treg cells into
TBI animal models also demonstrates a neuroprotective result
(288). The Th17/Treg balance has a significant impact on the
pathogenesis of neuroinflammatory diseases such as MS and
EAE in animals, and the increase in the ratio of Th17 cells to
Treg has also been related to higher injury severity of TBI (286).

Another prominent change after TBI is the activation of
microglia, manifested as the preferentially polarization toward
the M1 phenotype (289–292). Unlike type-2 microglia which
secret regenerative cytokines and growth factors such as TGF-a,
IL-10, BDNF, GDNF (293), type-1 microglia are capable of the
release of proinflammatory cytokines including IL-1b, TNF-a,
IL-6, etc. and the consequent obstruction of neurorepair events
(289). As mentioned, IL-1b and IL-6 are crucial to the
differentiation toward Th17 cells. Apart from the differed
humoral milieu, M1-oriented, instead of M2-oriented
polarization, could also incur Th1-like responses in T cells,
during which the secretion of cytokines such as IFN-g could in
turn offer positive feedback to the M1 activation (93). Through
the activation of SATA1 signaling, inflammatory M1-type
microglia secrete CXCL10, which is the ligand for CXCR3+

Th1 cells, thus resulting in further white matter injury (292).
In summary, Th cells participate in the regulation of immune

responses during the secondary damage of TBI. Infiltrated and
activated Th cells may fulfil their responsibilities through
preventing infectious complications, but may as well cause
severe inflammatory damages that exacerbate disease
progression and delay neuroregeneration. Based on more
profound understandings of the complex immune regulation
network, especially during the secondary damage, precise
instructions on clinical interventions and therapeutics methods
may be obtained.

Mental Disorders
Neuroinflammation plays an important role in mental disorders.
In recent years, the role of Th cells, especially Th17 cells, in
mental disorders has attracted much attention. Different subsets
and cellular products of Th cells have different impacts on the
CNS. In general, Th17 cells are likely to play a deleterious role,
while Treg cells usually have a protective effect. The imbalance
between Th1 and Th2 cells is also a pathogenic factor in many
mental disorders.

Depressive disorder is a general term denoting a group of
diseases characterized by depressed mood. Monoaminergic
system is the main target of drug therapy for depressive
disorder, but about 30% of patients have poor response (294).
A large number of studies reported the changes of immunocytes
and cytokines in depression (295). Given that most of the altered
cytokines are associated with Th cell differentiation (296),
researchers have begun to focus on the role of Th cells in the
pathogenesis of depression.

Changes of Th cells and their specific subsets were described
in the setting of depression. Based on the results of one study,
there were more CD4+ T cells and a higher level of IL-6 in the
peripheral blood of depression patients (297). Nevertheless, no
increase in CD4+ T cells was observed in postpartum depression
patients compared to healthy postpartum women (298). Later-
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life depression females also showed a downregulation of CD4+ T
cell-related genes (299). The major effector Th cell subsets
involved in the pathogenesis of depression were reported to be
Th1, Th17, and Treg cells (300). There seems to be a Th1
skewing in the Th1/Th2 ratio in depression (301), despite
inconsistent findings regarding changes in IL-4 and IFN-g
levels in patients with depression (302–307). The frequencies
of CD4+CCR7lowTCM cells, mainly Th1-like cells, were identified
to be robustly correlated with MS-associated depression,
deepening the understanding of inflammatory characteristics of
depression (308). As for Treg cells, they are likely to exhibit a
protective role in depression (295, 309). However, there are a few
seemingly contradictory findings. Obermanns et al. found that
the number of CD4+CD25+ Treg cells in the blood of depression
patients decreased after psychological and pharmacological
therapy (310). Additionally, patients with obesity and
comorbid depression displayed a higher Treg cell proportion
compared to non-depressed patients with obesity (311).

Various studies focused on the role of Th17 cells in
depression (295). In a study that involved 40 patients with
major depressive disorder and 30 healthy controls (312), an
increase in peripheral Th17 cell number and a decrease in Treg
cell number were found in patients. In addition, those patients
demonstrated a higher level of RORgt mRNA expression and
serum concentration of IL-17. Animal models also provide
potent evidence on the participation of Th17 cells in depressive
disorder. Beurel et al. analyzed the behavioral performance of
mice treated with Th17 cells, CD4+ cells, or vehicle and RORgt
(+/GFP) mice or mice administered RORgt inhibitor SR1001 or
anti-IL-17A antibodies (313). They found that the number of
brain-infiltrated Th17 cells was increased in mice after learned
helplessness and chronic restraint stress training. Th17 cell
intervention potentiated learned helplessness, while mice with
Th17 cell dysfunction, induced by RORgt inhibition or anti-IL-
17A antibodies, were relatively resistant to it. These studies
indicate a pathogenic role of Th17 cells in depression. Further
evidence is gained in recent studies on the role of Th17 cells in
patients with a comorbidity of depression and an allergic or
autoimmune disease (303, 314). Although these studies provide
good models to study the relationship between depression and
immunity, they have limitations of insufficient sample size and
being a retrospective study in nature.

On the contrary, downregulation of Th17 pathway was
reported in other studies (315, 316). Inconsistent results also
appear in clinical studies and drug intervention studies (295).
Therefore, the role of Th17 cells has not been totally confirmed.
In spite of an excellent integrative model proposed by Anastasiya
Slyepchenko et al. (301), knowledge gaps still exist in how Th17
cells induce neuroinflammation, the origin of Th17 cells in the
CNS and the influence of gut microbiota on Th17 pathway. In
this sense, large sample prospective studies and high-quality
preclinical studies are needed.

Schizophrenia is another severe mental disorder. The etiology
and pathogenesis of the disease are unknown, which may be
related to heredity, neurodevelopment, neurobiochemistry and
psychosocial factors, etc. Th1 and Th2 responses in
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schizophrenia have been excellently reviewed by Markus J.
Schwarz et al. (317). In general, those studies point to a
hypothesis: schizophrenia patients with predominantly
negative symptoms and/or treatment resistance show a Th2
shift. Akkouh et al. reported a downregulation of mRNA
expression of FOXP3 (a Treg-specific marker) and indicated an
abnormal astroglia-CCL20-CCR6-Treg axis in schizophrenia
(318). Another study regarding Treg cells provided supporting
evidence, showing a reduced level of Treg cells when stimulated
and elevated levels of proinflammatory cytokines (319). Mutant
Disc1-L100P mice, a genetic model of schizophrenia, displayed
an increase in CD3+CD4+ Th cells and a decrease in
CD3+CD4+CD25+ Treg cells (320). By contrast, mutant Disc1-
Q31L mice showed an increase in CD3+CD4+CD25+ Treg cells
(321). In schizophrenia patients, the increase of CD4+ T cells was
reported as well (322).

In recent years, studies on the association of schizophrenia
with gastrointestinal inflammation, encephalitis and human
endogenous retroviruses, along with studies on the role of
Th17 cells in other mental diseases have brought to the fore
the potential role of Th17 pathway in schizophrenia (323), about
which contradictory results have been reported. An increased
Th17 percentage was observed in schizophrenia patients and
there was a positive relationship between the proportion of Th17
cells and psychotic symptoms (324). Similar results were
reported in 22q11.2 deletion syndrome patients with psychotic
symptoms (325). Studies on transcription factor signaling
pathways confirmed the upregulation of Th17 pathway (326,
327). However, a decreased level of IL-17 and ratio of IL-17/
TGF-b and an increased level of IL-4 and IL-27 (Th17
suppressing cytokines) in patients with schizophrenia were
demonstrated in another study (328). Dimitrov et al. also
found that the level of IL-17 was decreased in schizophrenia
patients (329). It is likely that the distinctions between these
findings are related to sample size, course of disease, types of
cytokines, age, sex and other factors (323). Debnath et al.
elucidated the interaction between Th17 pathway and
dopamine system as well as prenatal infection and maternal
immune activation (MIA) in schizophrenia (323). Moreover,
they pointed out that Th17 cells played a “sinner” role in
schizophrenia by destroying the blood-brain barrier, invading
the CNS , and caus ing neuroprogre s s ion through
neuroinflammation along with other cytokines and microglia.
In-depth clinical and preclinical studies are needed to uncover
the exact role of Th17 pathway in the pathogenesis
of schizophrenia.

Autism spectrum disorders (ASDs) are a group of
neurodevelopmental diseases characterized by impaired social
interactions, communication deficits and stereotypic repetitive
behaviors. The development of autism is closely related to
immune aberrations. For instance, DiStasio et al. reported a
correlation between cytotoxic astrocyte blebs and T cells in the
postmortem brains of ASD patients (330). Dysregulation of
HLA-DR, Helios, IL-16 and CXC and CC chemokine receptors
on CD4+ T cells is also involved in immune dysfunction of
autism (331–334). When it comes to Th cell subsets, there is no
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doubt that they are essential participants in the pathogenesis of
autism. A skewed Th1/Th2 cytokine profile has long been
observed in autism patients (335). According to a study on the
immunocyte phenotypes of BTBR T+Itpr3tf/J (BTBR) mice (a
classical animal model of autism), BTBR mice exhibited higher
levels of Th1 and Th2 cells, along with a lower Th1/Th2 ratio
compared to C57BL/6J mice (336). The imbalance between Treg
and Th17 cells also plays an important role, with a significant
reduction in Treg cells and an increase in Th17 cells reported in
ASD patients (337). This kind of imbalance can be modulated by
a PARP-1 inhibitor, 5-aminoisoquinolinone, which has potential
anti-inflammatory and neuroprotective effects (338).

Th17 cells also exhibit pathogenicity in autism. A number of
studies reported an up-regulated IL-6/IL-17A signaling pathway,
indicating overactivity of Th17 cells in autism (339–341). It was
found in a mouse study that RORgt-dependent T cells such as
Th17 cells, which produced IL-17A, played a key role in the
induction of autism-like behaviors as well as an atypical cortical
phenotype in offspring by MIA (342). Kim et al. found that IL-
17A shaped immune-primed phenotypes in murine offspring
through MIA-induced alterations of the maternal microbiota,
which affected the chromatin accessibility of CD4+ T cells (343).
This may account for the phenomenon that individuals with
neurodevelopmental disorders such as autism are susceptible to
intestinal inflammation.

Studies have also been conducted on transcription factor
signaling pathways, providing further evidence for Th cell
dysfunction in autism. Children with autism displayed
dysregulation of Th1, Th2, Treg and Th17 cell-related
transcription factor signal passages, characterized by increased
RORgt+, T-bet+ and GATA-3+ T cells and Foxp3+ Treg cell
deficiency, compared to typically developing control children
(344). This was reversed by resveratrol in BTBR mice (345).
Therapies targeting Th17 and/or Treg pathway have shown
encouraging prospects (346–351). VGX-1027 (a strong
immunomodulator) and S3I-201 (a selective Stat3 inhibitor)
can improve autism symptoms of BTBR mice by extensively
regulating Th cell-related cytokines (352, 353). Upregulation of
intracellular enzymatic antioxidants of CD4+ T cells in autism
Frontiers in Immunology | www.frontiersin.org 12
children was revealed by a study, displaying the potential of
oxidants to reduce IL-17A levels (354).

The correlation between Th cells and other mental disorders
has also been reported. For example, patients with type 1 bipolar
disorder displayed a decline in Treg cell percentage, a more active
cytokine production and a bias to Th1 in the Th1/Th2 balance
(355). Despite a proinflammatory role in many cases, Th17 cells
were reported to make contribution to the maintenance of the
integrity of the brain structure and function (356). A study on
obsessive compulsive disorder (OCD) found that Th17 cells were
able to trigger OCD like behaviors in mice (357). Another study
provided supporting evidence, demonstrating higher
proportions of Th17 cells and lower proportions of Treg cells
in OCD patients (358). Th cell dysregulation is also involved in
the development of generalized anxiety disorder (GAD). In GAD
patients, Th1 and Th2 cytokines decreased while Th17 cytokines
increased (359). Otherwise, CD4+ T cells were involved in
intermittent explosive disorder-related transcriptional
changes (360).

In summary, Th cell abnormalities are widely involved in the
pathogenesis of mental disorders (Table 1). More in-depth
studies are needed to reveal their specific mechanisms for the
benefit of treatment methods. Comparatively less studies on the
exact mechanisms of Th-mediated psychological pathogenesis
were reported, and incongruent observations were also present.
Definitive or deterministic conclusions are yet to be discovered.
In the future, Th cells and related cytokines may provide effective
biomarkers and therapeutic targets for mental disorders.
DISCUSSION

The innate functions of Th cells are comparable in
neuroinflammatory disorders of different etiologies. The
generalized pro-inflammatory roles of Th17 and Th1 cells, as
well as the anti-inflammatory role of Th2 and Treg cells are well
accepted. But the diseases discussed herein are of different or
even contrasting etiologies, and through comparison of Th cell
functions in different pathological settings, we hope for more
TABLE 1 | Changes of Th cell subsets or their signature cytokine levels in mental disorders.

Mental disorders Depressive disorder Schizophrenia Autism spectrum disorders

Th cell subsets

Th1 (IFN-g) ↑ (313) ↓ (317) ↑ (336, 344)
↓ (304, 308)
- (361)

Th2 (IL-4) ↓ (302) ↑ (317, 328) ↑ (336, 344)
↑ (303, 304)
- (305–307)

Th1/Th2 ratio ↑ (301, 306, 362) ↓ (317) ↓ (335, 336)
↓ (304)

Treg (TGF-b, IL-10) ↓ (295, 309, 312) ↓ (318–320) ↓ (337, 344)
↑ (311) ↑ (321)

Th17 (IL-17) ↑ (303, 312–314) ↑ (324–327) ↑ (337, 339–341, 344)
↓ (315, 316) ↓ (328, 329)
June 2022
↑, upregulation; ↓, downregulation; -, no significant change.
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comprehensive understandings of Th cell-mediated immune
responses in CNS inflammatory disorders. Indeed, those
neuroinflammation-related disorders and their relevance to
adaptive immunity were investigated to drastically different
degrees. For instance, various in-depth studies correlating Th
cells and MS/EAE pathogenesis have been conducted, while roles
of Th cells in most mental disorders are merely based on
observations and evaluations. As the boundaries of
neuro inflammat ion expand , inves t i ga t ions on the
intercorrelated or even shared functions of Th subsets in
different disease settings could promote deeper understandings
of this complex immune network. In turn, through comparing
distinct contributions of Th subsets under different
neuroinflammatory conditions, more precise comprehension of
pathogenesis, prevention, therapeutics, and prognosis of these
diseases may be achieved.

Th1 cells are considered inflammatory and could contribute to
disease progression in most cases. However, it was proved that
certain schizophrenia patient groups showed Th2- instead of Th1-
skewed shift. Also, evidence has suggested that CD4+ T cells
demonstrate a shift from Th1-phonotype toward others during
natural senescence, and this shift could be exaggerated by AD. On
the other hand, Th1 function could also be utilized to vaccinate
against AD, as Th1 epitopes are pivotal components of established
AD vaccines. Th2 and Treg cells deserve their anti-inflammatory
descriptions, as excessive or aggressive activation of these two cell
types were rarely reported in non-infectious CNS inflammatory
disorders. Moreover, the anti-inflammatory nature of Th2 cells is
also utilized in preventing severe autoimmune responses during
vaccination against AD. However, divergent evidence was also
reported, suggesting the deleterious roles of these cells
during ageing (178). By comparison, the vicious role of
Th17 cells seems applicable. Therefore, Th cells play an
interesting yet intricate monopolylogue in the pathogenesis of
neuroinflammatory disorders.

Based on prior discussions, it appears evident that a simple
dichotomy of “savior or sinner” is far less adequate in defining
roles of different Th cell subsets, or their roles in different non-
infectious CNS inflammatory disorders. Immunoregulation is
inherently intricate and complicated, and when taken together
with diversified pathological or physiological factors, the precise
manipulation over CNS adaptive immunity in order to achieve
better intervention, therapeutics or vaccination seems even more
difficult. Major obstacles in the studying on these topics may
Frontiers in Immunology | www.frontiersin.org 13
include: the lack of exact animal models (including several
epilepsy and mental disorders), the difficult accessibility to
pathological brain samples from patients (such as most mental
disorders), the timing of sampling (due to ictal events in epilepsy,
relapses and remissions in MS or some mental disorders, and
medication choices), the size of clinical samples, as well as the
understanding of the so-called inherent etiologies.

An interesting study recently reported that exposure to
particulate matter (PM) 10 significantly correlate with
expression of CCR6 in CD4+ T cells from MS patients (363).
Promoted Th17 polarization induced by particulate matter
exposure was also reported in the study. Whether PM
exposure can elicit similar immunological responses in other
neuroinflammatory disorders remains an intriguing question.
Moreover, recent studies have also proposed a bunch of novel
research strategies associating Th cells and CNS inflammatory
disorders, including those concerning gut microbiota changes
(364–368), considering sex difference (369–372), as well as
utilizing physiomimetic models for in vitro interaction studies
(373). Conceptually, as Th cells have various intrinsic and
constant regulation pathways and functions, studies on Th
cells concerning one research field may as well benefit another.
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268. Rodrıǵuez-Baeza A, Reina-De La Torre F, Poca A, Martı ́ M, Garnacho A.
Morphological Features in Human Cortical Brain Microvessels After Head
Injury: A Three-Dimensional and Immunocytochemical Study. Anatomical
Rec Part A: Discov Mol Cell Evol Biol (2003) 273A(1):583–93. doi: 10.1002/
ar.a.10069

269. Holmin S, Mathiesen T, Shetye J, Biberfeld P. Intracerebral Inflammatory
Response to Experimental Brain Contusion. Acta Neurochirurgica (1995)
132(1-3):110–9. doi: 10.1007/BF01404857

270. Soares H, Hicks R, Smith D, McIntosh T. Inflammatory Leukocytic
Recruitment and Diffuse Neuronal Degeneration are Separate Pathological
Processes Resulting From Traumatic Brain Injury. J Neurosci (1995) 15
(12):8223–33. doi: 10.1523/JNEUROSCI.15-12-08223.1995
June 2022 | Volume 13 | Article 872167

https://doi.org/10.1016/j.bbi.2009.10.006
https://doi.org/10.1016/j.bbi.2009.10.006
https://doi.org/10.1016/j.jns.2009.02.355
https://doi.org/10.1016/j.eplepsyres.2009.05.009
https://doi.org/10.1016/j.eplepsyres.2009.05.009
https://doi.org/10.1016/j.seizure.2013.03.004
https://doi.org/10.1056/NEJM200002033420503
https://doi.org/10.1016/j.seizure.2016.03.006
https://doi.org/10.1016/j.seizure.2016.03.006
https://doi.org/10.1172/jci.insight.126337
https://doi.org/10.1084/jem.20171285
https://doi.org/10.3390/jcm11020447
https://doi.org/10.1155/2021/7973123
https://doi.org/10.1001/jama.2012.220
https://doi.org/10.1016/j.seizure.2021.07.028
https://doi.org/10.1016/j.eplepsyres.2011.03.004
https://doi.org/10.1016/j.eplepsyres.2011.03.004
https://doi.org/10.1007/s00415-009-5021-x
https://doi.org/10.1007/s00415-009-5021-x
https://doi.org/10.1016/j.bbi.2010.10.022
https://doi.org/10.1016/j.bbi.2010.10.022
https://doi.org/10.1016/j.bbi.2015.11.016
https://doi.org/10.1046/j.1471-4159.1994.63051872.x
https://doi.org/10.1186/1742-2094-9-207
https://doi.org/10.1016/j.pathophys.2012.02.003
https://doi.org/10.1016/j.yebeh.2019.106682
https://doi.org/10.1212/WNL.48.1.154
https://doi.org/10.1007/BF00293396
https://doi.org/10.1016/j.expneurol.2008.01.017
https://doi.org/10.1016/j.expneurol.2008.01.017
https://doi.org/10.1016/j.nbd.2007.08.012
https://doi.org/10.1111/j.1528-1167.2012.03540.x
https://doi.org/10.1111/j.1528-1167.2012.03540.x
https://doi.org/10.1016/j.eplepsyres.2015.11.011
https://doi.org/10.1016/j.eplepsyres.2015.11.011
https://doi.org/10.1267/ahc.10022
https://doi.org/10.1016/j.anndiagpath.2017.05.009
https://doi.org/10.1093/jnen/nlx001
https://doi.org/10.1016/0306-3623(95)02090-X
https://doi.org/10.3389/fneur.2019.00701
https://doi.org/10.1016/j.nbd.2011.06.011
https://doi.org/10.31887/DCNS.2008.10.1/oksteinlein
https://doi.org/10.1002/ar.a.10069
https://doi.org/10.1002/ar.a.10069
https://doi.org/10.1007/BF01404857
https://doi.org/10.1523/JNEUROSCI.15-12-08223.1995
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Liu et al. Th Cells & Monopolylogues in Neuroinflammation
271. Härtl R, Medary MB, Ruge M, Arfors KE, Ghajar J. Early White Blood Cell
Dynamics After Traumatic Brain Injury: Effects on the Cerebral
Microcirculation. J Cereb Blood Flow Metab (1997) 17(11):1210–20. doi:
10.1097/00004647-199711000-00010

272. Bao W, Lin Y, Chen Z. The Peripheral Immune System and Traumatic Brain
Injury: Insight Into the Role of T-Helper Cells. Int J Med Sci (2021) 18
(16):3644–51. doi: 10.7150/ijms.46834

273. Kirchhoff C, Buhmann S, Bogner V, Stegmaier J, Leidel BA, Braunstein V,
et al. Cerebrospinal IL-10 Concentration is Elevated in non-Survivors as
Compared to Survivors After Severe Traumatic Brain Injury. Eur J Med Res
(2008) 13(10):464–8.

274. Schwulst SJ, Trahanas DM, Saber R, Perlman H. Traumatic Brain Injury-
Induced Alterations in Peripheral Immunity. J Trauma Acute Care Surg
(2013) 75(5):780–8. doi: 10.1097/TA.0b013e318299616a

275. Majetschak M, Christensen B, Obertacke U, Waydhas C, Schindler AE, Nast-
Kolb D, et al. Sex Differences in Posttraumatic Cytokine Release of
Endotoxin-Stimulated Whole Blood: Relationship to the Development of
Severe Sepsis. J Trauma (2000) 48(5):832–40. doi: 10.1097/00005373-
200005000-00006

276. Schneider Soares FM,Menezes de Souza N, Libório SchwarzboldM, PaimDiaz
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