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Lipid droplets (LDs) have emerged not just as storage sites for lipids but as central
regulators of metabolism and organelle quality control. These critical functions are
achieved, in part, at membrane contact sites (MCS) between LDs and other
organelles. MCS are sites of transfer of cellular constituents to or from LDs for energy
mobilization in response to nutrient limitations, as well as LD biogenesis, expansion and
autophagy. Here, we describe recent findings on themechanisms underlying the formation
and function of MCS between LDs andmitochondria, ER and lysosomes/vacuoles and the
role of the cytoskeleton in promoting LD MCS through its function in LD movement and
distribution in response to environmental cues.
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1 INTRODUCTION

Lipid droplets (LDs) have an established function in storing lipids, which are used for energy
production, membrane biogenesis and synthesis of signaling molecules. LDs also function in storage
of signaling proteins, their precursors and hydrophobic vitamins, and for sequestering toxic lipids,
which is critical to reduce lipotoxicity and oxidative stress (Welte and Gould, 2017; Jarc and Petan,
2019; Geltinger et al., 2020; Roberts and Olzmann, 2020; Renne and Hariri, 2021). Finally, recent
studies support a role for LDs in ER protein quality control (Garcia et al., 2018; Roberts and
Olzmann, 2020).

The physical properties of LDs are distinct from those of other organelles. They consist of neutral
lipids, primarily triacylglycerol (TAG) and sterol esters (SE), surrounded by a phospholipid
monolayer. Although proteins are associated with LDs, conventional transport proteins that are
integrated into lipid bilayers do not take part in transfer of lipids and other constituents from LDs to
other organelles. Instead, specialized proteins, such as lipases that associate with the LD boundary
membrane, release lipids and vitamin A from LDs (Schreiber et al., 2012; O’Byrne and Blaner, 2013;
Grumet et al., 2016; Olzmann and Carvalho, 2019). Moreover, transfer of LD components to other
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organelles as well as communication between LDs and other
subcellular compartments occurs at membrane contact sites
(MCS) between LDs and other organelles.

MCS are sites of close apposition between two organelles.
While these contacts may be homotypic (between identical
organelles) or heterotypic (between different organelles), the
focal point for this review article is heterotypic interactions
between LDs and mitochondria, ER, lysosomes (the vacuole in
yeast) and the role of the cytoskeleton in promoting contact site
formation at LDs. LD MCS are not as well understood as other
MCS. Nonetheless, LDMCS are enriched in proteins that mediate
specific functions at those sites and are produced and stabilized by
tethering proteins. Moreover, in yeast the distance between LDs
and other organelles at MCS has been determined by electron
microscopy to be <30 nm (Perktold et al., 2007; Binns et al.,
2006), which is in the range of that observed in other MCS,
typically 10–80 nm (Scorrano et al., 2019; Vance, 2020).

Although the structural components of many LD MCS have
not been identified, the function of many LD MCS is well
established. The endoplasmic reticulum (ER) constitutes the
major site for the biogenesis of LDs and lipids that are
incorporated into nascent LDs. Therefore, LD-ER contact sites
are essential for LD formation, growth and budding from the ER
(Olzmann and Carvalho, 2019; Choudhary and Schneiter, 2021).
Recent studies revealed that LDs mediate removal of unfolded or
damaged proteins from the ER, and that this occurs at LD-ER
contact sites (Vevea et al., 2015; Garcia et al., 2021). At
mitochondria, LDs deliver fatty acids, which are produced
from neutral lipids that are stored in LDs and oxidized for
energy production (Finn and Dice, 2006; Rambold et al., 2015;
Wang et al., 2021). Toxic lipids or proteins that are sequestered in
LDs can be delivered to lysosomes (the vacuole in yeast) by
multiple pathways, including transfer events at LD-lysosome
contact sites and piecemeal or wholesale uptake of LDs into
the lysosome/vacuolar compartment (Tsuji et al., 2017; Schulze
et al., 2020; Garcia et al., 2021; Liao et al., 2021). Finally, contacts
between LDs and the cytoskeleton contribute to LD MCS
formation through effects on LD movement and positional
control (Pfisterer et al., 2017; Valm et al., 2017; Kilwein and
Welte, 2019). Here, we review recent findings on the structure
and function of LD MCS in yeast and mammalian cells, and how
these membrane contacts respond to cellular or
environmental cues.

2 LD INTERACTIONS WITH
MITOCHONDRIA

Mitochondria are the metabolic centers of the cell. Fatty acids
(FAs) that are stored as TAG and other lipids in LDs are used for
energy production by β-oxidation in mitochondria. Conversely,
mitochondria are the source of ATP and other components that
contribute to growth or expansion of LDs. Close contacts between
LDs and mitochondria were described in 1959 (Palade, 1959) and
have been detected in many cell types (Novikoff et al., 1980;
Stemberger et al., 1984). They are the sites for transfer of
constituents between mitochondria and LD for LD

consumption and expansion and are prominent in tissues with
high energy demands such as heart (Kuramoto et al., 2012),
skeletal muscle (Shaw et al., 2008), brown adipose tissue (Yu et al.,
2015) and liver (Shiozaki et al., 2011; Ma et al., 2021). Although
these contact sites have been evident for decades, recent studies
have revealed important details of their function and structure.

2.1 LD-Mitochondria MCS Function in
Transfer of Fatty Acids From LDs to
Mitochondria
During periods of nutrient deprivation, cells reprogram their
metabolism from glycolysis to oxidation of FAs for ATP
production. During this process, FAs that are stored in TAG
in LDs are transferred from LDs to mitochondria (Finn and Dice,
2006). Emerging evidence supports a role for LD-mitochondria
MCS in this FA transfer event. First, starvation of cultured
mammalian cells results in an increase in contact site
formation between LDs and mitochondria (Herms et al., 2015;
Rambold et al., 2015; Nguyen et al., 2017; Valm et al., 2017). Live-
cell imaging of fluorescent FAs revealed that FAs move from LDs
into mitochondria when nutrients are limiting. This process
requires close association of mitochondria with LDs. It is also
dependent on release of FA from TAG stored in LDs: depletion of
an LD-associated neutral lipase, adipose triglyceride lipase
(ATGL), or drug-induced inhibition of lipase activity reduces
the mitochondrial accumulation of fluorescent FAs (Herms et al.,
2015; Rambold et al., 2015; Valm et al., 2017).

Several proteins have been implicated in formation of these
LD-mitochondria MCS (Figure 1). The SNARE proteins
SNAP23 and VAMP4 localize to LDs in mouse fibroblasts
(Boström et al., 2005), and SNAP23 has been detected on LDs
and mitochondria in skeletal muscle (Strauss et al., 2016). More
importantly, deletion of SNAP23 produces a decrease in both LD-
mitochondria MCS and β-oxidation of radiolabeled FAs in mouse
fibroblasts (Jägerström et al., 2009). A proximity labeling study
revealed that ACSL1, a long-chain acyl-CoA synthetase that
directs FAs to mitochondria for β-oxidation, interacts with
SNAP23 and VAMP4 in hepatocytes (Young et al., 2018). In
addition, glucose deprivation, a condition that stimulates FA
oxidation, promotes co-immunoprecipitation of SNAP23,
VAMP4 and ACSL1 in hepatocytes. (Young et al., 2018).
These findings support the notion that increased association of
LD and mitochondria contributes to elevated FA oxidation and
indicate a role for SNAP23, VAMP4 and ACSL1 in establishing
physical and functional interactions between LDs and
mitochondria during this process.

Other studies support a role for the vacuolar protein sorting
13D (VPS13D) protein in FA transfer from LD to mitochondria
at MCS between these organelles (Wang et al., 2021). VPS13D is a
VPS13 family protein (Velayos-Baeza et al., 2004; Wang et al.,
2021) that localizes to LD-mitochondria contact sites in response
to oleic acid stimulation and starvation in cultured cells (Wang
et al., 2021). Structure-function analysis revealed that the
N-terminal region of VPS13D is responsible for mitochondrial
targeting and that two amphipathic helices in the C-terminal
region of the protein target VPS13D to the LDs. Moreover,
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VPS13D has a putative lipid transfer domain (LTD) at its N
terminus that binds to FAs and is required for VPS13D function
in FA transfer from LD to mitochondria. Finally, VPS13D
recruits a subunit of the ESCRT (the endosome sorting
complex required for transport), a complex that produces
changes in membrane curvature (Vietri et al., 2020), to LD-
mitochondria MCS. Specifically, the VAB (VPS13 adaptor
binding) domain of VPS13D interacts with the ESCRT protein
TSG101 and is required for recruitment of TSG101 to LD-
mitochondria MCS. Moreover, localization of the VAB
domain and TSG101 to this MCS results in the formation of a
constricted or tubular structure at the surface of LDs (Wang et al.,
2021). Finally, pulse-chase assays of FA transfer from LD to
mitochondria revealed that the deletion of VPS13D or TSG101
results in a significant reduction of FA transfer (Wang et al.,
2021). Collectively, these findings support a model for VPS13D in
energy mobilization by FA oxidation in cells exposed to nutrient
limitation. According to this model, VPS13D is recruited to LD-
mitochondria junctions in response to starvation, where it
contributes to FA transfer from LDs to mitochondria 1) as a
lipid transfer protein and 2) by recruiting ESCRT components to
LD-mitochondria MCS and facilitating ESCRT-dependent
membrane remodeling at those sites.

Finally, the perilipin family protein perilipin 1 (PLIN1) has
been implicated in LD-mitochondria contact site formation in
brown adipose tissue through interactions with themitochondrial
outer membrane fusion GTPase, mitofusin 2, MFN2 (Boutant
et al., 2017). MFN2 and its homolog MFN1 mediate the fusion of
mitochondrial outer membranes. In addition, MFN2 is involved
in mitochondria-ER contact sites (Giacomello et al., 2020).
Nonetheless, depletion or knockout of MFN2 in brown
adipose tissue results in fewer LD-mitochondria MCS, altered
lipid metabolism and reduced FA oxidation by mitochondria
(Boutant et al., 2017). In addition, co-immunoprecipitation
studies show that MFN2 directly interacts with PLIN1, and

this interaction is enhanced by a treatment with an adrenergic
agonist. Finally, PLIN1 expression increases in mice subjected to
cold treatment (Yu et al., 2015). These observations suggest that
increased mitochondria-LD contacts mediated by MFN2-PLIN1
facilitate the coupling of TAG hydrolysis with FA oxidation upon
exposure of brown adipose tissue to cold (Boutant et al., 2017).

2.2 LD-Mitochondria Contact Site Function
in LD Expansion
Contact sites between LD and mitochondria can also function in
expansion of LD under conditions that promote lipid storage. In
brown adipose tissue, a subpopulation of mitochondria is closely
associated with large LDs. Benador et al. (2018) developed a
method to separate LD-associated mitochondria from LD-free
mitochondria and found that these two populations of
mitochondria are physically and functionally distinct. LD-
associated mitochondria exhibit 1) elevated TCA cycle, ATP
synthetic and pyruvate oxidation activities, 2) reduced β-
oxidation activity, and 3) increased incorporation of free FAs
into TAG in ATP synthase-dependent processes. Thus, contact
site formation between LD and mitochondria is associated with
lipid storage and generation of energy for this process by
oxidation of glucose, not FAs. In contrast, LD-free
mitochondria display higher FA oxidation. These observations
support the idea that LD-associated mitochondria promote LD
expansion and lipid storage by providing ATP for acyl-CoA
synthesis during TAG production (Benador et al., 2018).

The LD protein perilipin 5 (PLIN5) has been implicated in
LD-mitochondria interactions during LD expansion. PLIN5 is
highly expressed in oxidative tissues, such as skeletal and cardiac
muscle, brown adipose tissue and liver (Wolins et al., 2006), and
is upregulated in response to exercise in muscle tissue
(Tarnopolsky et al., 2007). Moreover, PLIN5 overexpression
increases the number of LDs and the incorporation of

FIGURE 1 |Molecular constituents of LD-mitochondria MCS. MIGA2 is the only LD-mitochondria tether that binds directly to both organelles. Other tethers include
the VAMP4-SNAP2-ACSL1 or MFN2-PLIN1 protein complexes. VPS13D and PLIN5 are components of tethers that bind to LDs but have binding partners on
mitochondria that have not been identified. In addition, VPS13D interacts with ESCRT on the LD surface and may contribute to membrane remodeling at that site.
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radiolabeled lipids into TAG in brown adipose tissue and in
cultured liver cells (Wang et al., 2011b; Benador et al., 2018). On
the other hand, deletion of PLIN5 in mice results in a loss of LDs,
and cultured cardiomyocytes from Plin5-null mice exhibit more
FA oxidation activity compared to cardiomyocytes from wild-
type mice (Kuramoto et al., 2012). Other studies indicate that
PLIN5 function in LD expansion may be due to its function in
LD-mitochondria MCS. PLIN5 can localize to the mitochondrial
surface independent of LD-mitochondria MCS, and localizes to
LD-mitochondria interfaces by super-resolution imaging
(Gemmink et al., 2018). Moreover, overexpression of PLIN5 in
CHO cells induces the recruitment of mitochondria to LD, and
this recruitment depends on the presence of 20 amino acids at the
C-terminal of the protein (Wang et al., 2011b). This observation
supports the notion that PLIN5 is part of a tethering complex that
promotes LD expansion at LD-mitochondria MCS.

Interestingly, in hepatocyte-specific Plin5 null mice, the
decreased LD-mitochondria interactions resulted in reduced
fatty acid oxidation and reduced fatty acid storage into TAGs
(Keenan et al., 2019). Therefore, it is possible that even in tissues
where PLIN5 is highly expressed, it can promote different aspects
of LD-mitochondria interactions. Moreover, PLIN5 has been
detected at mitochondria and in the cytoplasm independently
of LD (Bosma et al., 2012; Gemmink et al., 2018), suggesting that
it may also regulate lipid metabolism. Indeed PLIN5 also
regulates the lipolytic activity of ATGL (Granneman et al.,
2011; Wang et al., 2011a). These findings raise the possibility
that PLIN5 affects TAG production via its regulatory activities on
lipolysis independently from its mitochondrial tethering activity.

Mitoguardin 2 (MIGA2) is a mitochondrial outer membrane
protein that promotes mitochondrial fusion and modulates body
fat in mice by regulating mitochondrial phospholipid metabolism
(Zhang et al., 2016). MIGA2 has also been implicated in LD-
mitochondria MCS formation in differentiating white adipocytes
(Freyre et al., 2019). Overexpression of MIGA2 in adipocytes leads
to increased LD-mitochondriaMCS formation (Freyre et al., 2019).
Structure-function analysis of MIGA2 revealed a direct role for the
protein in these MCS: its N-terminal transmembrane domains
bind to mitochondria and its C-terminal amphipathic region is
exposed to the cytosol and binds directly to LDs (Freyre et al.,
2019). Finally, pre-adipocytes lacking MIGA2 exhibit reduced
adipocyte differentiation, decreased LD abundance, and
diminished TAG synthesis. Consistent with this, radiolabeled
glucose is not converted into TAGs in MIGA2-knockout pre-
adipocytes (Freyre et al., 2019). Collectively, these data suggest that
MIGA2 is a tether that links LDs to mitochondria and raise the
possibility that MIGA2 affects LD expansion through effects on de
novo lipogenesis at MCS in adipocytes.

3 LD-ER CONTACT SITES

LDs form at and bud from the ER in all eukaryotes. LD biogenesis
sites are the most complex and best characterized LDMCS. These
MCS develop at specialized domains within the ER membrane,
are enriched in specific lipids and proteins, and have a well-
defined function in LD formation, directional growth and

budding. These LD-ER MCS have activities found in other
MCS including transfer of lipids and proteins between
organelles. However, unlike other MCS in which a pre-existing
organelle makes contacts with and is tethered to another
organelle, LD-ER MCS develop within the ER membrane
during LD biogenesis. While other MCS involve transitory
interactions between two physically separate structures, the
ER-LD MCS is not so simple. LDs and ER have different
membrane and protein composition and different functional
characteristics, but the distinction between these two
compartments is less stark than, for example, that between ER
and mitochondria. There is evidence from electron microscopy
(Kassan et al., 2013) and fluorescence imaging (Jacquier et al.,
2011; Valm et al., 2017) that in yeast, LDs and ER maintain long-
term continuity. Fluorescence and biochemical studies in fly
(Wilfling et al., 2013) and mammalian (Zehmer et al., 2009)
cells have supported this model, although there are differences
among cell types (Hugenroth and Bohnert, 2020).

Here, we describe formation of LD-ER contact sites, their
function in LD biogenesis and the environmental cues that
modulate these processes.

3.1 Formation of LD-ER MCS at Sites of LD
Biogenesis
In light of the critical function of LDs in lipid storage and
homeostasis, it is not surprising that LD biogenesis is
regulated in response to changes in nutrient availability.
Indeed, LD biogenesis is induced by nutrient limitations
including the transition from mid-log to stationary phase in
yeast, or nitrogen starvation (Jacob, 1987; Kurat et al., 2006; Li
et al., 2015). It is also induced by supplementation with oleic acid
(Callies et al., 1993; Fujimoto et al., 2006). In contrast, LD
biogenesis is required for the survival of nutrient-limited cells
(Sandager et al., 2002; Garbarino et al., 2009). One critical step in
LD-ER contact site formation during LD synthesis is coalescence
of neutral lipids (NL) to form a lens-shaped structure between the
leaflets of the ER lipid bilayer. When the NL TAG reaches a
threshold concentration (3–5 mol%), it undergoes a phase
separation within the ER membrane leading to formation of
the TAG lens (Khandelia et al., 2010; Duelund et al., 2013). In
yeast, where these structures were first identified, NL lenses are ca.
50 nm in diameter (Choudhary et al., 2015).

The major molecular components and processes in LD-ER
biogenesis are illustrated in Figure 2. Lens formation is induced
by and requires synthesis of TAG and sterol esters (SE). In yeast,
TAG is generated by acylation of the precursor diacylglycerol
(DAG) by the diacylglycerol acyltransferases Dga1 and Lro1
(Lecithin cholesterol acyl transferase Related Open reading
frame 1). SE are generated from sterols by the acyl-CoA:sterol
acyltransferases Are1 and Are2. Indeed, inhibition of NL
synthesis by deletion of all SE and TAG biosynthetic enzymes
(DGA1, LRO1, ARE1 and ARE2) blocks LD biogenesis (Sandager
et al., 2002). Similarly, inhibition of DAG synthesis from
phosphatidic acid by deletion of lipin (Pah1, phosphatidic acid
phosphohydrolase 1, in yeast) results in reduced LD abundance
(Adeyo et al., 2011).
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The seipin protein complex determines the site of lens
formation, mediates MCS formation between LDs and ER at
those sites, and promotes TAG incorporation into lenses and
nascent LDs. Seipin is encoded by the BSCL2 (Berardinelli-Seip
Congenital Lipodystrophy 2) gene in humans and SEI1/FLD1
(Seipin/Few LDs) gene in yeast. It is an integral ER membrane
protein that localizes to LD-ER contact sites (Szymanski et al.,
2007; Fei et al., 2008; Salo et al., 2016; Wang et al., 2016). Seipin
contains a highly conserved ER lumen domain, short N- and
C-terminal cytosolic domains and two transmembrane domains
(Lundin et al., 2006). The luminal domain contains a
hydrophobic helix (HH) near the ER bilayer and a β-
sandwich fold (Sui et al., 2018; Yan et al., 2018). The β-
sandwich fold binds anionic phospholipids such as
phosphatidic acid (Yan et al., 2018) and is similar in
structure to β-sandwich domains in the sterol-binding
Niemann-Pick C2 (NPC2) proteins. Recent, cryo-EM studies
revealed that seipin oligomerizes to form a ring-like structure
containing 10–12 subunits and that luminal HHs in that ring-
like structure bind to TAG, which promotes TAG cluster
formation at low concentrations (Prasanna et al., 2021; Zoni
et al., 2021). Interestingly, yeast seipin lacks the HH domain
found in human or Drosophila seipins. However, yeast seipin
binds to Ldb16 (low dye binding 16), which contains HH-like
regions and supports HH function in the yeast seipin complex
(Klug et al., 2021).

Seipin functions in LD-ER MCS and LD formation through
its interactions not just with lipids but with proteins including
Nem1 (nuclear envelope morphology 1) and LDAF1 (LD
activator factor 1), also known as Tmem159 and promethin
in mammals, and Ldo45 (LD organization 45 kD protein) in
yeast. Seipin-Nem1 interactions promote NL biosynthesis at
sites of lens formation. Both proteins localize to and co-localize
at punctate structures at sites of lens formation and do so
independent of NL biosynthesis or the presence of LDs
(Choudhary et al., 2020). Nem1 activates DAG production,
and functions with seipin to recruit TAG biosynthetic
enzymes (Dga1 and Lro1) at LD-ER MCS during lens
initiation and growth (Choudhary et al., 2020).

Interaction of seipin with LDAF1 is also critical for the TAG
phase transition during initiation of lens formation. Although
small lens-likes structures can form in the ER membrane in the
absence of seipin (Salo et al., 2016; Wang et al., 2016), recent
studies support the model that seipin and LDAF1 stimulate lens
formation by lowering the critical concentration of TAG for
phase conversion within membranes. Specifically, deletion of
LDAF1 inhibits LD formation during early stages of that
process at all TAG concentrations tested, indicating that
LDAF1 is required for initiation of LD biogenesis. Notably, it
is released from seipin and recruited to the surface of nascent LDs
as they mature (Chung et al., 2019). Consistent with this,
molecular simulation studies revealed that binding of seipin to
TAG promotes its association with LDAF1, which stabilizes
nascent lens structures (Prasanna et al., 2021; Zoni et al.,
2021). Finally, targeting of LDAF1 to the plasma membrane
(PM) results in formation of PM-ER MCS, as well as
recruitment of seipin and LD biogenesis at that site. Thus,
seipin and LDAF1 can drive lens formation and LD biogenesis
in vivo (Chung et al., 2019).

3.2 Generation of Lipid and Protein
Asymmetry at LD-ER MCS During LD
Growth and Budding
LD-ER interactions at sites of LD biogenesis are disrupted when
nascent LDs bud from the ER into the cytosol. Budding of LDs
from the ER and the size of LDs that are released from ER are
influenced bymembrane curvature and surface tension at the LD-
ER MCS. Phospholipids that promote negative membrane
curvature, such as DAG or phosphatidylethanolamine (PE),
stabilize the LD-ER contact site and favor retention of LDs in
the ER. In contrast, lysolipids, which promote positive membrane
curvature, destabilize LD-ER MCS and favor LD budding
(Choudhary et al., 2018) and generation of small LDs (Ben
M’barek et al., 2017).

Fat storage-inducing transmembrane protein 2 (FITM2) is an
evolutionarily conserved ER-localized transmembrane protein
that is required for budding of LDs from ER membranes

FIGURE 2 | LD biogenesis at LD-ERMCS. TAG accumulates between leaflets of the ER bilayer during lens formation. Seipins, Nem1, and LDAF1 localize to and are
required for LD-ER MCS formation at sites of LD biogenesis. Other LD biogenesis proteins including FITM2 and Pex30 are recruited to LD-ER MCS and LDAF1 is later
transferred from MD-ER MCS to the surface of LDs during LD budding from the ER membrane. Finally, LDs are separated from ER and released to cytosol during LD
scission.
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(Choudhary et al., 2015). Studies in yeast indicate that FITM2
proteins promote this process by regulating the levels of DAG.
Although DAG is a precursor for TAG and therefore required for
LD biogenesis, DAG can inhibit budding of nascent LDs from
LD-ERMCS by promoting negative membrane curvature at those
contact sites. Therefore, its levels must be tightly regulated during
LD biogenesis. Indeed, lysolipids promote positive membrane
curvature and budding of LDs from ER in the absence of FITM2
in yeast. This suggest that the increase of membrane curvature by
lysolipids reduces the defects in LD biogenesis caused by high
DAG levels in the absence of FITM2 (Choudhary et al., 2018).
The FITM2 proteins of yeast (Yft2 and Scs3) are recruited to sites
of LD biogenesis by binding to seipin and Nem1 (Choudhary
et al., 2018; 2020). Moreover, deletion of both FITM2 proteins in
yeast results in increased DAG and this defect is rescued by
deletion ofNEM1 (Choudhary et al., 2018). Since Nem1 promotes
DAG production, FITM2 proteins may modulate DAG levels
though effects on Nem1.

Interactions between seipin and Pex30 (Peroxisome-related
30) have been implicated in modulation of the phospholipid
composition at LD-ER MCS during lens formation. This process
is downstream of the recruitment of FITM2 proteins to seipin-
Nem1 sites (Choudhary et al., 2020). Pex30 is an ER membrane
protein with established functions in control of peroxisome size,
shape and formation (Joshi et al., 2016; Vizeacoumar et al., 2003;
2004). Interestingly, Pex30 is associated with seipin complexes at
LD-ER contact sites during LD formation. Moreover, deletion of
Pex30 results in abnormal LD morphology, and deletion of seipin
and Pex30 results in inhibition of LD biogenesis, abnormal ER
morphology, and growth defects (Joshi et al., 2018; Wang et al.,
2018). Notably, the defect in LD biogenesis in sei1Δ pex30Δ
double mutants is rescued by deletion of Pct1 (phosphocholine
cytidylyltransferase 1), the rate-limiting enzyme in the
phosphatidylcholine (PC) biosynthesis Kennedy pathway. PC
is the most abundant phospholipid in the LD membrane.
Thus, Pex30 may contribute to LD biogenesis by modulating
phospholipid composition in the LD-ER contact site and on the
surface of the nascent LD during LD biogenesis (Wang et al.,
2018). Interestingly, Pex30 contains membrane-shaping
reticulon-like regions (Joshi et al., 2016) and may also
contribute to deforming the membrane at LD-ER MCSs and
budding of the nascent LDs from the ER membrane.

3.3 Role for ERAD in Removal of Surplus LD
Proteins From the ER Membrane
The ER-associated degradation pathway (ERAD) was originally
identified as a pathway for degradation of unfolded or damaged
proteins in ER membranes. In ERAD, unfolded proteins are
ubiquitinated, recognized and extracted by the AAA-ATPase
Cdc48 in yeast (p97/VCP in mammals), and degraded by
proteasomes (Christianson and Ye, 2014). Recent studies
support a novel role for ERAD in degrading LD proteins
within the ER membrane.

In mammals, diacylglycerol acyltransferase 2 (DGAT2), an
enzyme that catalyzes the conversion of DAG to TAG, is
degraded by ERAD with the aid of the ubiquitin ligases gp78

and Hrd1 (Choi et al., 2014; Luo et al., 2018). In yeast, a subset of
LD proteins, Pgc1 (phosphatidyl glycerol phospholipase C),
Dga1, and Yeh1 (yeast steryl ester hydrolase), are substrates
for the ERAD ubiquitin ligase Doa10 and degraded by ERAD.
The HH domain of Pgc1 has been implicated as a degron for
ERAD: it is both necessary and sufficient for Doa10-dependent
degradation (Ruggiano et al., 2016). Interestingly, degradation of
Pgc1 by ERAD is accelerated in the absence of yeast FITM2 (Yap
et al., 2020). Moreover, the regions for ERAD degradation and for
targeting of proteins to LDs overlap (Ruggiano et al., 2016). These
findings raise the possibility that proteins that are not
incorporated into LDs are degraded in the ER by ERAD.

3.4 LD-ER Contact Sites and ER
Proteostasis
As described above, resident LD proteins are recruited to nascent
LDs at LD-ER MCS. Recent evidence indicates that unfolded ER
proteins, which accumulate in ER under conditions of ER stress
and compromise ER and cellular function and fitness, are
removed from the ER in LDs by transport from ER to LDs at
LD-ER MCS. In contrast to the ERAD system which relieves ER
stress by removing individual unfolded proteins from the
organelle, this LD-based ER proteostasis mechanism enables
high-throughput removal of unfolded ER proteins (Figure 3)
(Vevea et al., 2015).

Early studies revealed that ER proteins are recovered in
isolated LDs. Although these proteins were first interpreted as
contaminants in LD preparations, several lines of evidence
indicate that ER proteins are recruited to LDs by ER stress.
Specifically, treatment of yeast with a reducing agent,
dithiothreitol, which inhibits oxidative folding in the ER,
results in recruitment of 1) proteins that contain disulfide
linkages and undergo oxidative folding in the ER, 2) protein
disulfide isomerase (PDI) proteins, multifunctional ER redox
chaperones, and 3) other ER chaperones to LDs. Similarly,
treatment with tunicamycin, an agent that induces protein
misfolding by inhibiting protein glycosylation in the ER,
results in recruitment of proteins that are glycosylated in ER
and the ER chaperones described above to LDs. Imaging studies
revealed that ER proteins that are recovered with LDs also co-

FIGURE 3 | ER proteostasis at LD-ER MCS. Unfolded ER proteins are
marked for degradation by ubiquitination. Ubiquitinated proteins are
transferred from ER to LDs at LD-ER MCS. LDs containing ubiquitinated
proteins bud from the ER and are delivered to vacuoles for degradation
by microautophagy.
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localize with LDs in living yeast exposed to ER stress. These
imaging studies also provide documentation of 1) association of
LDs with protein aggregates in the ER membrane, 2) co-
localization of those protein aggregates with LDs as they bud
from ER membranes and move away from the ER, and 3)
localization of LDs and their associated ER protein aggregates
in the vacuole (yeast lysosome) (Garcia et al., 2021).

Equally important, LD function in ER protein quality control
is a physiologically relevant stress response. Indeed, LD
biogenesis or abundance is up-regulated in response to ER
stressors in yeast (Fei et al., 2009; Vevea et al., 2015; Garcia
et al., 2021), in mammalian cells (Lee et al., 2012) and in mouse
liver (Yamamoto et al., 2010; Zhang et al., 2011). Furthermore,
inhibition of LD biogenesis dramatically reduces cellular growth
and survival in yeast challenged by ER stressors (Garcia et al.,
2021). Overall, these studies support a model for LD function in
ER protein quality control whereby unfolded proteins are
transferred from ER membranes to nascent LDs at LD-ER
MCS, removed from ER by LDs as they bud from the ER and
degraded in response to ER stress.

4 LD-LYSOSOME/VACUOLE MCS

The lysosome (vacuole in yeast) plays a major role in catabolism,
recycling of cellular waste, excretion of waste products and
cellular signaling. Contact site formation between LDs and
lysosomes/vacuoles plays direct and indirect roles in LD
autophagy (lipophagy). Lipophagy, in turn, is essential for the
mobilization of LD-bound lipids for energy production in
response to nutrient limitations and other stressors, and for
degradation of excess or toxic lipids or unfolded proteins that
are stored and sequestered in LDs during ER stress. Lipophagy is
also critical for delivery of sterols and other lipids in LD to the
vacuolar membrane in the stationary phase in yeast (Tsuji et al.,
2017; Garcia et al., 2018; Jarc and Petan, 2019).

LD-lysosome/vacuole MCS have been implicated in three
forms of lipophagy. In LD macroautophagy, which is the
primary form of lipophagy in mammalian systems, LDs are
encapsulated within autophagosomes, and delivered to the
lumen of the lysosome by fusion of autophagosomes with the
lysosomal membrane (Singh et al., 2009). In LD microautophagy
or microlipophagy (µLP) which is predominantly understood in
yeast, LDs make direct contact with the lysosome/vacuole and
partial or wholesale uptake of LDs into the lysosome/vacuole at
sites of invagination in the lysosome/vacuole membrane (Garcia
et al., 2018; Schulze et al., 2020). Finally, in chaperone-mediated
autophagy (CMA), specific LD proteins are targeted to the
lysosome by chaperones and translocated across the lysosomal
membrane by the lysosome-associated membrane protein type
2A (LAMP2A) (Kaushik and Cuervo, 2015; 2016). All three forms
of autophagy are induced by nutrient limitation and other
environmental cues. Below, we review the two forms of
lipophagy that occur by direct contact between LDs and the
lysosome/vacuole at MCS between the organelles: LD
microlipophagy (Figures 4I–III) and CMA (Figure 4IV).

4.1 LD-Vacuole MCS During LD
Microautophagy in Yeast
Microlipophagy (µLP) was first identified in yeast, and has
emerged as the primary mechanism for lipophagy in yeast.
µLP can be induced by stressors including nitrogen or glucose
limitation, entry into stationary phase, lipid imbalance, and ER
stress. Although these conditions all induce µLP, two forms of
µLP occur at distinct LD-vacuole MCS and require distinct
factors that modulate vacuolar membrane dynamics,
invagination and scission (van Zutphen et al., 2014; Wang
et al., 2014; Vevea et al., 2015; Oku et al., 2017; Seo et al.,
2017; Tsuji et al., 2017; Garcia et al., 2021; Liao et al., 2021).
Below, we describe these two mechanisms of µLP at LD-vacuole
MCS in yeast and the role of specific proteins and lipids in that
process.

4.1.1 LD-Vacuole MCS at Lo Microdomains During
µLP in Yeast
In µLP induced by entry into stationary phase or nitrogen
starvation, LDs make contacts with the vacuole at liquid
ordered (Lo) microdomains in the vacuolar membrane (Tsuji
et al., 2017; Wang et al., 2014) (Figure 4II). Lo microdomains are
lipid raft-like regions that are enriched with sterols and have
distinct protein and lipid composition compared to the bulk of
the vacuolar membrane, which has been referred to as a liquid
disordered (Ld) domain. Transfer of sterols from LDs to vacuoles
at LD-vacuole MCS during Lo microdomain formation in
stationary-phase yeast cells (Wang et al., 2014) and
intravacuolar transfer of sterols to Lo microdomains by
Neiman-Pick proteins mediates formation of these
microdomains under multiple stress conditions (Tsuji et al.,
2017; Liao et al., 2021). These microdomains form in response
to various stresses including entry into stationary phase, nitrogen
or glucose starvation, osmotic stress, cycloheximide (CHX)-
mediated translation inhibition, weak acids, heat, and ER
stress induced by lipid imbalance, DTT, or TM (Toulmay and
Prinz, 2013; Liao et al., 2021). Thus, Lomicrodomain formation is
a general stress response (Figures 4I, II).

Moreover, vacuolar membrane proteins are enriched in and
excluded from vacuolar Lo microdomains. Vph1, a component of
vacuolar proton pump ATPase, is excluded from Lo
microdomains. In contrast, sterol transporters (LaM6/Ltn1 and
Nce102), TORC1 (target of rapamycin complex 1) subunits
(Tco89, Tor Complex I 89) and subunits or interactors of the
TORC1-regulating EGO/ragulator complex (Ivy1, Interacting
with Vps33 and Ypt7; Gtr1 and 2, GTP binding protein
resemblance 1 and 2; Iml1, increased minichromosome loss 1)
are enriched in Lo microdomains (Toulmay and Prinz, 2013;
Wang et al., 2014; Murley et al., 2015, 2017; Numrich et al., 2015;
Varlakhanova et al., 2018; Vaskovicova et al., 2020).

The mechanisms underlying LD MCS formation at Lo
microdomains and the vacuolar membrane dynamics and
invagination at those MCS during release of LDs into the
vacuolar lumen are not well understood. However, Ivy1 can
bind to Ypt7, the Rab7 GTPase of yeast, and requires Ypt7 for
localization to invaginations in the vacuolar membrane in
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response to nutrient limitation (Lazar et al., 2002; Numrich et al.,
2015). Moreover, as described below, Rab7 has been implicated in
LD-lysosome MCS formation in mammalian cells (Schroeder
et al., 2015). Thus, Ivy1 may contribute to µLP through effects on
MCS formation between LDs and Lo microdomains on the
vacuolar membrane. Interestingly, Ivy1 is also a phospholipid-
binding protein that contains a putative I-BAR domain, which
binds to and stabilizes membranes with negative membrane
curvature (Itoh et al., 2016). Therefore, Ivy1 may contribute to
the invagination of the vacuolar membrane at contact sites
between LDs and vacuolar membrane Lo microdomains
(Figure 4IV).

4.1.2 Lo Microdomain-Independent,
ESCRT-Dependent µLP in Yeast
µLP is induced by the diauxic shift from glycolysis to respiration-
driven metabolism during late log phase in yeast (Oku et al.,
2017). Moreover, in response to ER stress, LDs that contain
unfolded ER proteins are targeted for degradation by µLP (Vevea
et al., 2015; Garcia et al., 2021). Although many stressors induce
Lo microdomain formation in the vacuolar membrane, LDs do
not form MCS with the vacuole at Lo microdomains during µLP
induced by ER stressors or the diauxic shift in yeast. Rather, under
these conditions, LD-vacuole MCS form at Ld domains in the

vacuolar membrane that contain Vph1, which is excluded from
Lo microdomains (Vevea et al., 2015; Oku et al., 2017; Garcia
et al., 2021). In addition, ESCRT complex proteins are up-
regulated and recruited to sites of membrane scission at these
LD-vacuole MCS, and are required for Lo microdomain-
independent µLP in yeast (Vevea et al., 2015; Oku et al., 2017;
Garcia et al., 2021) (Figure 4I).

The mechanisms underlying LD-vacuole MCS formation
during ER stress-induced µLP are not well understood.
However, recent studies indicate that ER stressors induce
vacuolar fragmentation in yeast. Moreover, LDs develop
persistent interactions with clusters of fragmented vacuoles
during Lo microdomain-independent µLP, which supports
MCS between LDs and one or more vacuoles during this
process. The fragmented vacuoles fuse to form a cup-shaped
structure surrounding LDs, and then engulf the LDs. ER stress-
induced µLP is blocked by inhibition of this vacuolar fusion
(Garcia et al., 2021). Overall, these studies show that vacuolar
fragmentation, clustering and fusion around LDs occur during
stress-induced µLP, but ongoing studies are needed to determine
tmore of the components and regulators of the MCS involved in
µLP. Additionally, it has been discovered that the deletion of
Rab7, a protein implicated in LD-lysosome MCS, results in
accumulation of enlarged, clustered lysosomal compartments

FIGURE 4 | LD-Lysosome/Vacuole MCS. The four quadrants (I-IV) display the different types of LD-lysosome/vacuole MCS during microlipophagy (µLP, beige)
and chaperone-mediated autophagy (CMA, pink). (I, II) MCS between LD and the yeast vacuole form during µLP. (I) The ESCRT machinery is required for µLP under
DTT-, TM-, or lipid imbalance- induced ER stress and during diauxic shift. Ubiquitinated, unfolded proteins on LDs are engulfed by the vacuole for degradation. Small
amounts of Lo microdomains associated with the Ivy1 protein appear in cells under ER stress. However, LDs are not taken up through these Lo microdomains. (II)
Lo microdomain-dependent uptake of LDs is typical of cells in the stationary phase or under nitrogen starvation, and to some extent in cells under lipid imbalance. Ivy1-
containing Lo microdomains are widespread under these conditions. Inset, freeze-fracture EM showing Lo microdomains during stationary phase-induced µLP (image
from Tsuji et al. (2017) with permission, scale bar 0.2 µm). (III, IV) LD-lysosome MCS in mammalian cells are shown during µLP through partial (piecemeal) or whole-LD
uptake and CMA. (III) µLPmay occur via piecemeal uptake of a larger LD into the lysosome, or by wholesale uptake of smaller LDs into the lysosome. Inset, transmission
electron micrograph of rat primary hepatocytes treated with oleic acid to induce LD formation and serum-starved HBSS to induce LD autophagy (image from Schulze
et al. (2020) with permission, scale bar 1 µm). (IV) LD-associated proteins Plin2 and Plin3 are degraded via CMA in the lysosome. Hsc70 binds PLIN2 and PLIN3 and
delivers these LD-associated proteins to LAMP2A to be translocated from the lysosomal surface to the lumen for degradation.
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(MVBs) in mammalian cells (Schroeder et al., 2015), so it is
possible that the clustering and fusion of degradative
compartments is a conserved component of the µLP pathway.

4.2 LD-Lysosome MCS During
Microlipophagy (µLP) in Mammalian Cells
LD degradation by macroautophagy has been studied extensively
in mammalian cells. However, LD microautophagy (µLP) also
occurs in mammalian cells, as revealed in recent studies of
nutrient limitation in hepatocytes (Schulze et al., 2020). These
studies documented formation of MCS between LDs and
lysosomes, and uptake of LD segments or of intact LDs into
lysosomes at invaginations in the lysosome membrane.
Specifically, live-cell visualization of pH-sensing mRFP1-GFP
targeted to the LD marker protein PLIN2 revealed persistent
(>60 s) interactions between LDs and lysosomes and uptake of
LDs into the acidic lumen of the lysosome under nutrient-limited
conditions (Figure 4III). Interestingly, nutrient limitation
resulted in an increase in the frequency of persistent LD-
lysosome contacts. Moreover, silencing of canonical
macroautophagy or CMA components has no effect on
persistent LD-lysosome contacts, and EM studies revealed that
MCS formation between LDs and lysosomes occurs in the
absence of double-membrane, autophagosome-like structures.
These findings provide the first evidence that LD degradation
in response to nutrient limitations can occur by µLP in
mammalian cells (Schulze et al., 2020).

The mechanism underlying µLP in mammalian cells is not
well understood. However, emerging evidence supports a role for
Rab7, a small GTPase and important regulator of endocytic
trafficking, in LD-lysosome MCS formation in hepatocytes
(Schroeder et al., 2015). Specifically, nutrient limitations result
in recruitment of Rab7 to LDs, and an increase in MCS between
LDs and degradative compartments including lysosomes, MVBs
and late endosomes. Moreover, depletion of Rab7, or inactivating
mutation of Rab7, inhibits interactions of LDs and degradative
compartments and results in an accumulation of enlarged,
clustered MVBs and an overall inhibition of starvation-
induced LD degradation. This raises the interesting possibility
that Rab7 mediates contact site formation between LDs and
lysosomes directly, or by promoting MCS formation between
LDs and late endosomes/MVBs (amplisomes) and that late
endosomes/MVBs at these MCS mature to form lysosomes
(Schroeder et al., 2015). Interestingly, Rab7 has also been
implicated in LD activities that may affect LD MCS through
effects on vacuolar fusion or LD motility.

4.3 LD-Lysosome MCS During CMA in
Mammalian Cells
Although CMA typically targets soluble cytosolic proteins, the
LD-associated perilipin proteins PLIN2 and PLIN3 are
degraded by CMA at LD-lysosome MCS in cultured
mammalian cells. (Kaushik and Cuervo, 2015; 2016; 2018).
PLIN2 functions in LD biogenesis, stability and trafficking
and serves as a scaffold that regulates association of LDs with

the macroautophagy machinery (Tsai et al., 2017). PLIN3 also
regulates macroautophagy in a TORC1 (target of rapamycin 1)
-dependent manner (Garcia-Macia et al., 2021). Starvation-
induced CMA of PLIN2 and PLIN3 is mediated by the 70-
kD heat shock protein, hsc70, which binds to the pentapeptide
motifs LDRLQ on PLIN2 and SLKVQ on PLIN3, promotes
phosphorylation of PLIN2 by 5′ AMP-activated protein kinase
(AMPK), and delivers PLIN2 and PLIN3 to the lysosome-
associated membrane protein 2A (LAMP2A) (Kaushik and
Cuervo, 2015; 2016; 2018), the vacuolar membrane protein
that facilitates translocation of CMA substrates from the
lysosomal surface to the lumen (Chiang et al., 1989; Salvador
et al., 2000; Bandyopadhyay and Cuervo, 2008). Deletion of the
pentapeptide CMA recognition motif on PLIN2 results in an
increase in PLIN2 levels and a decrease in association of LDs
with lysosomes (Schweiger and Zechner, 2015). These findings
are consistent with the model that hsc70 binds to LD-associated
PLIN2 and that CMA of PLIN2 occurs at MCS between LD and
the lysosome (Figure 4IV).

CMA of PLIN2 and PLIN3 is triggered by stressors including
nutrient limitation, oxidative and lipogenic stresses, and hypoxia
(Cuervo et al., 1995; Kiffin et al., 2004; Dohi et al., 2012;
Rodriguez-Navarro et al., 2012; Kaushik and Cuervo, 2015),
and contributes to stressor-stimulated release of lipids from
LDs. Specifically, removal of PLIN2 and PLIN3 from the LD
surface promotes association of LDs with 1) cytosolic lipases (e.g.,
ATGL) that catalyze release of FA from TAG and 2) the LD
macroautophagy machinery. In turn, this promotes the release of
lipids from LDs after degradation by the lysosome (Kaushik and
Cuervo, 2015). These findings support a function of LD-lysosome
MCS, and a role for CMA in regulation of lipid homeostasis.

5 CYTOSKELETAL MODULATION OF
LD-ORGANELLE INTERACTIONS

As described above, environmental cues including nutrient
availability and exposure to stressors induce MCS formation
between LDs and organelles including mitochondria, ER and
lysosomes. The cytoskeleton plays a fundamental role in this
process by controlling the position and movement of LDs and
organelles that interact with LDs. For example, in response to
nutrient limitation, LDs change from clustered to a dispersed
distribution, which allows LDs to make contact with
mitochondria for up-regulation of lipid metabolism (Herms et al.,
2015; Nguyen et al., 2017; Kong et al., 2020). Although multiple
mechanisms have been identified for cytoskeletal control of organelle
motility, the best characterizedmechanism relies onmotormolecule-
driven, polarized movement of organelles along actin or microtubule
tracks. Here, we summarize cytoskeletal function in LD interactions
and contact site formation with other organelles.

5.1 Evidence of Cytoskeleton-Directed LD
Distribution and Motility
Cytoskeletal components and motors have been found on LDs in
a variety of organisms, including fungi, plants, and mammals.
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Proteomic analysis of LDs revealed actin, tubulin, and motor
proteins on LDs (Turró et al., 2006; Weibel et al., 2012; Brocard
et al., 2017; Pfisterer et al., 2017; Yu et al., 2017; Zhi et al., 2017;
Bersuker et al., 2018). In particular, a high-confidence LD
proteome generated from proximity labeling confirmed that
actin, tubulin, and a kinesin family protein, KIF16B, are
recovered with isolated LDs (Bersuker et al., 2018).
Additionally, immunofluorescence staining in rat
adrenocortical cells and adipocytes showed that beta-actin is
present on the LD surface (Fong et al., 2001).

The actin and microtubule cytoskeletal networks and their
associated motor proteins are involved in LD morphology and
distribution within the cell. For example, destabilization of the
actin cytoskeleton by treatment with either cytochalasin D
(CytD) or latrunculin-A decreases the size of LDs in J774
macrophages (Weibel et al., 2012). Destabilizing microtubules
by nocodazole treatment also decreases LD size (Boström
et al., 2005; van Zutphen et al., 2014; Gu et al., 2019).
Presumably, this change in size results from a change in the
balance between the addition and removal of LD cargo, which
occurs at specific MCS. Consistent with this idea, the position
and dynamics of LDs are also dependent on the cytoskeleton.
Destabilization of actin filaments prevents LD movement from
the vegetal pole to the animal pole in zebrafish embryos (Dutta
and Kumar Sinha, 2015). Post-translational modifications of
tubulin affect LD motility and distribution. For example,
during nutrient deficiency, detyrosinated tubulins
accumulate and form networks that promote LD dispersion
in Vero cells (Herms et al., 2015). In contrast, acetylated
tubulins immobilize LDs in hepatic cells (Groebner et al.,
2019).

Although these studies reveal that morphology and
distribution of LDs depend on the cytoskeleton, it is not

always clear whether the effects observed upon global
destabilization of microtubule or actin cytoskeletons are due to
direct effects on LD-cytoskeleton interactions. However, the
effects of disrupting motor proteins, which drive motility on
cytoskeletal tracks, are less ambiguous. Both the actin-based
motor myosin and the microtubule-based motors kinesin and
dynein drive LD distribution and motility (Figure 5) (Gross et al.,
2000; Andersson et al., 2006; Shubeita et al., 2008; Knoblach and
Rachubinski, 2015; Pfisterer et al., 2017; Rai et al., 2017; Gu et al.,
2019; Veerabagu et al., 2020).

In some cases, specific motor proteins that drive LD motility
have been identified. In budding yeast, anterograde movement of
LDs from mother cells to buds relies on a type V myosin, Myo2p
(Figure 5) (Knoblach and Rachubinski, 2015). During zebrafish
development, inhibiting Myosin-1 with pentachloropseudilin
alters the dynamics and distribution of LDs (Gupta et al.,
2017). Knockdown of non-muscle myosin IIa (NMIIa)
enlarges LDs and promotes their clustering in human
osteosarcoma U2OS cells (Pfisterer et al., 2017). Post-
translational modification of motor proteins also alters motor-
LD interactions. For example, ERK-mediated phosphorylation of
dynein increases its affinity for LDs (Andersson et al., 2006).
Motor knock-down studies are somewhat more specific than
drug-induced cytoskeletal disruption, but still may be subject to
pleiotropic effects because motor proteins are shared by multiple
cargos. A more specific approach is to target the cargo adaptor
proteins that bridge LDs and cytoskeletal/motor proteins,
although these adaptors are less well understood. One recently
identified adaptor is the LD protein perilipin 3 (PLIN3), which
interacts with the dynein intermediate chain subunit, Dync1i1, in
AML12 mouse hepatic cells (Figure 5) (Gu et al., 2019).
Identifying more of these LD-specific cargo adaptor proteins
will allow in-depth characterization of the biological function
of LD-cytoskeletal interaction.

5.2 Functional Consequences of
LD-Cytoskeleton Interactions
MCSs between LD and other organelles play an important role in
exchanging metabolites. Therefore, any change in the distribution
or dynamics of those sites can affect their function. Indeed, not
only the size, but also the lipid composition of LDs in J774
macrophages is changed by actin destabilization (Weibel et al.,
2012). Destabilization of the actin cytoskeleton reduces the
dissociation of LDs from peroxisomes in Arabidopsis (Cui
et al., 2016). Microtubules are required for LD autophagy
(Boström et al., 2005; van Zutphen et al., 2014; Gu et al.,
2019). Nocodazole-treated COS-7 cells have fewer contact sites
between LDs and mitochondria or peroxisomes, as well as fewer
ternary contacts between LDs, peroxisomes, and Golgi (Valm
et al., 2017).

LD-mitochondria interactions are crucial for mobilizing the
energy stored in LDs (Rambold et al., 2015). When nutrients are
depleted, Vero cells exhibit dispersion of LDs, and a concomitant
increase in LD-mitochondria contacts, consistent with the need
for lipid exchange and fatty acid metabolism. Starvation-induced
LD-mitochondria contacts include both relatively short-lived

FIGURE 5 | LD-cytoskeleton interaction. Lipid droplets are transported
on cytoskeletal fibers (actin filaments or microtubules) by cytoskeleton-
associated motor molecules (myosins, kinesins, and dyneins). In most cases
the adaptors linking motors to the LD surface are unknown.
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interactions (“touch and go”) and more stable connections
(Herms et al., 2015). Microtubules are required for formation
of these contacts (Valm et al., 2017), and the dispersion of LDs
from the perinuclear area to the cell periphery specifically
depends on detyrosinated microtubules. Detyrosination is
promoted by the activation of the energy sensor, AMP protein
kinase (AMPK) (Herms et al., 2015). AMPK also phosphorylates
PLIN3, which may induce conformational changes of PLIN3 to
facilitate LD dispersion (Zhu et al., 2019). Given the link between
PLIN3 and dynein and microtubules (Gu et al., 2019), the LD
dispersion caused by phosphorylated PLIN3 may be due to the
altered interaction between PLIN3 and dynein. Taken together,
LD-mitochondria interactions are elevated upon starvation, and
this response requires the microtubule network to shuttle LDs to
mitochondria and facilitate lipid metabolism in this system.

In another well-characterized system, microtubule-based motor
proteins on the surface of LDs stimulate lipid transfer to ER and
therefore facilitate lipoprotein assembly in liver cells (Rai et al.,
2017). In rat hepatocytes, LDs are actively transported by the motor
molecule kinesin-1 on microtubules to the cell periphery, which
promotes MCS formation between LDs and smooth endoplasmic
reticulum (sER) (Barak et al., 2013; Rai et al., 2017; Kumar et al.,
2019). Kinesin-1 is recruited to LDs by directly binding to
phosphatidic acid (PA) (Kumar et al., 2019). However, this
binding is dependent on the metabolic state of the cells. In
nutrient-rich conditions, the GTPase ADP ribosylation factor 1
(ARF1) recruits PA-producing phospholipase-D1 (PLD1) to LDs,
which results in elevation of PA levels on LDs, increased association
of kinesin-1 with LDs (Wilfling et al., 2014; Rai et al., 2017; Kumar
et al., 2019). These LDs are then actively transported to cell periphery
to formMCSwith sER, which facilitates TAGproduction in sER and
very low density lipoprotein (VLDL) assembly (Thiam et al., 2013;
Rai et al., 2017; Kumar et al., 2019). In contrast, in the fasted state,
insulin levels decrease, which downregulates the recruitment of
ARF1 to the LDs. This diminishes microtubule-dependent LD
movement and the formation of LD-sER MCSs at the periphery,
resulting in reduced TAG levels (Kumar et al., 2019).

Dynein andmicrotubules are also involved in LD biogenesis in
the alcohol-induced liver damage model (Gu et al., 2019). High-
alcohol diets induce accumulation of LDs and elevate the levels of
perilipins in liver cells, including the dynein-interacting protein
PLIN3. Moreover, immunofluorescence staining revealed that
Dync1i1 colocalizes with LDs, and PLIN3 and LDs are partially
colocalized with microtubules. Depolymerizing microtubules by
nocodazole or knocking down PLIN3 inhibits LD biogenesis from
LD-ER contact sites, which reduces the size and distribution of
LDs in AML12 cells.

The examples discussed above illustrate the importance of
cytoskeletal function in regulating interactions between LDs and
other organelles. Cellular modulation of the number and dynamics
of these MCS is vital for LD biogenesis, lipid secretion and
lipoprotein assembly.

6 CONCLUSION AND FUTURE
DIRECTIONS

MCS that form between LDs and organelles including
mitochondria, ER and lysosomes/vacuoles function in LD
biogenesis and in transfer of lipids, FAs, unfolded proteins
and surplus or toxic proteins to or from LDs. Moreover,
emerging evidence supports a role for the cytoskeleton
in formation of MCS between LDs and other organelles
by controlling the position and movement of LDs in
response to environmental cues. However, fundamental
questions regarding LD MCS remain unanswered. While
many tethers that link LDs to mitochondria under conditions
of nutrient limitations have been identified, the
mechanisms that regulate LD-mitochondria MCS formation
and loss are not well understood. Although LD-ER contact
sites have an established function in LD biogenesis, the
mechanism underlying scission of nascent LDs from ER
membranes at LD-ER MCS is not known. The finding that
LDs function in ER proteostasis through transfer of unfolded
proteins from ER to LDs at LD-ER MCS revealed a novel
function for LDs. However, it is not clear whether this
process is linked to LD biogenesis. Indeed, if mature LDs can
associate with LDs to remove unfolded proteins and mitigate
ER stress, the proteins serve as tethers at those LD-ER MCS
and mechanisms that promote those MCS remain unknown.
Moreover, the proteins that tether LDs to lysosomes/vacuoles;
how liquid ordered (Lo) and disordered (Ld) domains in
the vacuolar membrane contribute to MCS and vacuolar
membrane dynamics at those sites, and the mechanism
underlying Rab7 function in LD-lysosome/vacuole MCS
in mammalian cells and yeast during µLP are all open
questions. Finally, while it is clear that cytoskeleton-
dependent LD motility is critical for association of LDs
with other organelles in response to nutritional cues, the
cytoskeleton may contribute to MCS by other mechanisms
including force generation for membrane deformation or
scission or for transfer of constituents to and from LDs.
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