
sensors

Article

A Trajectory Collaboration Based Map Matching
Approach for Low-Sampling-Rate GPS Trajectories

Wentao Bian 1, Ge Cui 2,3,* and Xin Wang 1,3

1 School of Information Science and Technology, Northwest University, Xi’an 710127, China;
wtbian@stumail.nwu.edu.cn (W.B.); xcwang@ucalgary.ca (X.W.)

2 Intelligent Transportation Systems Research Center, Wuhan University of Technology, Wuhan 430070, China
3 Department of Geomatics Engineering, University of Calgary, Calgary, AB T2N1N4, Canada
* Correspondence: cuig@ucalgary.ca

Received: 10 February 2020; Accepted: 3 April 2020; Published: 6 April 2020
����������
�������

Abstract: GPS (Global Positioning System) trajectories with low sampling rates are prevalent in many
applications. However, current map matching methods do not perform well for low-sampling-rate
GPS trajectories due to the large uncertainty between consecutive GPS points. In this paper,
a collaborative map matching method (CMM) is proposed for low-sampling-rate GPS trajectories.
CMM processes GPS trajectories in batches. First, it groups similar GPS trajectories into clusters and
then supplements the missing information by resampling. A collaborative GPS trajectory is then
extracted for each cluster and matched to the road network, based on longest common subsequence
(LCSS) distance. Experiments are conducted on a real GPS trajectory dataset and a simulated GPS
trajectory dataset. The results show that the proposed CMM outperforms the baseline methods in
both, effectiveness and efficiency.

Keywords: map matching; low-sampling-rate GPS trajectories; trajectory collaboration; trajectory
clustering

1. Introduction

With the development of positioning technology, massive GPS trajectory data has been
continuously generated from vehicles such as cars, taxis and buses. A GPS trajectory is a sequence of
GPS points which records the spatial track of a moving object. As a GPS trajectory can deviate from its
actual location in the road network, caused by device malfunction, urban canyons and other positioning
errors, many map matching methods have been proposed to locate GPS trajectories onto road networks.
The core problem of map matching is the uncertainty issue of GPS trajectories, including the uncertain
path between consecutive GPS points, and this problem becomes more severe for low-sampling-rate
GPS trajectories.

At present, GPS trajectories with low sampling rates (the time interval between consecutive GPS
readings exceeds 1 min) are collected for many applications as this can conserve battery life and help
track vehicles for a long period. The current map matching algorithms are developed to determine
the correct path of low-sampling-rate GPS trajectories, based on various features, such as spatial [1,2],
temporal [2], speed constraint [3,4] and turning information [5]. However, these algorithms do not
perform well when sampling rates are very low, i.e., the sampling rate exceeds three or four minutes,
especially in a dense road network. Spatial features (e.g., distance similarity) and temporal features (e.g.,
speed similarity) [2,6] are sometimes ineffective in identifying the correct path between consecutive
GPS points, when they are far from each other. Figure 1 shows an example of the map matching process
based on spatial and temporal features. In the figure, point a (22.559◦ N, 114.067◦ E, 3:10:00 p.m.) and
point b (22.551◦ N, 114.079◦ E, 3:14:00 p.m.) are two consecutive GPS points of a low-sampling-rate

Sensors 2020, 20, 2057; doi:10.3390/s20072057 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
https://orcid.org/0000-0003-3569-2126
http://www.mdpi.com/1424-8220/20/7/2057?type=check_update&version=1
http://dx.doi.org/10.3390/s20072057
http://www.mdpi.com/journal/sensors

Sensors 2020, 20, 2057 2 of 22

trajectory. Two candidate paths (shown in blue and red) are identified with the lengths of 2.2 km and
2.8 km, and the average speeds moving along the two paths between a and b are 33 km/h and 42 km/h,
respectively. As shown in the figure, the speed limits of road segments on the blue path are (60 km/h,
60 km/h, 60 km/h and 60 km/h), and on the red path are (60 km/h, 70 km/h, 70 km/h and 60 km/h).
According to the spatial and temporal similarities of the ST-Matching algorithm [2], the blue path is
more likely to be the map matching result than the red path, since the length of the blue path is shorter
than that of the red path. Additionally, the cosine similarity value between average speed and the
speed limits of road segments on the blue path is larger than the cosine similarity value on the red path.
However, the red path is the actual path taken by the user. The example shows that using only spatial
and temporal features sometimes does not effectively reduce the large uncertainty and distinguish the
correct path for GPS trajectories with very low sampling rates.

Sensors 2020, 20, x FOR PEER REVIEW 2 of 22

3:10:00 pm) and point b (22.551ºN, 114.079ºE, 3:14:00 pm) are two consecutive GPS points of a low-
sampling-rate trajectory. Two candidate paths (shown in blue and red) are identified with the lengths
of 2.2 km and 2.8 km, and the average speeds moving along the two paths between a and b are 33
km/h and 42 km/h, respectively. As shown in the figure, the speed limits of road segments on the
blue path are (60 km/h, 60 km/h, 60 km/h and 60 km/h), and on the red path are (60 km/h, 70 km/h,
70 km/h and 60 km/h). According to the spatial and temporal similarities of the ST-Matching
algorithm [2], the blue path is more likely to be the map matching result than the red path, since the
length of the blue path is shorter than that of the red path. Additionally, the cosine similarity value
between average speed and the speed limits of road segments on the blue path is larger than the
cosine similarity value on the red path. However, the red path is the actual path taken by the user.
The example shows that using only spatial and temporal features sometimes does not effectively
reduce the large uncertainty and distinguish the correct path for GPS trajectories with very low
sampling rates.

Figure 1. Example of map matching result based on spatial and temporal model for a low-sampling-
rate GPS trajectory.

Other methods attempt to reduce the uncertainty of low-sampling-rate GPS trajectories with the
addition of historical high-sampling-rate GPS trajectories. For instance, historical high-sampling-rate
GPS trajectories are used to detect frequent path patterns, and the path of a low-sampling-rate GPS
trajectory is estimated based on the discovered patterns [7,8]. However, historical high-sampling-rate
GPS trajectories are not always available. Furthermore, the quality of these map matching methods
heavily relies on the effectiveness of the discovered patterns. With rapid road development or traffic
control, the frequent path patterns, discovered from historical GPS trajectory data, may not be
applicable for the current situation. Therefore, creating effective map matching for low-sampling-rate
GPS trajectories without auxiliary data continues to be a challenging problem.

This paper intends to solve the uncertainty issue of low-sampling-rate GPS trajectories through
trajectory collaboration. Similar low-sampling-rate GPS trajectories are aggregated into clusters, and
a collaborative GPS trajectory is then generated for map matching from each cluster with information
supplementation. However, this method presents several challenges.

First, an effective clustering algorithm for low-sampling-rate GPS trajectories is significant.
There are many methods of trajectory clustering, such as the partition and group method [9],
trajectory clustering with Fréchet distance [10] and clustering algorithm for network constraint
trajectories (NETSCAN) [11]. These algorithms are designed for different applications. For example,
the clustering algorithm in [9] is designed for flock or typhoon trajectories, but does not consider road
constraint in map matching. The clustering algorithms in [10,11] consider road constraint and

Figure 1. Example of map matching result based on spatial and temporal model for a low-sampling-rate
GPS trajectory.

Other methods attempt to reduce the uncertainty of low-sampling-rate GPS trajectories with the
addition of historical high-sampling-rate GPS trajectories. For instance, historical high-sampling-rate
GPS trajectories are used to detect frequent path patterns, and the path of a low-sampling-rate GPS
trajectory is estimated based on the discovered patterns [7,8]. However, historical high-sampling-rate
GPS trajectories are not always available. Furthermore, the quality of these map matching methods
heavily relies on the effectiveness of the discovered patterns. With rapid road development or
traffic control, the frequent path patterns, discovered from historical GPS trajectory data, may not be
applicable for the current situation. Therefore, creating effective map matching for low-sampling-rate
GPS trajectories without auxiliary data continues to be a challenging problem.

This paper intends to solve the uncertainty issue of low-sampling-rate GPS trajectories through
trajectory collaboration. Similar low-sampling-rate GPS trajectories are aggregated into clusters, and a
collaborative GPS trajectory is then generated for map matching from each cluster with information
supplementation. However, this method presents several challenges.

First, an effective clustering algorithm for low-sampling-rate GPS trajectories is significant. There
are many methods of trajectory clustering, such as the partition and group method [9], trajectory
clustering with Fréchet distance [10] and clustering algorithm for network constraint trajectories
(NETSCAN) [11]. These algorithms are designed for different applications. For example, the clustering
algorithm in [9] is designed for flock or typhoon trajectories, but does not consider road constraint
in map matching. The clustering algorithms in [10,11] consider road constraint and calculate the
geometric similarity between GPS points, but they are not applicable for low-sampling-rate trajectories.

Sensors 2020, 20, 2057 3 of 22

The reason for this is that the distance between consecutive GPS points is large (maybe larger than
500 m) in low-sampling-rate GPS trajectories, so that the geometric similarity between trajectories
would be small, even on the same path. Exploring an effective method of clustering low-sampling-rate
GPS trajectories is worth studying.

Second, extracting useful information from a group of similar GPS trajectories to reduce the path
uncertainty issue is required. After trajectory clustering, low-sampling-rate GPS trajectories in each
cluster are still separated from each other and are not collaborated for map matching. An issue remains
understanding how to use a group of similar GPS trajectories to reduce uncertainty by trajectory
collaboration and further benefit map matching.

In this paper, a collaborative map matching algorithm called CMM is proposed to address
low-sampling-rate GPS trajectories. CMM processes a group of similar GPS trajectories together, rather
than as individual trajectories, which makes map matching more efficient. In the preprocessing step,
CMM removes outliers from low-sampling-rate GPS trajectories. Spatial indices, including an R-tree
and a Path-Forest, are built to facilitate candidate path search. Then, a DBSCAN (Density-Based
Spatial Clustering of Applications with Noise) algorithm is extended to cluster GPS trajectories into
different groups, based on path similarity instead of geometric similarity. Path similarity is designed
for similarity measurement between low-sampling-rate GPS trajectories by comparing their candidate
paths. Next, a resampling method is applied to generate a new collaborative GPS trajectory from each
trajectory cluster. Finally, the generated collaborative GPS trajectory is matched to the path candidate
with the highest LCSS (Longest Common Subsequence) similarity.

The specific contributions of this research are highlighted below:

1. This paper proposes a collaborative map matching algorithm called CMM to address
low-sampling-rate GPS trajectories based on trajectory clustering and resampling. CMM does
not rely on any additional information, such as historical high-sampling-rate GPS trajectories or
traffic flow information.

2. DBSCAN clustering algorithm is extended to aggregate similar low-sampling-rate GPS trajectories
together, based on path similarity, which can effectively decrease the negative impact of geometric
similarity on clustering of low-sampling-rate GPS trajectories.

3. A resampling method, based on a sliding window, is proposed to generate a new collaborative
GPS trajectory from each trajectory cluster. The generated collaborative GPS trajectory integrates
the collective information of similar low-sampling-rate GPS trajectories.

4. Experiments have been conducted based on a simulated GPS trajectory dataset, and the results
show that the proposed CMM algorithm outperforms the baseline methods in both, effectiveness
and efficiency.

This paper is organized as follows: Section 2 introduces related works on map matching. Section 3
provides a detailed discussion on the proposed CMM algorithm. Section 4 discusses experiments
based on both a real and a simulated GPS trajectory dataset. Section 5 presents the conclusions and
discusses future works resulting from this research.

2. Related Work

2.1. Map Matching Problem

Map matching for low-sampling-rate GPS trajectories is an active research area, and different
algorithms have been proposed. Lou et al. [2] proposed the ST-Matching algorithm for
low-sampling-rate GPS trajectories, based on spatial-temporal analysis. The algorithm calculates
observation probability, based on distance between GPS point and road segment, transition probability
based on distance similarity and speed similarity. Then, a sequence of road segments, with the highest
score, is identified as the map matching result. However, it is not reliable for filtering out incorrect
candidate paths and determining the correct path, based on spatial and temporal information when the

Sensors 2020, 20, 2057 4 of 22

sampling rate exceeds 5 min. Hsueh et al. [3] extended the ST-Matching algorithm to STD-Matching
algorithm by considering real-time direction of the GPS reading. The advantage of STD-Matching is
that it can effectively filter out road segments with the wrong direction, which improves map matching
accuracy, but it still confronts the same issue with STD-Matching when the sampling rate is very low.
Quddus et al. [1] proposed a map matching method, based on weight-based shortest path, called
stMM. Four different weights are assigned to each of the candidate links, including: (1) weight for
perpendicular distance, (2) weight for bearing difference, (3) weight for shortest-path distance and
(4) weight for heading difference. Then, the minimum weight path is calculated as the map matching
result. Liu et al. [4] proposed a spatial and temporal conditional random field (ST-CRF) algorithm and
considered consistency of driving direction. This algorithm calculates emission probability based on
distance between GPS point and candidate point, transition probability by five influencing factors:
(1) Distance between GPS point and candidate point, (2) shortest path distance and Euclidean distance
between two GPS points, (3) average speed and speed constraint of road segment, (4) middle-point
spatial distribution, and (5) driving direction. Dynamic programming was used to obtain the maximum
probability path. Yin et al. [5] used length of the candidate route and road turning angle to estimate
cost of the candidate route. Then, the authors computed the likelihood of a candidate path based
on its cost and determined the path with the highest likelihood as the map matching result. In [1,5],
they ignored vehicle speed and speed constraint of road segment, which may cause the final selected
path to be unreachable under speed constraint. The above algorithms use a variety of features to handle
map matching for low-sampling-rate GPS trajectories. Spatiotemporal features, including distance
similarity, speed similarity and direction similarity, are used to filter out unreasonable candidate paths,
reduce computation time and improve accuracy. However, when the sampling rate becomes very
low, the uncertainty between consecutive GPS points becomes much larger, so it is very difficult to
determine the correct path relying only on these features.

Some other map matching methods take advantage of historical GPS trajectories with high
sampling rates. Kai et al. [7] developed a map matching method, called HRIS (History-based Route
Inference System). Historical high-sampling-rate GPS trajectories were first located on a road network
to obtain historical routes with existing map matching techniques. Then, the low-sampling-rate
trajectories were partitioned into a sequence of consecutive GPS location pairs, searched historical
GPS trajectories through location pairs and popular routes were calculated between two locations.
Next, HRIS connected consecutive local routes, based on a scoring function, which considered both the
popularity of local routes and the confidence for connecting them. Finally, a dynamic programming
algorithm was designed to calculate a global route with the highest score. Huang et al. [8] proposed
a method to solve map matching for a low-sampling-rate GPS trajectory by mining frequent path
patterns from historical high-sampling-rate GPS trajectories. This method performs a conventional
map matching algorithm to obtain the paths of historical high-sampling-rate GPS trajectories. Next,
the paths (and sub-paths) and their frequencies are stored in an FP (Frequent Pattern)-Forest index.
Finally, the maximum probability path is calculated for a low-sampling-rate GPS trajectory based on
the discovered frequent paths. The algorithms [7,8] above use additional historical high-sampling-rate
GPS trajectory data to obtain frequent paths between any two locations in the road network because
third-party historical GPS trajectory data can compensate for the uncertainty between consecutive GPS
points with low sampling rates. However, these algorithms are susceptible to the quality of historical
trajectory data, and drivers may not follow the frequent paths with rapid change of traffic conditions.

2.2. Trajectory Clustering Problem

Lee et al. [9] proposed a clustering algorithm for GPS trajectories. This algorithm partitioned
the trajectory into sub-trajectories based on minimum description length (MDL) and computed
perpendicular, parallel and angle distances to measure similarity between sub-trajectories. Smaller
distance means higher similarity between sub-trajectories. Finally, it clustered the sub-trajectories based
on DBSCAN algorithm [12]. Although the algorithm is efficient, it is only suitable for trajectory data

Sensors 2020, 20, 2057 5 of 22

without road constraints, such as hurricane movement trajectories and animal migration trajectories.
Buchin et al. [10] also divided GPS trajectories into sub-trajectories. They measured the similarities based
on Fréchet distance [13] and the discrete Fréchet distance between GPS sub-trajectories, respectively.
However, computation cost for Fréchet distance is expensive. Additionally, this algorithm was designed
for clustering GPS trajectories to detect commuting patterns in urban road networks, and it cannot
be used for map matching. Kharrat et al. [11] proposed a trajectory clustering algorithm with road
network constraint. This algorithm first computes the number of moving objects transiting from one
road section to another, based on historical GPS trajectories. Next, it searches the densest road sections
and utilizes them to generate dense paths on the road network. Last, it classifies the trajectories of
moving objects into these dense paths. However, the performance of this algorithm relies on the traffic
pattern discovered from additional trajectory datasets, and the movement of vehicles may not follow
the discovered traffic pattern with the rapid development of road systems. None of these trajectory
clustering methods work for map matching based on trajectory collaboration.

Many algorithms have been proposed to measure the similarity between GPS trajectories, which
would be useful for trajectory clustering. For example, Mariescu-Istodor and Fränti [14] proposed a
grid-based method to compute four different route measures - novelty, noteworthiness, similarity and
inclusion. For similarity measurement, they first transformed route into cell representation and then
utilized the Jaccard Index to measure the amount of similarity.

3. Methodology

3.1. Preliminaries

• Definition 1. Road network.

A road network is a directed graph, G = (V, E), where V is a set of vertices representing the
terminal points of road segments, and E is a set of directed edges representing the road segments.
Vertex vi ∈ V is a terminal point of road segments. Edge ei ∈ E is a road segment with a starting point
e j.start and an end point e j.end, where e j.start ∈ V and e j.end ∈ V.

• Definition 2. Path.

A path is a sequence of consecutive road segments, denoted as path = {e1, e2, · · · , em}, where ei is a
road segment with speed constraint and ei.end = ei+1.start(1 ≤ i ≤ m). The first and last vertex of path
is denoted as path. f irst and path.last, and path. f irst = e1.start and path.last = em.end.

Figure 2 gives an example of two paths. In Figure 2, two paths, path1 and path2, can be constructed
by three road segments e1, e2 and e3. To be more specific, path1 = {e1, e2}, and path2 = {e1, e3}. In Figure 2,
path1. f irst = v1 and path1.last = v4.

Sensors 2020, 20, x FOR PEER REVIEW 5 of 22

data without road constraints, such as hurricane movement trajectories and animal migration
trajectories. Buchin et al. [10] also divided GPS trajectories into sub-trajectories. They measured the
similarities based on Fréchet distance [13] and the discrete Fréchet distance between GPS sub-
trajectories, respectively. However, computation cost for Fréchet distance is expensive. Additionally,
this algorithm was designed for clustering GPS trajectories to detect commuting patterns in urban
road networks, and it cannot be used for map matching. Kharrat et al. [11] proposed a trajectory
clustering algorithm with road network constraint. This algorithm first computes the number of
moving objects transiting from one road section to another, based on historical GPS trajectories. Next,
it searches the densest road sections and utilizes them to generate dense paths on the road network.
Last, it classifies the trajectories of moving objects into these dense paths. However, the performance
of this algorithm relies on the traffic pattern discovered from additional trajectory datasets, and the
movement of vehicles may not follow the discovered traffic pattern with the rapid development of
road systems. None of these trajectory clustering methods work for map matching based on trajectory
collaboration.

Many algorithms have been proposed to measure the similarity between GPS trajectories, which
would be useful for trajectory clustering. For example, Mariescu-Istodor and Fränti [14] proposed a
grid-based method to compute four different route measures - novelty, noteworthiness, similarity
and inclusion. For similarity measurement, they first transformed route into cell representation and
then utilized the Jaccard Index to measure the amount of similarity.

3. Methodology

3.1. Preliminaries

• Definition 1. Road network.
A road network is a directed graph, 𝐺 = (𝑉, 𝐸), where 𝑉 is a set of vertices representing the

terminal points of road segments, and 𝐸 is a set of directed edges representing the road segments.
Vertex 𝑣௜ ∈ 𝑉 is a terminal point of road segments. Edge 𝑒௜ ∈ 𝐸 is a road segment with a starting
point 𝑒௝. 𝑠𝑡𝑎𝑟𝑡 and an end point 𝑒௝. 𝑒𝑛𝑑, where 𝑒௝. 𝑠𝑡𝑎𝑟𝑡 ∈ 𝑉 and 𝑒௝. 𝑒𝑛𝑑 ∈ 𝑉.

• Definition 2. Path.
A path is a sequence of consecutive road segments, denoted as 𝑝𝑎𝑡ℎ = {𝑒ଵ, 𝑒ଶ, ⋯ , 𝑒௠}, where 𝑒௜

is a road segment with speed constraint and 𝑒௜. 𝑒𝑛𝑑 = 𝑒௜ାଵ. 𝑠𝑡𝑎𝑟𝑡(1 ≤ 𝑖 ≤ 𝑚). The first and last vertex
of 𝑝𝑎𝑡ℎ is denoted as 𝑝𝑎𝑡ℎ. 𝑓𝑖𝑟𝑠𝑡 and 𝑝𝑎𝑡ℎ. 𝑙𝑎𝑠𝑡 , and 𝑝𝑎𝑡ℎ. 𝑓𝑖𝑟𝑠𝑡 = 𝑒ଵ. 𝑠𝑡𝑎𝑟𝑡 and 𝑝𝑎𝑡ℎ. 𝑙𝑎𝑠𝑡 =𝑒௠. 𝑒𝑛𝑑.

Figure 2 gives an example of two 𝑝𝑎𝑡ℎ𝑠. In Figure 2, two 𝑝𝑎𝑡ℎ𝑠, 𝑝𝑎𝑡ℎଵ and 𝑝𝑎𝑡ℎଶ , can be
constructed by three road segments 𝑒ଵ, 𝑒ଶ and 𝑒ଷ. To be more specific, 𝑝𝑎𝑡ℎଵ = {𝑒ଵ, 𝑒ଶ}, and 𝑝𝑎𝑡ℎଶ ={𝑒ଵ, 𝑒ଷ}. In Figure 2, 𝑝𝑎𝑡ℎଵ. 𝑓𝑖𝑟𝑠𝑡 = 𝑣ଵ and 𝑝𝑎𝑡ℎଵ. 𝑙𝑎𝑠𝑡 = 𝑣ସ.

Figure 2. Example of Path.

• Definition 3. GPS point.
A GPS point 𝑝 is a 4-tuple denoted as: 𝑝 = (𝑡, 𝑙𝑎𝑡, 𝑙𝑛𝑔, 𝑑𝑖𝑟) where 𝑡 is the timestamp of the GPS

point, and 𝑙𝑎𝑡, 𝑙𝑛𝑔 and 𝑑𝑖𝑟 are the latitude, longitude and direction of the location of the GPS point
at time 𝑡.

Figure 2. Example of Path.

• Definition 3. GPS point.

A GPS point p is a 4-tuple denoted as: p = (t, lat, lng, dir) where t is the timestamp of the GPS
point, and lat, lng and dir are the latitude, longitude and direction of the location of the GPS point at
time t.

Sensors 2020, 20, 2057 6 of 22

• Definition 4. GPS trajectory.

A GPS trajectory is a sequence of GPS points tr j =
{
p1, p2, · · · , pm

}
where, pi.t− pi−1.t > 0, 1 ≤ i ≤ m.

The map matching problem can be represented as follows: given a set of low-sampling-rate GPS
trajectories, S, for each GPS trajectory tr j ∈ S, this paper aims to locate tr j onto the road network so
that the path path of tr j can be obtained.

3.2. Overview of Collaborative Map Matching

In this paper, a collaborative map matching (CMM) algorithm is proposed to handle
low-sampling-rate GPS trajectories. Figure 3 shows the framework of the CMM algorithm, which can
be divided into three steps. The first is data preprocessing, where outliers are removed from GPS
trajectories. To speed up the query operations on road segments and paths, an R-tree spatial index
is built for road segment query, and a Path-Forest index is built to store paths in the road network.
In the second step, k shortest distance paths [15] are first calculated out as candidate paths for each
GPS trajectory. Then, the similarity between GPS trajectories is measured based on path similarity,
and the DBSCAN algorithm is extended to cluster GPS trajectories. Next, a collaborative GPS trajectory
with a high sampling rate is generated by resampling of a group of similar low-sampling-rate GPS
trajectories in each cluster. In the last step, the LCSS similarity between the generated collaborative
GPS trajectory and its candidate paths is calculated, and the path with the largest similarity is taken as
the map matching result for all trajectories in the cluster. Each step will be discussed in detail.

Sensors 2020, 20, x FOR PEER REVIEW 6 of 22

• Definition 4. GPS trajectory.
A GPS trajectory is a sequence of GPS points 𝑡𝑟𝑗 = {𝑝ଵ, 𝑝ଶ, ⋯ , 𝑝௠} where, 𝑝௜. 𝑡 − 𝑝௜ିଵ. 𝑡 ൐ 0, 1 ≤𝑖 ≤ 𝑚.
The map matching problem can be represented as follows: given a set of low-sampling-rate GPS

trajectories, 𝑆, for each GPS trajectory 𝑡𝑟𝑗 ∈ 𝑆, this paper aims to locate 𝑡𝑟𝑗 onto the road network
so that the path 𝑝𝑎𝑡ℎ of 𝑡𝑟𝑗 can be obtained.

3.2. Overview of Collaborative Map Matching

In this paper, a collaborative map matching (CMM) algorithm is proposed to handle low-
sampling-rate GPS trajectories. Figure 3 shows the framework of the CMM algorithm, which can be
divided into three steps. The first is data preprocessing, where outliers are removed from GPS
trajectories. To speed up the query operations on road segments and paths, an R-tree spatial index is
built for road segment query, and a Path-Forest index is built to store paths in the road network. In
the second step, 𝑘 shortest distance paths [15] are first calculated out as candidate paths for each
GPS trajectory. Then, the similarity between GPS trajectories is measured based on path similarity,
and the DBSCAN algorithm is extended to cluster GPS trajectories. Next, a collaborative GPS
trajectory with a high sampling rate is generated by resampling of a group of similar low-sampling-
rate GPS trajectories in each cluster. In the last step, the LCSS similarity between the generated
collaborative GPS trajectory and its candidate paths is calculated, and the path with the largest
similarity is taken as the map matching result for all trajectories in the cluster. Each step will be
discussed in detail.

Figure 3. The framework of CMM algorithm.

3.3. Preprocessing

Data preprocessing is an important part of the proposed CMM algorithm. The first task is
removing the outlier. If the difference between a GPS point and its nearest road segment exceeds the
corresponding thresholds (including distance and direction), the GPS point will be taken as an outlier
and removed. Second, an R-tree is built on road segments to facilitate the road segment query through
spatial proximity. Finally, a Path-Forest index (Path-Forest) is built to store all paths between two
road segments where path length is smaller than threshold 𝑙∆, which could improve the efficiency of
candidate route search in the road network. The Path-Forest is similar to the FP-Forest in [8], the
difference being that FP-Forest is designed to store frequent paths (sub-paths) and their frequencies
and Path-Forest is utilized to store all paths between any two road edges with length under 𝑙∆. In a
Path-Forest, each road segment in the road network will be taken as the root of a tree and the paths
sourcing from the road segment will be stored in the tree. Each tree is associated with a hash table,
where the key is the road segment ID and the value is a list storing the sequence of the corresponding
road segments in the paths.

It is efficient to retrieve all paths between two road segments in a Path-Forest. Figure 4 shows
an example of path query from road segment 𝑒ଵ to 𝑒଺. First, the tree with root 𝑒ଵ and its associated
hash table is searched out. In the hash table, the list pointing to 𝑒଺ will be identified. For each element

Figure 3. The framework of CMM algorithm.

3.3. Preprocessing

Data preprocessing is an important part of the proposed CMM algorithm. The first task is
removing the outlier. If the difference between a GPS point and its nearest road segment exceeds the
corresponding thresholds (including distance and direction), the GPS point will be taken as an outlier
and removed. Second, an R-tree is built on road segments to facilitate the road segment query through
spatial proximity. Finally, a Path-Forest index (Path-Forest) is built to store all paths between two
road segments where path length is smaller than threshold l∆, which could improve the efficiency
of candidate route search in the road network. The Path-Forest is similar to the FP-Forest in [8],
the difference being that FP-Forest is designed to store frequent paths (sub-paths) and their frequencies
and Path-Forest is utilized to store all paths between any two road edges with length under l∆. In a
Path-Forest, each road segment in the road network will be taken as the root of a tree and the paths
sourcing from the road segment will be stored in the tree. Each tree is associated with a hash table,
where the key is the road segment ID and the value is a list storing the sequence of the corresponding
road segments in the paths.

It is efficient to retrieve all paths between two road segments in a Path-Forest. Figure 4 shows an
example of path query from road segment e1 to e6. First, the tree with root e1 and its associated hash
table is searched out. In the hash table, the list pointing to e6 will be identified. For each element in the

Sensors 2020, 20, 2057 7 of 22

list, the path from e1 to e6 will be obtained by tracing back, starting from e6 in the tree. Thus, two paths
from e1 to e6 will be searched out as {e1, e2, e4, e6} and {e1, e3, e5, e6}.

Sensors 2020, 20, x FOR PEER REVIEW 7 of 22

in the list, the path from 𝑒ଵ to 𝑒଺ will be obtained by tracing back, starting from 𝑒଺ in the tree. Thus,
two paths from 𝑒ଵ to 𝑒଺ will be searched out as {𝑒ଵ, 𝑒ଶ, 𝑒ସ, 𝑒଺} and {𝑒ଵ, 𝑒ଷ, 𝑒ହ, 𝑒଺}.

Figure 4. The Path-Forest.

3.4. Trajectory Clustering with Path Similarity

In this section, DBSCAN algorithm with path similarity is utilized for clustering low-sampling-
rate GPS trajectories. The candidate paths are searched out for each low-sampling-rate GPS trajectory,
and the similarity between GPS trajectories is measured based on the candidate paths.

3.4.1. Candidate Path Search

Given a search radius 𝑟, the candidate road segments for each GPS point can be queried out
from an R-tree, and the paths to connect the candidate road segments of consecutive GPS points can
be searched out from the Path-Forest. Unreasonable candidate paths should be pruned. In this paper,
the candidate path pruning is implemented, based on a heading threshold 𝛽 and an estimated
temporal threshold, σ. The candidate path search with pruning method can be divided into two
parts: candidate road segment query for each GPS point and path search in the Path-Forest with
speed constraint.

1. Candidate Road Segment Query. When querying the surrounding road segments of a GPS
point with radius, 𝑟(set as 100 m) in the R-tree, if the heading difference between a candidate
road segment and the direction of the GPS point exceeds threshold 𝛽(set as 60◦), the road
segment will be dismissed from the query. Thus, candidate road segments with a similar
direction for the GPS points could be searched.

2. Path Search. A complete candidate path of a GPS trajectory connects the candidate road
segments from the first GPS point to the last GPS point, so it must search paths by connecting
the candidate road segments of consecutive GPS points. However, the number of candidate
paths for a GPS trajectory would be substantial in a road network. Thus, time constraint 𝜎 is
calculated and used to filter out unreasonable paths and facilitate path search,

𝜎 = ෍ 𝑒௞. 𝑙𝑒𝑛𝑔𝑡ℎ𝑒௞. 𝑠𝑝𝑒𝑒𝑑𝑙𝑖𝑚𝑖𝑡௠
௞ୀଵ (1)

where 𝜎 is the calculated time threshold from GPS point 𝑝௜ିଵ to the next point 𝑝௜, and 𝑒௞ is a road
segment on the candidate path from 𝑝௜ିଵ to 𝑝௜. Additionally, 𝑒௞. 𝑠𝑝𝑒𝑒𝑑𝑙𝑖𝑚𝑖𝑡 is the maximum speed
allowed on 𝑒௞. Hence, threshold σ stands for the minimum time required to travel from 𝑝௜ିଵ to 𝑝௜.
If the time interval 𝑡௜ିଵ→௜ between 𝑝௜ିଵ and 𝑝௜ in Equation (2) is smaller than threshold 𝜎, the path
is considered unreasonable and is pruned. 𝑡௜ିଵ→௜ = 𝑝௜. 𝑡 − 𝑝௜ିଵ. 𝑡 (2)

Algorithm 1 : Candidate Path Search (CPS)

Figure 4. The Path-Forest.

3.4. Trajectory Clustering with Path Similarity

In this section, DBSCAN algorithm with path similarity is utilized for clustering low-sampling-rate
GPS trajectories. The candidate paths are searched out for each low-sampling-rate GPS trajectory,
and the similarity between GPS trajectories is measured based on the candidate paths.

3.4.1. Candidate Path Search

Given a search radius r, the candidate road segments for each GPS point can be queried out from
an R-tree, and the paths to connect the candidate road segments of consecutive GPS points can be
searched out from the Path-Forest. Unreasonable candidate paths should be pruned. In this paper,
the candidate path pruning is implemented, based on a heading threshold β and an estimated temporal
threshold, σ. The candidate path search with pruning method can be divided into two parts: candidate
road segment query for each GPS point and path search in the Path-Forest with speed constraint.

1. Candidate Road Segment Query. When querying the surrounding road segments of a GPS point
with radius, r(set as 100 m) in the R-tree, if the heading difference between a candidate road
segment and the direction of the GPS point exceeds threshold β(set as 60◦), the road segment will
be dismissed from the query. Thus, candidate road segments with a similar direction for the GPS
points could be searched.

2. Path Search. A complete candidate path of a GPS trajectory connects the candidate road segments
from the first GPS point to the last GPS point, so it must search paths by connecting the candidate
road segments of consecutive GPS points. However, the number of candidate paths for a GPS
trajectory would be substantial in a road network. Thus, time constraint σ is calculated and used
to filter out unreasonable paths and facilitate path search,

σ =
m∑

k=1

ek.length
ek.speedlimit

(1)

where σ is the calculated time threshold from GPS point pi−1 to the next point pi, and ek is a road
segment on the candidate path from pi−1 to pi. Additionally, ek.speedlimit is the maximum speed
allowed on ek. Hence, threshold σ stands for the minimum time required to travel from pi−1 to pi.
If the time interval ti−1→i between pi−1 and pi in Equation (2) is smaller than threshold σ, the path is
considered unreasonable and is pruned.

ti−1→i = pi.t− pi−1.t (2)

Sensors 2020, 20, 2057 8 of 22

Given a GPS trajectory tr j =
{
p1, p2, · · · , pm

}
, the pseudo-code of CPS is shown in Algorithm 1.

The algorithm can be divided into two parts. The first part is candidate road segment query with
radius r for each GPS point in lines 1–3. The set CEi is the set of candidate road segments of the GPS
point pi in GPS trajectory tr j. The second part is path search by connecting candidate road segments in
lines 4–15. Path is the set of candidate road segment sequences for tr j. As the algorithm starts from the
candidate road segments of the first GPS point, in line 4, each candidate road segment in CE1 is taken as
a path and added into Path. From lines 5–15, the algorithm utilizes the Path-Forest to search candidate
paths paths from pi−1 to pi, removing unreasonable paths through pruning and adding them into the
candidate path set Path′. Last, the previous candidate paths in Path are connected to the current paths
in Path′, and Path is updated with the result of connection.

Algorithm 1: Candidate Path Search (CPS)

Input: GPS trajectory tr j =
{
p1, p2, · · · , pm

}
; the set of edges in road network E; search radius r; heading change

threshold β;
Output: a set of Path =

{
path1, path2, · · · , pathn

}
1. for (i = 1; i ≤ m; i ++)
2. CEi ← CandidateRoadSegmentQuery(pi,E,r,β)
3. end for
4. Path← CE1

5. for (i = 2; i ≤ m; i ++)
6. Path′ ← ∅ ;
7. foreach (p in Path)
8. foreach (ce in CEi)
9. σ←

∑m
k=1 ek.length/ek.speedlimit

10. paths← PathForestQuery(p.lastedge,ce,σ);
11. Path′ ← paths ;
12. end foreach
13. end foreach
14. Path← PathConnect(Path, Path′); ;
15. end for

3.4.2. Trajectory Clustering

In order to supplement the missing information of low-sampling-rate GPS trajectories, similar
GPS trajectories are clustered together. In this paper, the DBSCAN clustering method is extended for
low-sampling-rate GPS trajectory clustering, based on path similarity instead of geometric similarity,
as geometric similarity does not perform well for similarity measurements between low-sampling-rate
GPS trajectories. The path similarity method measures similarity between low-sampling-rate GPS
trajectories by comparing their candidate paths based on the Jaccard dissimilarity index. As the
number of potential candidate paths for a GPS trajectory would be overwhelming, the k candidate
paths with the shortest distance for each GPS trajectory are selected as candidate paths for path
similarity measurement.

The Jaccard dissimilarity index d(tr j1, tr j2) between two GPS trajectories tr j1 and tr j2 is calculated
based on the ratio of candidate paths whose dissimilarity is smaller than εp to the total number of path
combinations between two candidate sets. The calculation of d(tr j1, tr j2) is shown in Equation (3).

d(tr j1, tr j2) = 1−

∣∣∣π(tr j1) ∩ π(tr j2)
∣∣∣∣∣∣π(tr j1) ∪ π(tr j2)
∣∣∣ (3)

∣∣∣π(tr j1) ∩ π(tr j2)
∣∣∣ = {

d
(
pathi, path j

)〈
εp

∣∣∣ pathi ∈ π(tr j1), path j ∈ π(tr j2)
}
.count∣∣∣π(tr j1) ∪ π(tr j2)

∣∣∣ = π(tr j1).count ∗ π(tr j2).count

Sensors 2020, 20, 2057 9 of 22

where π(tr j) denotes the set of candidate paths of the GPS trajectory tr j,
∣∣∣π(tr j1) ∩ π(tr j2)

∣∣∣ is the
intersection of the candidate path sets of two trajectories and is composed of paths whose dissimilarity
is smaller than εp.

∣∣∣π(tr j1) ∪ π(tr j2)
∣∣∣ is the union of the two candidate path sets and is composed of all

combinations between the candidate paths of the two trajectories.
The dissimilarity between two paths pathi and path j is defined in Equation (4).

d
(
pathi, path j

)
= 1−

2× sim1× sim2
sim1 + sim2

(4)

sim1 =
LCSS

(
pathi, path j

)
.count

pathi.count
, sim2 =

LCSS
(
pathi, path j

)
.count

path j.count

where LCSS(path1, path2) is the longest common subsequence [16] between two paths, and it calculates
the number of common road segments in the two paths. For example, given two paths, path1 =

{e1, e2, e3, e4, e5} and path2 = {e1, e3, e4, e6}, the value LCSS(path1, path2) = {e1, e3, e4}, path1.count =

5, path2.count = 4.
DBSCAN identifies clusters for spatial data based on density and requires two parameters:

ε describing the maximum distance of a neighborhood, and MinPts describing the minimum number of
points required to form a dense neighborhood. In this paper, the parameter ε is considered in two aspects,
the maximum distance difference εl between endpoints of trajectories, and the maximum dissimilarity
εs between two GPS trajectories based on path similarity. Thus, if the OD (origin-destination) pairs of
GPS trajectories are distant from each other, they will be aggregated into different clusters.

The neighboring trajectories of each low-sampling-rate GPS trajectory could be obtained by
Algorithm 2. As R-tree and Path-Forest have been built for GPS trajectories, it is efficient to retrieve the
candidate paths around this trajectory (line 2). The dissimilarity measurement will filter out the GPS
trajectories in which distance between endpoints is larger than threshold εl, and dissimilarity between
two GPS trajectories is larger than threshold εs.

Algorithm 2: Neighbor Query in DBSCAN

Input: a set of GPS trajectory tr j =
{
p1, p2, · · · , pm

}
, parameters εl, εs

Output: a set of tr js =
{
tr j1, tr j2, · · · , tr jn

}
1. tr js← ∅ ;
2. tr jsnei ← rtree.query(tr j.mbr);
3. curPaths← tr j.candidate ;
4. foreach (t in tr js_nei)
5. neiPaths← t.candidate;
6. if (dis(t.p1, tr j.p1)< εl and dis(t.pn, tr j.pm)< εl)
7. dn ← JaccardDissimilarity(curPaths, neiPaths, εs)

8. if (dn < εs)
9. tr js← t
10. end if
11. end if
12. end foreach

Therefore, GPS trajectories can be clustered with the DBSCAN method with path similarity. Given
certain values of MinTrjs, εl, εs, a GPS trajectory will be considered as a core trajectory if the number of
GPS trajectories in its neighborhood exceeds the parameter MinTrjs. Then, a cluster can be generated
based on the core trajectory with the conventional DBSCAN algorithm. If a GPS trajectory can be
aggregated into more than one cluster, it will be assigned to the cluster with the largest number of
GPS trajectories.

Figure 5 shows an example of trajectory clustering for four GPS trajectories (denoted in black and
blue). The GPS trajectories Trj1, Trj2, Trj4 are moving on the same path (black arrow), and the GPS

Sensors 2020, 20, 2057 10 of 22

trajectory Trj3 is moving on another path (blue arrow). With εs = 0.3 and MinTrjs = 2 in the DBSCAN
algorithm, the final clustering result for the four GPS trajectories is Cluster1 =

{
Trj1, Trj3, Trj4

}
,

Noise =
{
Trj2

}
. Tables 1–3 show the road segment sequence of each path, the candidate paths of each

GPS trajectory, and the dissimilarity between GPS trajectories in Figure 5, respectively.Sensors 2020, 20, x FOR PEER REVIEW 10 of 22

Figure 5. Clustering for low-sampling-rate GPS trajectories.

Table 1. Paths and the corresponding road segment sequences.

Path ID Road Segment Sequence in the Path 𝑝𝑎𝑡ℎଵ {𝑒ଵ, 𝑒ଶ, 𝑒ସ, 𝑒଼, 𝑒ଵଵ, 𝑒ଵଷ, 𝑒ଵହ} 𝑝𝑎𝑡ℎଶ {𝑒ଵ, 𝑒ଷ, 𝑒ହ, 𝑒଼, 𝑒ଵଵ, 𝑒ଵଷ, 𝑒ଵହ} 𝑝𝑎𝑡ℎଷ {𝑒ଵ, 𝑒ଷ, 𝑒଻, 𝑒ଵ଴, 𝑒ଵଵ, 𝑒ଵଷ, 𝑒ଵହ} 𝑝𝑎𝑡ℎସ {𝑒ଵ, 𝑒ଶ, 𝑒ସ, 𝑒଺, 𝑒ଽ, 𝑒ଵଷ, 𝑒ଵହ} 𝑝𝑎𝑡ℎହ {𝑒ଵ, 𝑒ଷ, 𝑒ହ, 𝑒଼, 𝑒ଵଶ, 𝑒ଵସ, 𝑒ଵହ}

Table 2. Trajectories and the corresponding candidate paths.

Trajectory ID Candidate Paths 𝑇𝑟𝑗ଵ 𝑝𝑎𝑡ℎଵ, 𝑝𝑎𝑡ℎଶ, 𝑝𝑎𝑡ℎଷ 𝑇𝑟𝑗ଶ 𝑝𝑎𝑡ℎଵ, 𝑝𝑎𝑡ℎଶ 𝑇𝑟𝑗ଷ 𝑝𝑎𝑡ℎଵ, 𝑝𝑎𝑡ℎସ 𝑇𝑟𝑗ସ 𝑝𝑎𝑡ℎଶ, 𝑝𝑎𝑡ℎହ

Table 3. Dissimilarity between trajectories. 𝒅(𝑻𝒓𝒋𝒊, 𝑻𝒓𝒋𝒋) 𝑻𝒓𝒋𝟏 𝑻𝒓𝒋𝟐 𝑻𝒓𝒋𝟑 𝑻𝒓𝒋𝟒 𝑻𝒓𝒋𝟏 - 0.16 0.5 0.33 𝑻𝒓𝒋𝟐 0.16 - 0.25 0.25 𝑻𝒓𝒋𝟑 0.5 0.25 - 0.75 𝑻𝒓𝒋𝟒 0.33 0.25 0.75 -

3.5. Trajectory Resampling

GPS trajectories are aggregated into several groups with the DBSCAN clustering method.
However, GPS trajectories in a cluster still confront the uncertainty issue due to low sampling rates.
Therefore, for each cluster, it is necessary to integrate the low-sampling-rate GPS trajectories into a
collaborative GPS trajectory, so they can supplement the missing information for each other. For
example, the three GPS trajectories 𝑇𝑟𝑗ଵ, 𝑇𝑟𝑗ଶ, 𝑇𝑟𝑗ସ can supplement the missing information for each
other in Figure 5. The generated collaborative GPS trajectory should integrate spatial information of
low-sampling-rate GPS trajectories in the cluster for map matching. Thus, the trajectory resampling
is different from averaging trajectory segment problems, which intends to obtain a representative
trajectory for maintaining shape characteristics [17].

In this paper, a sliding window algorithm for trajectory resampling is proposed to generate
collaborative GPS points from each trajectory cluster. The pseudocode of the algorithm is shown in
Algorithm 3. At the beginning, the first and end points of all GPS trajectories in the cluster are
collected into two sets of points, 𝑓𝑖𝑟𝑠𝑡𝑃𝑠 and 𝑒𝑛𝑑𝑃𝑠 (line 2). Then, a GPS point is randomly selected
from 𝑓𝑖𝑟𝑠𝑡𝑃𝑠 as the seed point, denoted as 𝑝𝑆𝑒𝑒𝑑 (line 3). A window composed of two circles, 𝐶ଵ

Figure 5. Clustering for low-sampling-rate GPS trajectories.

Table 1. Paths and the corresponding road segment sequences.

Path ID Road Segment Sequence in the Path

path1 {e1, e2, e4, e8, e11, e13, e15}

path2 {e1, e3, e5, e8, e11, e13, e15}

path3 {e1, e3, e7, e10, e11, e13, e15}

path4 {e1, e2, e4, e6, e9, e13, e15}

path5 {e1, e3, e5, e8, e12, e14, e15}

Table 2. Trajectories and the corresponding candidate paths.

Trajectory ID Candidate Paths

Trj1 path1, path2, path3
Trj2 path1, path2
Trj3 path1, path4
Trj4 path2, path5

Table 3. Dissimilarity between trajectories.

d(Trji,Trjj) Trj1 Trj2 Trj3 Trj4

Trj1 - 0.16 0.5 0.33
Trj2 0.16 - 0.25 0.25
Trj3 0.5 0.25 - 0.75
Trj4 0.33 0.25 0.75 -

3.5. Trajectory Resampling

GPS trajectories are aggregated into several groups with the DBSCAN clustering method. However,
GPS trajectories in a cluster still confront the uncertainty issue due to low sampling rates. Therefore,
for each cluster, it is necessary to integrate the low-sampling-rate GPS trajectories into a collaborative
GPS trajectory, so they can supplement the missing information for each other. For example, the three
GPS trajectories Trj1, Trj2, Trj4 can supplement the missing information for each other in Figure 5.
The generated collaborative GPS trajectory should integrate spatial information of low-sampling-rate
GPS trajectories in the cluster for map matching. Thus, the trajectory resampling is different from

Sensors 2020, 20, 2057 11 of 22

averaging trajectory segment problems, which intends to obtain a representative trajectory for
maintaining shape characteristics [17].

In this paper, a sliding window algorithm for trajectory resampling is proposed to generate
collaborative GPS points from each trajectory cluster. The pseudocode of the algorithm is shown in
Algorithm 3. At the beginning, the first and end points of all GPS trajectories in the cluster are collected
into two sets of points, f irstPs and endPs (line 2). Then, a GPS point is randomly selected from f irstPs
as the seed point, denoted as pSeed (line 3). A window composed of two circles, C1 and C2, centering at
pSeed with radius rs and 2 ∗ rs respectively, is generated (line 5). In the window, the GPS points inside
C1 can be retrieved quickly, and the center of the obtained GPS points is calculated as a new resampling
GPS point, denoted as pNew (line 6–7). Next, a GPS point between C1 and C2 is randomly selected as a
new seed point, pSeed. If there is no GPS point between C1 and C2, the radius rs is expanded to build a
larger circle C2 until a GPS point is obtained as the new seed point (line 8–9). Last, the window will
slide forward until the end points in endPs are reached, and the sequence of generated sampling points
can make up a collaborative GPS trajectory from the low-sampling-rate GPS trajectories in the cluster
(line 4–11).

Algorithm 3: Sliding-Window Algorithm for Trajectory Resampling

Input: a set of GPS trajectories tr js =
{
tr j1, tr j2, · · · , tr jn

}
, search radius rs

Output: a collaborative GPS trajectory resultTrj =
{
p1, p2, · · · , pm

}
1. resultTrj← ∅ ;
2. f irstPs← tr js.FirstPs , endPs← tr js.Last Ps;
3. pSeed← random(f irstPs) ;
4. while (pC1C2.contains(endPs))
5. create C1, C2 with radius rs and 2 ∗ rs;
6. pC1 ← rtree.query(pSeed, C1);
7. pNew ← mean(pC1) ;
8. pC1C2 ← rtree.query(pSeed,C1,C2);
9. pSeed← random(pC1C2);
10. resultTrj← pNew ;
11. end while

Figure 6 shows the procedure of trajectory resampling in a cluster. In this figure, five trajectories
(green, red, blue, purple and yellow) are grouped into a cluster; the small black arrow is the real-time
heading of a GPS point. In Figure 6a, the red GPS point is randomly selected as the seed point, and
two circles C1 and C2 are generated, centering as the seed point. In C1, five GPS points are retrieved,
and the center point is created as a new resampling point and denoted as P1 in Figure 6b. In Figure 6a,
two GPS points exist between C1 and C2, and the next seed point will be randomly selected from them.
As the window reaches the end GPS points of the cluster, a collaborative GPS trajectory is generated
and composed from P1 to P7, as shown in Figure 6c.

Sensors 2020, 20, x FOR PEER REVIEW 11 of 22

and 𝐶ଶ , centering at 𝑝𝑆𝑒𝑒𝑑 with radius 𝑟௦ and 2 ∗ 𝑟௦ respectively, is generated (line 5). In the
window, the GPS points inside 𝐶ଵ can be retrieved quickly, and the center of the obtained GPS points
is calculated as a new resampling GPS point, denoted as 𝑝𝑁𝑒𝑤 (line 6-7). Next, a GPS point between 𝐶ଵ and 𝐶ଶ is randomly selected as a new seed point, 𝑝𝑆𝑒𝑒𝑑. If there is no GPS point between 𝐶ଵ and 𝐶ଶ, the radius 𝑟௦ is expanded to build a larger circle 𝐶ଶ until a GPS point is obtained as the new seed
point (line 8-9). Last, the window will slide forward until the end points in 𝑒𝑛𝑑𝑃𝑠 are reached, and
the sequence of generated sampling points can make up a collaborative GPS trajectory from the low-
sampling-rate GPS trajectories in the cluster (line 4–11).

Algorithm 3 : Sliding-Window Algorithm for Trajectory Resampling
Input: a set of GPS trajectories 𝑡𝑟𝑗𝑠 = {𝑡𝑟𝑗ଵ, 𝑡𝑟𝑗ଶ, ⋯ , 𝑡𝑟𝑗௡}, search radius 𝑟௦
Output: a collaborative GPS trajectory 𝑟𝑒𝑠𝑢𝑙𝑡𝑇𝑟𝑗 = {𝑝ଵ, 𝑝ଶ, ⋯ , 𝑝௠}
1. 𝑟𝑒𝑠𝑢𝑙𝑡𝑇𝑟𝑗 ← ∅;
2. 𝑓𝑖𝑟𝑠𝑡𝑃𝑠 ← 𝑡𝑟𝑗𝑠. 𝐹𝑖𝑟𝑠𝑡𝑃𝑠, endPs← 𝑡𝑟𝑗𝑠. 𝐿𝑎𝑠𝑡Ps;
3. 𝑝𝑆𝑒𝑒𝑑 ← 𝑟𝑎𝑛𝑑𝑜𝑚(𝑓𝑖𝑟𝑠𝑡𝑃𝑠);
4. while (𝑝𝐶ଵ𝐶ଶ.contains(endPs))
5. create 𝐶ଵ, 𝐶ଶ with radius 𝑟௦ and 2 ∗ 𝑟௦;
6. 𝑝𝐶ଵ ← rtree.query(𝑝𝑆𝑒𝑒𝑑, 𝐶ଵ);
7. 𝑝𝑁𝑒𝑤 ← 𝑚𝑒𝑎𝑛(𝑝𝐶ଵ);
8. 𝑝𝐶ଵ𝐶ଶ ← rtree.query(𝑝𝑆𝑒𝑒𝑑,𝐶ଵ,𝐶ଶ);
9. 𝑝𝑆𝑒𝑒𝑑 ← 𝑟𝑎𝑛𝑑𝑜𝑚(𝑝𝐶ଵ𝐶ଶ);
10. 𝑟𝑒𝑠𝑢𝑙𝑡𝑇𝑟𝑗 ← 𝑝𝑁𝑒𝑤;
11. end while

Figure 6 shows the procedure of trajectory resampling in a cluster. In this figure, five trajectories
(green, red, blue, purple and yellow) are grouped into a cluster; the small black arrow is the real-time
heading of a GPS point. In Figure 6a, the red GPS point is randomly selected as the seed point, and
two circles 𝐶ଵ and 𝐶ଶ are generated, centering as the seed point. In 𝐶ଵ, five GPS points are retrieved,
and the center point is created as a new resampling point and denoted as 𝑃ଵ in Figure 6b. In Figure
6a, two GPS points exist between 𝐶ଵ and 𝐶ଶ, and the next seed point will be randomly selected from
them. As the window reaches the end GPS points of the cluster, a collaborative GPS trajectory is
generated and composed from 𝑃ଵ to 𝑃଻, as shown in Figure 6c.

Figure 6. Trajectory cluster resampling. (a) Seed selection and window generation. (b) Point

resampling and window slide. (c) Collaborative trajectory generation.

3.6. Map Matching for the Supplemented Trajectory

After trajectory resampling, a collaborative GPS trajectory is generated from each cluster, and it
will be matched to one of the candidate paths. Given a GPS trajectory 𝑡𝑟𝑗 = {𝑝ଵ, 𝑝ଶ, ⋯ , 𝑝௠} and a
candidate path 𝑝𝑎𝑡ℎ = {𝑒ଵ, 𝑒ଶ, ⋯ , 𝑒௡} , LCSS [18] is utilized to measure the similarity between
trajectory and path. The path with the largest LCSS value will be taken as the map matching result
for all low-sampling-rate GPS trajectories in the corresponding cluster:

Figure 6. Trajectory cluster resampling. (a) Seed selection and window generation. (b) Point resampling
and window slide. (c) Collaborative trajectory generation.

Sensors 2020, 20, 2057 12 of 22

3.6. Map Matching for the Supplemented Trajectory

After trajectory resampling, a collaborative GPS trajectory is generated from each cluster, and it
will be matched to one of the candidate paths. Given a GPS trajectory tr j =

{
p1, p2, · · · , pm

}
and a

candidate path path = {e1, e2, · · · , en}, LCSS [18] is utilized to measure the similarity between trajectory
and path. The path with the largest LCSS value will be taken as the map matching result for all
low-sampling-rate GPS trajectories in the corresponding cluster:

Sim
(
pi, e j

)
=

 0, Dist
(
pi, e j

)
> εd

1−
Dist(pi,e j)

εd
otherwise

. (5)

Dist
(
pi, e j

)
is the Euclidean distance from a GPS point pi to the closest point on the road segment

e j. If Dist
(
pi, e j

)
> εd, this GPS point pi cannot be matched to this road segment e j.The subsequence of a

trajectory tr j from its first GPS point to the i-th GPS point is defined as tr j(i) =
{
p1, p2, . . . , pi

}
, 1 ≤ i ≤ m

and the subsequence of path from the first road segment to the j-th road segment as path(j) ={
e1, e2, . . . , e j

}
, 1 ≤ j ≤ n. The LCSS value, denoted as L(tr j(i), path(j)), between tr j(i) and path(j) is

defined as,

L(tr j(i), path(j)) = max
{

L(tr j(i), path(j− 1)), L(tr j(i− 1), path(j)) + Sim
(
pi, e j

)}
(6)

With Equation (6), a dynamic programming algorithm could be used to calculate the LCSS
distance between tr j and path, and the candidate path with the largest LCSS value is selected as the
map matching result.

4. Experiment

4.1. Study Area

In this section, the performance of the proposed CMM method was evaluated using real and
simulated GPS trajectory datasets in a study area (22.532◦ N–22.576◦ N and 114.052◦ E–114.103◦ E) of
Shenzhen, China. The method was implemented in C#. The experiments were conducted on a 3.6 GHz
Core i7 PC with 16GB of RAM. The road network in the selected region contains 7007 road vertices
and 7949 road segments, which is shown in Figure 7.

Sensors 2020, 20, x FOR PEER REVIEW 12 of 22

Sim൫𝑝௜, 𝑒௝൯ = ቐ 0, 𝐷𝑖𝑠𝑡൫𝑝௜, 𝑒௝൯ ൐ 𝜀ௗ1 − ஽௜௦௧൫௣೔,௘ೕ൯ఌ೏ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 . (5)

𝐷𝑖𝑠𝑡൫𝑝௜, 𝑒௝൯ is the Euclidean distance from a GPS point 𝑝௜ to the closest point on the road
segment 𝑒௝. If 𝐷𝑖𝑠𝑡൫𝑝௜, 𝑒௝൯ ൐ 𝜀ௗ，this GPS point 𝑝௜ cannot be matched to this road segment 𝑒௝.The
subsequence of a trajectory 𝑡𝑟𝑗 from its first GPS point to the 𝑖-th GPS point is defined as 𝑡𝑟𝑗(𝑖) ={𝑝ଵ, 𝑝ଶ, … , 𝑝௜}, 1 ≤ 𝑖 ≤ 𝑚 and the subsequence of 𝑝𝑎𝑡ℎ from the first road segment to the 𝑗-th road
segment as 𝑝𝑎𝑡ℎ(𝑗) = ൛𝑒ଵ, 𝑒ଶ, … , 𝑒௝ൟ, 1 ≤ 𝑗 ≤ 𝑛 . The LCSS value, denoted as 𝐿൫𝑡𝑟𝑗(𝑖), 𝑝𝑎𝑡ℎ(𝑗)൯ ,
between 𝑡𝑟𝑗(𝑖) and 𝑝𝑎𝑡ℎ(𝑗) is defined as, 𝐿൫𝑡𝑟𝑗(𝑖), 𝑝𝑎𝑡ℎ(𝑗)൯ = 𝑚𝑎𝑥 { 𝐿൫𝑡𝑟𝑗(𝑖), 𝑝𝑎𝑡ℎ(𝑗 − 1)൯, 𝐿൫𝑡𝑟𝑗(𝑖 − 1), 𝑝𝑎𝑡ℎ(𝑗)൯ +𝑆𝑖𝑚൫𝑝௜, 𝑒௝൯ } (6)

With Equation (6), a dynamic programming algorithm could be used to calculate the LCSS
distance between 𝑡𝑟𝑗 and 𝑝𝑎𝑡ℎ, and the candidate path with the largest LCSS value is selected as the
map matching result.

4. Experiment

4.1. Study Area

In this section, the performance of the proposed CMM method was evaluated using real and
simulated GPS trajectory datasets in a study area (22.532° N–22.576° N and 114.052° E–114.103° E) of
Shenzhen, China. The method was implemented in C#. The experiments were conducted on a 3.6
GHz Core i7 PC with 16GB of RAM. The road network in the selected region contains 7,007 road
vertices and 7,949 road segments, which is shown in Figure 7.

Figure 7. Study area of Shenzhen map.

4.2. Dataset

In this paper, experiments were conducted to evaluate the performance of the proposed CMM
algorithm on both, a real and a simulated GPS trajectory dataset.

4.2.1. Real GPS Trajectory Dataset

Figure 7. Study area of Shenzhen map.

Sensors 2020, 20, 2057 13 of 22

4.2. Dataset

In this paper, experiments were conducted to evaluate the performance of the proposed CMM
algorithm on both, a real and a simulated GPS trajectory dataset.

4.2.1. Real GPS Trajectory Dataset

The real taxi GPS trajectory dataset [19], containing more than 46 million GPS points, was collected
in Shenzhen, China. The format of GPS points, includes the taxi ID, longitude, latitude, timestamp,
speed and occupancy status. The sampling rate of the GPS trajectories is approximately 15 s.
The trajectory data was displayed on the map, and 100 GPS trajectories were selected for validation.
The 100 GPS trajectories were selected by visual inspection so that they are diverse in length and located
at different locations in the study area. The 100 GPS trajectories are manually labelled for ground truth.
To obtain low-sampling-rate GPS trajectories, each GPS trajectory is sampled multiple times with the
sampling rate of 3 min and different starting points. In total, 734 GPS trajectories with sampling rate
around 3 min were generated. The instantaneous direction of GPS points of the generated trajectory is
also manually labelled, as the direction information is unavailable in this real GPS trajectory dataset.

Figure 8a shows the length of the majority of GPS trajectories in the real dataset is between 1 km
and 4 km, Figure 8b shows that the number of GPS points in each trajectory is approximately 3 to 5.

4.2.2. Trajectory Simulation

In this paper, GPS trajectories were simulated to investigate the performance of map matching
methods in two aspects. First, the performance of map matching methods versus different sampling
rates (from 2 min to 10 min) was studied, based on simulated trajectory data, which is difficult to
obtain from a real GPS trajectory dataset. Second, GPS trajectories were simulated to study the
performance of map matching methods under three different scenarios T1, T2 and T3. T1 represents
GPS trajectories moving along a path with multiple turns. T2 represents GPS trajectories moving
along a path with a large detour. T3 represents GPS trajectories moving along two separate paths
which vary slightly at a short sub-path. Figure 8 illustrates the road paths where GPS trajectories
are simulated. Figure 9a,b represent scenario T1; Figure 9c represents scenario T2; and Figure 9d,e
represent scenario T3. In Figure 9f, 50 GPS trajectories were simulated on each road path, and the
simulated GPS trajectories are shown in different colors.

Sensors 2020, 20, x FOR PEER REVIEW 13 of 22

The real taxi GPS trajectory dataset [19], containing more than 46 million GPS points, was
collected in Shenzhen, China. The format of GPS points, includes the taxi ID, longitude, latitude,
timestamp, speed and occupancy status. The sampling rate of the GPS trajectories is approximately
15 s. The trajectory data was displayed on the map, and 100 GPS trajectories were selected for
validation. The 100 GPS trajectories were selected by visual inspection so that they are diverse in
length and located at different locations in the study area. The 100 GPS trajectories are manually
labelled for ground truth. To obtain low-sampling-rate GPS trajectories, each GPS trajectory is
sampled multiple times with the sampling rate of 3 min and different starting points. In total, 734
GPS trajectories with sampling rate around 3 min were generated. The instantaneous direction of
GPS points of the generated trajectory is also manually labelled, as the direction information is
unavailable in this real GPS trajectory dataset.

Figure 8a shows the length of the majority of GPS trajectories in the real dataset is between 1km
and 4 km, Figure 8b shows that the number of GPS points in each trajectory is approximately 3 to 5.

4.2.2. Trajectory Simulation

In this paper, GPS trajectories were simulated to investigate the performance of map matching
methods in two aspects. First, the performance of map matching methods versus different sampling
rates (from 2 min to 10 min) was studied, based on simulated trajectory data, which is difficult to
obtain from a real GPS trajectory dataset. Second, GPS trajectories were simulated to study the
performance of map matching methods under three different scenarios Tଵ, Tଶ and Tଷ. Tଵ represents
GPS trajectories moving along a path with multiple turns. Tଶ represents GPS trajectories moving
along a path with a large detour. Tଷ represents GPS trajectories moving along two separate paths
which vary slightly at a short sub-path. Figure 8 illustrates the road paths where GPS trajectories are
simulated. Figure 9a,9b represent scenario Tଵ ; Figure 9c represents scenario Tଶ ; and Figure 9d,e
represent scenario Tଷ. In Figure 9f, 50 GPS trajectories were simulated on each road path, and the
simulated GPS trajectories are shown in different colors.

Figure 8. Distribution of real GPS trajectories. (a) Trajectory length. (b) Number of points in each
trajectory.
Figure 8. Distribution of real GPS trajectories. (a) Trajectory length. (b) Number of points in
each trajectory.

Sensors 2020, 20, 2057 14 of 22
Sensors 2020, 20, x FOR PEER REVIEW 14 of 22

Figure 9. Spatial distribution of selected road paths and simulated GPS trajectories. (a,b) Road paths
under scenario Tଵ. (c) Road path under scenario Tଶ. (d,e) Road paths under scenario Tଷ. (f) Spatial
distribution of simulated GPS trajectories.

Simulated GPS points are associated with a set of attributes including trip ID, time, longitude,
latitude, direction. To simulate a GPS trajectory on path 𝑝𝑎𝑡ℎ = {𝑒1, 𝑒2, … , 𝑒𝑚}, the velocity of the
vehicle moving on the path is first estimated using Equation (7): 𝛼 = ∑ ቀ𝑒௞. 𝑠𝑝𝑒𝑒𝑑𝑙𝑖𝑚𝑖𝑡 ∗ ௘ೖ.௟௘௡௚௧௛௣௔௧௛.௟௘௡௚௧௛ቁ௠௞ୀଵ . (7)

The weighted average maximum speed limit 𝛼 (m/s) on the path is calculated as the velocity of
the simulated GPS trajectory. 𝑒௞. 𝑠𝑝𝑒𝑒𝑑𝑙𝑖𝑚𝑖𝑡 and 𝑒௞. 𝑙𝑒𝑛𝑔𝑡ℎ are the speed limit and the length of the
road segment 𝑒௞, respectively. 𝑝𝑎𝑡ℎ. 𝑙𝑒𝑛𝑔𝑡ℎ is the total length of the path. The procedure of GPS
trajectory simulation is as follows:

1. Simulate the first point 𝑝ଵ based on the starting node of the path, and is denoted as 𝑝௣௥௘௩.
2. Estimate the location of the next GPS point 𝑝௡௘௫௧. First, a random velocity ν = 𝑟𝑎𝑛𝑑𝑜𝑚(0, 𝛼) is

generated for the vehicle. Given the sampling rate, the travelled distance from 𝑝௣௥௘௩ to 𝑝௡௘௫௧
along the path can be calculated as ν ∗ 𝑡. Thus, the location of 𝑝௡௘௫௧ on the path can be obtained
and denoted as (𝑝௡௘௫௧. 𝑥, 𝑝௡௘௫௧. 𝑦). Location bias 𝑥௕௜௔௦~𝑁(0,40)and 𝑦௕௜௔௦~𝑁(0,40) is added to
simulate the position deviation of the vehicle away from the road. Thus, the location of 𝑝௡௘௫௧ is
simulated as (𝑝௡௘௫௧. 𝑥 + 𝑥௕௜௔௦, 𝑝௡௘௫௧. 𝑦 + 𝑦௕௜௔௦).

3. Simulate the direction of 𝑝௡௘௫௧ . With the location of 𝑝௡௘௫௧ , the road segment where 𝑝௡௘௫௧ is
located is identified and the direction of the road segment is denoted as 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛௥௢௔ௗ. Then, a
random 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛௕௜௔௦ = 𝑟𝑎𝑛𝑑𝑜𝑚(−30,30) is generated as the heading bias of 𝑝௡௘௫௧. Thus, the
direction of 𝑝௡௘௫௧ can be simulated as 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛௥௢௔ௗ + 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛௕௜௔௦.

4. Mark 𝑝௡௘௫௧ as 𝑝௣௥௘௩ , and repeat steps 1–3 to simulate the next GPS point until the vehicle
reaches the end node along the path. Set a unique trajectory ID for the simulated GPS trajectory.

The length distribution of simulated GPS trajectories and the number of GPS points in each
simulated GPS trajectory are illustrated in Figure 10a, and Figure 10b, respectively. It can be observed

Figure 9. Spatial distribution of selected road paths and simulated GPS trajectories. (a,b) Road paths
under scenario T1. (c) Road path under scenario T2. (d,e) Road paths under scenario T3. (f) Spatial
distribution of simulated GPS trajectories.

Simulated GPS points are associated with a set of attributes including trip ID, time, longitude,
latitude, direction. To simulate a GPS trajectory on path path = {e1, e2, . . . , em}, the velocity of the
vehicle moving on the path is first estimated using Equation (7):

α =
∑m

k=1

(
ek.speedlimit ∗

ek.length
path.length

)
. (7)

The weighted average maximum speed limit α (m/s) on the path is calculated as the velocity of
the simulated GPS trajectory. ek.speedlimit and ek.length are the speed limit and the length of the road
segment ek, respectively. path.length is the total length of the path. The procedure of GPS trajectory
simulation is as follows:

1. Simulate the first point p1 based on the starting node of the path, and is denoted as pprev.
2. Estimate the location of the next GPS point pnext. First, a random velocity ν = random(0,α) is

generated for the vehicle. Given the sampling rate, the travelled distance from pprev to pnext

along the path can be calculated as ν∗t. Thus, the location of pnext on the path can be obtained
and denoted as (pnext.x, pnext.y). Location bias xbias ∼ N(0, 40) and ybias ∼ N(0, 40) is added to
simulate the position deviation of the vehicle away from the road. Thus, the location of pnext is
simulated as (pnext.x + xbias, pnext.y + ybias).

3. Simulate the direction of pnext. With the location of pnext, the road segment where pnext is located
is identified and the direction of the road segment is denoted as directionroad. Then, a random
directionbias = random(−30, 30) is generated as the heading bias of pnext. Thus, the direction of
pnext can be simulated as directionroad + directionbias.

4. Mark pnext as pprev, and repeat steps 1–3 to simulate the next GPS point until the vehicle reaches
the end node along the path. Set a unique trajectory ID for the simulated GPS trajectory.

Sensors 2020, 20, 2057 15 of 22

The length distribution of simulated GPS trajectories and the number of GPS points in each
simulated GPS trajectory are illustrated in Figure 10a, and Figure 10b, respectively. It can be observed
that the length of the majority of simulated GPS trajectories is approximately 4.5 km and the number
of GPS points in a trajectory is approximately 3 to 5.

Sensors 2020, 20, x FOR PEER REVIEW 15 of 22

that the length of the majority of simulated GPS trajectories is approximately 4.5 km and the number
of GPS points in a trajectory is approximately 3 to 5.

Figure 10. Distribution of simulated GPS trajectories. (a) Trajectory length. (b) Number of points in
each trajectory.

4.3. Parameter Configuration

In this section, the performance of CMM is compared with two baseline methods, ST-Matching
[2] and STD-Matching [3]. The preprocessing step is the same for all three methods, including outlier
removal, the construction of R-tree and Path-Forest. The configuration of CMM is set in Table 4. The
experiments are conducted based on the configuration without specific statement.

Table 4. Configuration of CMM.

Parameters
Path distance threshold in Path-Forest 𝑙∆ 6 km 𝑘 candidate path for path similarity measurement 𝑘 3

Distance threshold in trajectory clustering 𝜀௟ 50 m
Dissimilarity threshold in trajectory clustering 𝜀௦ 0.8

MinTrjs in trajectory clustering 𝑀𝑖𝑛𝑇𝑟𝑗𝑠 5
Trajectory-Resampling radius 𝑟௦ 50 m

LCSS distance threshold 𝜀ௗ 100 m

Two metrics, precision by length of road segments and recall by length of road segments, are
used to evaluate the effectiveness of the map matching methods, and they are defined as follows: 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = ௅௘௡௚௧௛ ௢௙௖௢௥௥௘௖௧௟௬ ௠௔௧௖௛௘ௗ ௥௢௔ௗ ௦௘௚௠௘௡௧௦௅௘௡௚௧௛ ௢௙ ௣௥௘ௗ௜௖௧௘ௗ ௣௔௧௛ 𝑅𝑒𝑐𝑎𝑙𝑙 = ௅௘௡௚௧௛ ௢௙ ௖௢௥௥௘௖௧௟௬ ௠௔௧௖௛௘ௗ ௥௢௔ௗ ௦௘௚௠௘௡௧௦௅௘௡௚௧௛ ௢௙ ௚௥௢௨௡ௗ ௧௥௨௘ ௣௔௧௛

4.4. Performance Evaluation on Real Trajectory Dataset

In this paper, the performance of the proposed CMM method and two baseline methods was
investigated using a real GPS trajectory dataset. First, the effectiveness and efficiency of the three
methods were compared in terms of precision, recall and running time. Second, parameter tuning
was conducted to investigate the impact of two significant parameters on the CMM method. Third,

Figure 10. Distribution of simulated GPS trajectories. (a) Trajectory length. (b) Number of points in
each trajectory.

4.3. Parameter Configuration

In this section, the performance of CMM is compared with two baseline methods, ST-Matching [2]
and STD-Matching [3]. The preprocessing step is the same for all three methods, including outlier
removal, the construction of R-tree and Path-Forest. The configuration of CMM is set in Table 4.
The experiments are conducted based on the configuration without specific statement.

Table 4. Configuration of CMM.

Parameters

Path distance threshold in Path-Forest l∆ 6 km
k candidate path for path similarity measurement k 3

Distance threshold in trajectory clustering εl 50 m
Dissimilarity threshold in trajectory clustering εs 0.8

MinTrjs in trajectory clustering MinTrjs 5
Trajectory-Resampling radius rs 50 m

LCSS distance threshold εd 100 m

Two metrics, precision by length of road segments and recall by length of road segments, are used
to evaluate the effectiveness of the map matching methods, and they are defined as follows:

Precision =
Length o f correctly matched road segments

Length o f predicted path

Recall =
Length o f correctly matched road segments

Length o f ground true path

Sensors 2020, 20, 2057 16 of 22

4.4. Performance Evaluation on Real Trajectory Dataset

In this paper, the performance of the proposed CMM method and two baseline methods was
investigated using a real GPS trajectory dataset. First, the effectiveness and efficiency of the three
methods were compared in terms of precision, recall and running time. Second, parameter tuning
was conducted to investigate the impact of two significant parameters on the CMM method. Third,
the effectiveness of path similarity was studied and compared with the LCSS and Edit Distance on
Real Sequence (EDR) methods.

4.4.1. Overall Performance Evaluation

This section investigates precision, recall and running time of the CMM method, ST-Matching
method and STD-Matching method. The average running time per GPS point of the three methods
are shown in Table 5. It can be observed that the average running time per GPS point of CMM is
approximately 2.97 milliseconds (ms), while the average running time per GPS point for ST-Matching
and STD-Matching method are 29.60 ms, and 28.37 ms, respectively. CMM is much more efficient than
ST-Matching and STD-Matching because once the trajectories are clustered in the same cluster, CMM
conducts map matching for all GPS trajectories belonging to the cluster, while the other two methods
process the GPS trajectory individually.

Table 5. Average Running Time per GPS Point on Real GPS Trajectory Dataset.

Method Time (ms)

ST-Matching 29.60
STD-Matching 28.37

CMM 2.97

The precision and recall of the three map matching methods are shown in Table 6. The precision
and recall of CMM are 0.865 and 0.872 for real GPS trajectories with the sampling rate of around
3 min, which performs better than both ST-Matching and STD-Matching. ST-Matching has the
smallest precision and recall because it could not distinguish the correct path effectively based on
the spatial and temporal features. STD-Matching involves direction information and has a better
performance than ST-Matching. The CMM method groups similar GPS trajectories together and solves
the uncertainty issue by generating a new collaborative trajectory with information supplementation
of the low-sampling-rate GPS trajectories, which demonstrates that CMM has the best performance
out of the three methods in terms of precision and recall.

Table 6. Precision and Recall on Real GPS Trajectory Dataset.

Method Precision Recall

ST-Matching 0.817 0.721
STD-Matching 0.855 0.792

CMM 0.865 0.872

4.4.2. Performance Evaluation for Path Similarity

This section evaluates the performance of the proposed path similarity method. Understanding
how the similarity measure is affected by sampling rates was investigated. The similarity between the
trajectory with varied sampling rates and the origin trajectory is expected to be 100%.

The performance of the path similarity method was compared with two widely used methods,
Longest Common Subsequence (LCSS) [16] and Edit Distance on Real Sequence [20] methods. LCSS
and EDR are count-based methods. LCSS counts the number of matched pairs, and EDR counts
the cost of operations needed to fix the unmatched pairs. The sampling rates could have a great
impact on the distance calculation between the two trajectories, especially the GPS trajectories with a

Sensors 2020, 20, 2057 17 of 22

low sampling rate. However, the count-based similarity measurement methods are less sensitive to
sampling rates. To be more specific, regardless of distance between the two consecutive GPS points,
count-based similarity measurement methods do not change the value. The experiment results are
shown in Figure 11.Sensors 2020, 20, x FOR PEER REVIEW 17 of 22

Figure 11. Performance evaluation for path similarity (Path-SIM), LCSS and EDR.

It can be observed in Figure 11 that path similarity method (Path-SIM) has better performance
than LCSS and EDR methods. Path-SIM is almost not affected by sampling rates because the
candidate paths for a trajectory have a small change with the varied sampling rates. However, LCSS
and EDR are more sensitive to the change of sampling rates compared to Path-SIM.

4.4.3. Parameter Tuning

CMM has two important parameters - the 𝑘 value for the top 𝑘 shortest distance paths, and the
dissimilarity threshold 𝜀௦ for defining neighborhood in the extended DBSCAN. This section
investigates the impact of two parameters, 𝑘 and 𝜀௦ on the performance of CMM, based on real GPS
trajectories. In this experiment, 𝑘 is set from 1 to 15, and 𝜀௦ is 0.1 to 0.8.

Figure 12a and Figure 12b display the precision and recall of map matching with different 𝑘
and 𝜀௦ values. First, when 𝜀௦ is fixed, the precision and recall increase as 𝑘 grows from 1 to 3. When 𝑘 is set as 1, similar GPS trajectories cannot be well clustered together using path similarity because
the shortest distance path is usually not the real path for some GPS trajectories. Thus, GPS trajectories
in a cluster may not be enough to supplement information for each other, which results in precision
and recall being smaller than when 𝑘 is set as 3. With 𝑘 increasing from 3 to 15, the precision
decreases gradually, while the recall stays steady. This arises because a greater 𝑘 will result in a
larger number of unreasonable candidate paths with detours, which would compromise the precision
of CMM but has a small impact on the recall of CMM. Second, when 𝑘 is fixed, the precision and
recall increase with the growth of 𝜀௦ because more similar GPS trajectories can be aggregated with
a larger 𝜀௦, which leads to more spatial information of similar GPS trajectories being incorporated
together for map matching.

Figure 12. The performance of CMM with different values of 𝑘 and 𝜀௦. (a) Precision. (b) Recall. (c)
Running time.

Figure 12c shows the running time of CMM rises with the growth of 𝑘 and declines with the
growth of 𝜀௦. With a greater k, more candidate paths are searched out for GPS trajectories, which

Figure 11. Performance evaluation for path similarity (Path-SIM), LCSS and EDR.

It can be observed in Figure 11 that path similarity method (Path-SIM) has better performance
than LCSS and EDR methods. Path-SIM is almost not affected by sampling rates because the candidate
paths for a trajectory have a small change with the varied sampling rates. However, LCSS and EDR are
more sensitive to the change of sampling rates compared to Path-SIM.

4.4.3. Parameter Tuning

CMM has two important parameters - the k value for the top k shortest distance paths, and the
dissimilarity threshold εs for defining neighborhood in the extended DBSCAN. This section investigates
the impact of two parameters, k and εs on the performance of CMM, based on real GPS trajectories.
In this experiment, k is set from 1 to 15, and εs is 0.1 to 0.8.

Figure 12a,b display the precision and recall of map matching with different k and εs values. First,
when εs is fixed, the precision and recall increase as k grows from 1 to 3. When k is set as 1, similar
GPS trajectories cannot be well clustered together using path similarity because the shortest distance
path is usually not the real path for some GPS trajectories. Thus, GPS trajectories in a cluster may
not be enough to supplement information for each other, which results in precision and recall being
smaller than when k is set as 3. With k increasing from 3 to 15, the precision decreases gradually, while
the recall stays steady. This arises because a greater k will result in a larger number of unreasonable
candidate paths with detours, which would compromise the precision of CMM but has a small impact
on the recall of CMM. Second, when k is fixed, the precision and recall increase with the growth of εs

because more similar GPS trajectories can be aggregated with a larger εs, which leads to more spatial
information of similar GPS trajectories being incorporated together for map matching.

Figure 12c shows the running time of CMM rises with the growth of k and declines with the growth
of εs. With a greater k, more candidate paths are searched out for GPS trajectories, which increases the
computation time for trajectory similarity measurements in trajectory clustering. A smaller εs value
causes a smaller number of GPS trajectories in one cluster and increases the total number of clusters.
Therefore, CMM requires more running time to conduct map matching, as shown in the figure.

Sensors 2020, 20, 2057 18 of 22

Sensors 2020, 20, x FOR PEER REVIEW 17 of 22

Figure 11. Performance evaluation for path similarity (Path-SIM), LCSS and EDR.

It can be observed in Figure 11 that path similarity method (Path-SIM) has better performance
than LCSS and EDR methods. Path-SIM is almost not affected by sampling rates because the
candidate paths for a trajectory have a small change with the varied sampling rates. However, LCSS
and EDR are more sensitive to the change of sampling rates compared to Path-SIM.

4.4.3. Parameter Tuning

CMM has two important parameters - the 𝑘 value for the top 𝑘 shortest distance paths, and the
dissimilarity threshold 𝜀௦ for defining neighborhood in the extended DBSCAN. This section
investigates the impact of two parameters, 𝑘 and 𝜀௦ on the performance of CMM, based on real GPS
trajectories. In this experiment, 𝑘 is set from 1 to 15, and 𝜀௦ is 0.1 to 0.8.

Figure 12a and Figure 12b display the precision and recall of map matching with different 𝑘
and 𝜀௦ values. First, when 𝜀௦ is fixed, the precision and recall increase as 𝑘 grows from 1 to 3. When 𝑘 is set as 1, similar GPS trajectories cannot be well clustered together using path similarity because
the shortest distance path is usually not the real path for some GPS trajectories. Thus, GPS trajectories
in a cluster may not be enough to supplement information for each other, which results in precision
and recall being smaller than when 𝑘 is set as 3. With 𝑘 increasing from 3 to 15, the precision
decreases gradually, while the recall stays steady. This arises because a greater 𝑘 will result in a
larger number of unreasonable candidate paths with detours, which would compromise the precision
of CMM but has a small impact on the recall of CMM. Second, when 𝑘 is fixed, the precision and
recall increase with the growth of 𝜀௦ because more similar GPS trajectories can be aggregated with
a larger 𝜀௦, which leads to more spatial information of similar GPS trajectories being incorporated
together for map matching.

Figure 12. The performance of CMM with different values of 𝑘 and 𝜀௦. (a) Precision. (b) Recall. (c)
Running time.

Figure 12c shows the running time of CMM rises with the growth of 𝑘 and declines with the
growth of 𝜀௦. With a greater k, more candidate paths are searched out for GPS trajectories, which

Figure 12. The performance of CMM with different values of k and εs. (a) Precision. (b) Recall.
(c) Running time.

4.5. Performance Evaluation on Simulated Trajectory Dataset

In this paper, the performances of CMM, ST-Matching and STD-Matching were also investigated
on a simulated GPS trajectory dataset. First, the impact of sampling rate on the performance of the
three map matching methods was investigated. Second, the three map matching methods were studied
under different scenarios. Third, the impact of trajectory data size on the performance of the three map
matching methods was studied.

4.5.1. Performance versus Sampling Rate

Figure 13 shows the performance of CMM, ST-Matching and STD-Matching, with different
sampling rates, on simulated GPS trajectories. It can be observed that CMM always performs
better than ST-Matching and STD-Matching when GPS sampling rate varies from 2 min to 10 min.
Compared to ST-Matching and STD-Matching, the precision and recall of CMM are much less
sensitive to the sampling rates. When the sampling rate is very low, e.g., 8 min, consecutive GPS
points become more distant from each other, resulting in large uncertainty for the real path of the
trajectory. Thus, the precision and recall of ST-Matching and STD-Matching drop significantly based
on spatial and temporal features. CMM supplements the spatial information of low-sampling-rate
GPS trajectories with trajectory collaboration, which can alleviate the larger uncertainty issue caused
by lower sampling rates.

Sensors 2020, 20, x FOR PEER REVIEW 18 of 22

increases the computation time for trajectory similarity measurements in trajectory clustering. A
smaller 𝜀௦ value causes a smaller number of GPS trajectories in one cluster and increases the total
number of clusters. Therefore, CMM requires more running time to conduct map matching, as shown
in the figure.

4.5. Performance Evaluation on Simulated Trajectory Dataset

In this paper, the performances of CMM, ST-Matching and STD-Matching were also investigated
on a simulated GPS trajectory dataset. First, the impact of sampling rate on the performance of the
three map matching methods was investigated. Second, the three map matching methods were
studied under different scenarios. Third, the impact of trajectory data size on the performance of the
three map matching methods was studied.

4.5.1. Performance versus Sampling Rate

Figure 13 shows the performance of CMM, ST-Matching and STD-Matching, with different
sampling rates, on simulated GPS trajectories. It can be observed that CMM always performs better
than ST-Matching and STD-Matching when GPS sampling rate varies from 2 min to 10 min.
Compared to ST-Matching and STD-Matching, the precision and recall of CMM are much less
sensitive to the sampling rates. When the sampling rate is very low, e.g., 8 min, consecutive GPS
points become more distant from each other, resulting in large uncertainty for the real path of the
trajectory. Thus, the precision and recall of ST-Matching and STD-Matching drop significantly based
on spatial and temporal features. CMM supplements the spatial information of low-sampling-rate
GPS trajectories with trajectory collaboration, which can alleviate the larger uncertainty issue caused
by lower sampling rates.

Figure 13. The performance comparison versus different sampling rates. (a) Precision. (b) Recall.

4.5.2. Performance Evaluation under Different Scenarios

The performance of the three map matching methods was investigated under three scenariosTଵ, Tଶ and Tଷ. The experiment results are displayed in Figure 14. It can be observed in Figure 14a–d that
CMM performs better than ST-Matching and STD-Matching under scenarios Tଵ (multiple turns) and Tଶ (detour). For scenario Tଷ, the precision and recall of CMM, ST-Matching and STD-Matching are
all over 0.8. It can be concluded that CMM can effectively aggregate low-sampling-rate GPS
trajectories into different clusters based on path similarity, if two groups of trajectories move along
distinct road paths.

Figure 13. The performance comparison versus different sampling rates. (a) Precision. (b) Recall.

4.5.2. Performance Evaluation under Different Scenarios

The performance of the three map matching methods was investigated under three scenarios T1,
T2 and T3. The experiment results are displayed in Figure 14. It can be observed in Figure 14a–d that
CMM performs better than ST-Matching and STD-Matching under scenarios T1 (multiple turns) and T2

(detour). For scenario T3, the precision and recall of CMM, ST-Matching and STD-Matching are all over

Sensors 2020, 20, 2057 19 of 22

0.8. It can be concluded that CMM can effectively aggregate low-sampling-rate GPS trajectories into
different clusters based on path similarity, if two groups of trajectories move along distinct road paths.Sensors 2020, 20, x FOR PEER REVIEW 19 of 22

Figure 14. The performance comparison of CMM, ST-Matching and STD-Matching under different
scenarios. (a,b) Scenario Tଵ. (c,d) Scenario Tଶ. (e,f) Scenario Tଷ.

Figure 15 visualizes the map matching results for a simulated GPS trajectory under Tଶ. Figure
15a shows that the sampling rate of the simulated GPS trajectory is very low, and it is very difficult
to identify the real path of the trajectory. Figure 15b shows the cluster where the low-sampling-rate
GPS trajectory is aggregated with the path similarity method. Figure 15c represents the collaborative
trajectory of the cluster after resampling, and Figure 15d shows the map matching result of the
collaborative trajectory.

Figure 15. Visualization of map matching for a simulated low-sampling-rate GPS trajectory. (a) Low-
sampling rate GPS trajectory. (b) Trajectory cluster. (c) Collaborative trajectory. (d) Map matching
result.

Figure 16 illustrates the incorrect paths (shown in the dashed lines) identified by the ST-
Matching algorithm under different scenarios. It can be observed in the figure that incorrect map
matching components are a result of the correct candidate path not being distinguished from other
candidate paths, based on spatial and temporal features, if consecutive GPS points are far from each
other.

Figure 14. The performance comparison of CMM, ST-Matching and STD-Matching under different
scenarios. (a,b) Scenario T1. (c,d) Scenario T2. (e,f) Scenario T3.

Figure 15 visualizes the map matching results for a simulated GPS trajectory under T2. Figure 15a
shows that the sampling rate of the simulated GPS trajectory is very low, and it is very difficult to
identify the real path of the trajectory. Figure 15b shows the cluster where the low-sampling-rate
GPS trajectory is aggregated with the path similarity method. Figure 15c represents the collaborative
trajectory of the cluster after resampling, and Figure 15d shows the map matching result of the
collaborative trajectory.

Sensors 2020, 20, x FOR PEER REVIEW 19 of 22

Figure 14. The performance comparison of CMM, ST-Matching and STD-Matching under different
scenarios. (a,b) Scenario Tଵ. (c,d) Scenario Tଶ. (e,f) Scenario Tଷ.

Figure 15 visualizes the map matching results for a simulated GPS trajectory under Tଶ. Figure
15a shows that the sampling rate of the simulated GPS trajectory is very low, and it is very difficult
to identify the real path of the trajectory. Figure 15b shows the cluster where the low-sampling-rate
GPS trajectory is aggregated with the path similarity method. Figure 15c represents the collaborative
trajectory of the cluster after resampling, and Figure 15d shows the map matching result of the
collaborative trajectory.

Figure 15. Visualization of map matching for a simulated low-sampling-rate GPS trajectory. (a) Low-
sampling rate GPS trajectory. (b) Trajectory cluster. (c) Collaborative trajectory. (d) Map matching
result.

Figure 16 illustrates the incorrect paths (shown in the dashed lines) identified by the ST-
Matching algorithm under different scenarios. It can be observed in the figure that incorrect map
matching components are a result of the correct candidate path not being distinguished from other
candidate paths, based on spatial and temporal features, if consecutive GPS points are far from each
other.

Figure 15. Visualization of map matching for a simulated low-sampling-rate GPS trajectory.
(a) Low-sampling rate GPS trajectory. (b) Trajectory cluster. (c) Collaborative trajectory. (d) Map
matching result.

Figure 16 illustrates the incorrect paths (shown in the dashed lines) identified by the ST-Matching
algorithm under different scenarios. It can be observed in the figure that incorrect map matching
components are a result of the correct candidate path not being distinguished from other candidate
paths, based on spatial and temporal features, if consecutive GPS points are far from each other.

Sensors 2020, 20, 2057 20 of 22
Sensors 2020, 20, x FOR PEER REVIEW 20 of 22

Figure 16. Incorrect map matching parts of ST-Matching algorithm. (a,b) Scenario Tଵ. (c) Scenario Tଶ.
(d,e) Scenario Tଷ.

4.5.3. CMM Performance versus Trajectory Data Size

This section evaluates the impact of trajectory data size on the performance of CMM. The
performance of CMM is studied with a varied number of simulated GPS trajectories (50, 300, 500, 700,
1000) on the paths.

In Figure 17a and Figure 17b, the precision and recall of CMM grow with an increase in trajectory
data size. A greater GPS trajectory data size, results in further GPS trajectories used to make up for
the missing information. This, in turn, leads to the generation of a collaborative GPS trajectory
containing more information after resampling, and thereby, reducing the uncertainty of the group of
low-sampling-rate GPS trajectories.

Figure 17. The performance of CMM with different numbers of GPS trajectories. (a) Precision. (b)
Recall. (c) Running time.

Figure 16. Incorrect map matching parts of ST-Matching algorithm. (a,b) Scenario T1. (c) Scenario T2.
(d,e) Scenario T3.

4.5.3. CMM Performance versus Trajectory Data Size

This section evaluates the impact of trajectory data size on the performance of CMM.
The performance of CMM is studied with a varied number of simulated GPS trajectories (50, 300, 500,
700, 1000) on the paths.

In Figure 17a,b, the precision and recall of CMM grow with an increase in trajectory data size.
A greater GPS trajectory data size, results in further GPS trajectories used to make up for the missing
information. This, in turn, leads to the generation of a collaborative GPS trajectory containing more
information after resampling, and thereby, reducing the uncertainty of the group of low-sampling-rate
GPS trajectories.

Sensors 2020, 20, x FOR PEER REVIEW 20 of 22

Figure 16. Incorrect map matching parts of ST-Matching algorithm. (a,b) Scenario Tଵ. (c) Scenario Tଶ.
(d,e) Scenario Tଷ.

4.5.3. CMM Performance versus Trajectory Data Size

This section evaluates the impact of trajectory data size on the performance of CMM. The
performance of CMM is studied with a varied number of simulated GPS trajectories (50, 300, 500, 700,
1000) on the paths.

In Figure 17a and Figure 17b, the precision and recall of CMM grow with an increase in trajectory
data size. A greater GPS trajectory data size, results in further GPS trajectories used to make up for
the missing information. This, in turn, leads to the generation of a collaborative GPS trajectory
containing more information after resampling, and thereby, reducing the uncertainty of the group of
low-sampling-rate GPS trajectories.

Figure 17. The performance of CMM with different numbers of GPS trajectories. (a) Precision. (b)
Recall. (c) Running time.
Figure 17. The performance of CMM with different numbers of GPS trajectories. (a) Precision. (b) Recall.
(c) Running time.

Sensors 2020, 20, 2057 21 of 22

Figure 17c shows the running time of CMM with different sizes of GPS trajectory data. The average
running time per GPS point grows linear with increased trajectory data size. This is because the
running time of CMM is mainly composed of two parts—trajectory similarity calculation and candidate
path search. With Path-Forest, the candidate path search is efficient. Thus, the time cost for candidate
path search does not grow, even if the size of trajectory data is greatly expanded. However, the running
time for trajectory similarity calculation will increase with the growing number of GPS trajectories.

5. Conclusions and Future Work

In this paper, a collaborative map matching method (CMM) was proposed for low-sampling-rate
GPS trajectories. CMM first groups similar GPS trajectories into clusters based on path similarity and
then supplements the missing information of GPS trajectories by resampling. A collaborative trajectory
is then extracted for each cluster and is matched to the road network. Experiments were conducted in
a real, and a simulated, GPS trajectory dataset. The experiment results show that the proposed CMM
outperforms the baseline method in both, effectiveness and efficiency.

In CMM, the similarity measurement for low-sampling-rate GPS trajectory is considered,
based on path similarity, which overcomes the deficiency of geometry similarity. A trajectory
resampling algorithm is proposed to extract a high-sampling-rate GPS trajectory from each cluster
of low-sampling-rate GPS trajectories, which could effectively reduce the uncertainty issue of
map matching.

This work can be improved in the following ways: First, the current path similarity method only
considers the number of common road segments when measuring the similarity between candidate
paths. In future, more features can be involved for path similarity measurement. For instance, the
average moving speed of GPS trajectories on candidate paths can be considered for path similarity
measurement. Additionally, the grid-based method C-SIM was proposed and seems promising for
measuring similarity between the trajectories [14]. The method uses only the spatial aspect of routes
and ignores the order of traveling, which makes it simple and fast. It converts the GPS points to cells
and fills the gap between cells using linear interpolation if two consecutively generated cells are not
adjacent. However, the size of the grid is crucial and should be carefully determined for low sampling
trajectories. For this study, if the grid size is too large, dissimilar GPS trajectories would be aggregated
into one group; if the grid size is too small, similar GPS trajectories may not be effectively clustered into
one group. Therefore, how to utilize the grid-based method in map matching for a low-sampling-rate
trajectory will be investigated in future. Second, for each trajectory cluster, only location information
of GPS points was considered for trajectory resampling. However, the speed and heading information
of new generated GPS points should be estimated after resampling, which could produce a better map
matching result. The CMM method will be deployed on a distributed computing platform to handle
massive low-sampling-rate GPS trajectories throughout the city.

Author Contributions: Conceptualization, G.C. and X.W.; Formal analysis, W.B. and G.C.; Funding acquisition,
X.W.; Investigation, W.B. and G.C.; Supervision, G.C. and X.W.; Validation, W.B.; Visualization, W.B.;
Writing—original draft, W.B. and G.C.; Writing—review & editing, G.C. and X.W. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China under Grant Number
61772420 and the Natural Sciences and Engineering Research Council of Canada Discovery Grant provided to
Xin Wang.

Conflicts of Interest: The authors declare that there is no conflict of interests regarding the publication of this paper.

References

1. Quddus, M.; Washington, S. Shortest path and vehicle trajectory aided map-matching for low frequency GPS
data. Transp. Res. C Emerg. Technol. 2015, 55, 328–339. [CrossRef]

http://dx.doi.org/10.1016/j.trc.2015.02.017

Sensors 2020, 20, 2057 22 of 22

2. Lou, Y.; Zhang, C.; Zheng, Y.; Xie, X.; Wang, W.; Huang, Y. Map-matching for low-sampling-rate GPS
trajectories. In Proceedings of the 17th ACM Sigspatial International Conference on Advances in Geographic
Information Systems, Seattle, WA, USA, 3–6 November 2009; pp. 352–361. [CrossRef]

3. Hsueh, Y.L.; Chen, H.C. Map matching for low-sampling-rate GPS trajectories by exploring real-time moving
directions. Inf. Sci. 2018, 433–434, 55–69. [CrossRef]

4. Liu, X.; Liu, K.; Li, M.; Lu, F. A st-crf map-matching method for low-frequency floating car data. IEEE Trans.
Intell. Transp. Syst. 2017, 18, 1241–1254. [CrossRef]

5. Yin, Y.; Shah, R.R.; Wang, G.; Zimmermann, R. Feature-based Map Matching for Low-Sampling-Rate GPS
Trajectories. Trans. Spat. Algorithms Syst. 2018, 4, 1–24. [CrossRef]

6. Hu, G.; Shao, J.; Liu, F.; Wang, Y.; Shen, H.T. IF-Matching: Towards Accurate Map-Matching with Information
Fusion. IEEE Trans. Knowl. Data Eng. 2016, 29, 114–127. [CrossRef]

7. Zheng, K.; Zheng, Y.; Xie, X.; Zhou, X. Reducing uncertainty of low-sampling-rate trajectories. In Proceedings
of the International Conference on Data Engineering, Arlington, VA, USA, 1–5 April 2012; pp. 1144–1155.
[CrossRef]

8. Huang, Y.; Rao, W.; Zhang, Z.; Zhao, P.; Yuan, M.; Zeng, J. Frequent Pattern-Based Map-Matching on Low
Sampling Rate Trajectories. In Proceedings of the International Conference on Mobile Data Management
(MDM), Aalborg, Denmark, 25–28 June 2018; pp. 266–273. [CrossRef]

9. Lee, J.G.; Han, J.; Whang, K.Y. Trajectory clustering: A partition-and-group framework. In Proceedings of
the 2007 ACM SIGMOD international conference on Management of data, Beijing, China, 12–14 June 2007;
pp. 593–604. [CrossRef]

10. Buchin, K.; Buchin, M.; Gudmundsson, J.; Löffler, M.; Luo, J. Detecting Commuting Patterns by Clustering
Subtrajectories. In Proceedings of the International Symposium on Algorithms and Computation, Gold Coast,
Australia, 15–17 December 2008; pp. 644–655. [CrossRef]

11. Kharrat, A.; Popa, I.S.; Zeitouni, K.; Faiz, S. Clustering algorithm for network constraint trajectories.
In Proceedings of the Headway in Spatial Data Handling, Montpellier, France, 23–25 July 2008; pp. 631–647.

12. Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial
databases with noise. In Proceedings of the Second International Conference on Knowledge Discovery and
Data Mining, Portland, OR, USA, 2–4 August 1996; pp. 226–231.

13. Alt, H.; Godau, M. Computing the Fréchet distance between two polygonal curves. Int. J. Comput. Geom. Appl.
1955, 5, 75–91. [CrossRef]

14. Mariescu-Istodor, R.; Fränti, P. Grid-based method for GPS route analysis for retrieval. ACM Trans. Spat.
Algorithms Syst. 2017, 3, 28. [CrossRef]

15. Yen, J.Y. Finding K Shortest Loopless Paths in a Network. Manage. Sci. 1971, 17, 712–716. [CrossRef]
16. Vlachos, M.; Kollios, G.; Gunopulos, D. Discovering similar multidimensional trajectories. In Proceedings

of the 18th International Conference on Data Engineering, San Jose, CA, USA, 26 February–1 March 2002;
pp. 673–684.

17. Yang, J.W.; Mariescu-Istodor, R.; Fränti, P. Three Rapid Methods for Averaging GPS Segments. Appl. Sci 2019,
9, 4899. [CrossRef]

18. Zhu, L.; Holden, J.R.; Gonder, J.D. Trajectory segmentation map-matching approach for large-scale,
high-resolution GPS data. Transp. Res. Board 2017, 2645, 67–75. [CrossRef]

19. Zhang, D.; Zhao, J.; Zhang, F.; He, T. UrbanCPS: A cyber-physical system based on multi-source big
infrastructure data for heterogeneous model integration. In Proceedings of the ACM/IEEE Sixth International
Conference on Cyber-Physical Systems, Seattle, WA, USA, 14–16 April 2015; pp. 238–247.

20. Chen, L.; Özsu, M.T.; Oria, V. Robust and fast similarity search for moving object trajectories. In Proceedings
of the 2005 ACM SIGMOD International Conference on Management of Data, Baltimore, ML, USA, 14–16 June
2005; pp. 491–502.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/1653771.1653820
http://dx.doi.org/10.1016/j.ins.2017.12.031
http://dx.doi.org/10.1109/TITS.2016.2604484
http://dx.doi.org/10.1145/3223049
http://dx.doi.org/10.1109/TKDE.2016.2617326
http://dx.doi.org/10.1109/icde.2012.42
http://dx.doi.org/10.1109/MDM.2018.00046
http://dx.doi.org/10.1145/1247480.1247546
http://dx.doi.org/10.1007/978-3-540-92182-0_57
http://dx.doi.org/10.1142/S0218195995000064
http://dx.doi.org/10.1145/3125634
http://dx.doi.org/10.1287/mnsc.17.11.712
http://dx.doi.org/10.3390/app9224899
http://dx.doi.org/10.3141/2645-08
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Map Matching Problem
	Trajectory Clustering Problem

	Methodology
	Preliminaries
	Overview of Collaborative Map Matching
	Preprocessing
	Trajectory Clustering with Path Similarity
	Candidate Path Search
	Trajectory Clustering

	Trajectory Resampling
	Map Matching for the Supplemented Trajectory

	Experiment
	Study Area
	Dataset
	Real GPS Trajectory Dataset
	Trajectory Simulation

	Parameter Configuration
	Performance Evaluation on Real Trajectory Dataset
	Overall Performance Evaluation
	Performance Evaluation for Path Similarity
	Parameter Tuning

	Performance Evaluation on Simulated Trajectory Dataset
	Performance versus Sampling Rate
	Performance Evaluation under Different Scenarios
	CMM Performance versus Trajectory Data Size

	Conclusions and Future Work
	References

