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Abstract: Background: Alzheimer Disease (AD) is the most prevalent dementia. However, the
physiopathological mechanisms involved in its development are unclear. In this sense, a multi-
omics approach could provide some progress. Methods: Epigenomic and lipidomic analysis were
carried out in plasma samples from patients with mild cognitive impairment (MCI) due to AD
(n = 22), and healthy controls (n = 5). Then, omics integration between microRNAs (miRNAs) and
lipids was performed by Sparse Partial Least Squares (s-PLS) regression and target genes for the
selected miRNAs were identified. Results: 25 miRNAs and 25 lipids with higher loadings in the sPLS
regression were selected. Lipids from phosphatidylethanolamines (PE), lysophosphatidylcholines
(LPC), ceramides, phosphatidylcholines (PC), triglycerides (TG) and several long chain fatty acids
families were identified as differentially expressed in AD. Among them, several fatty acids showed
strong positive correlations with miRNAs studied. In fact, these miRNAs regulated genes implied
in fatty acids metabolism, as elongation of very long-chain fatty acids (ELOVL), and fatty acid
desaturases (FADs). Conclusions: The lipidomic–epigenomic integration showed that several lipids
and miRNAs were differentially expressed in AD, being the fatty acids mechanisms potentially
involved in the disease development. However, further work about targeted analysis should be
carried out in a larger cohort, in order to validate these preliminary results and study the proposed
pathways in detail.
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1. Introduction

Alzheimer disease (AD) is the most prevalent dementia [1]. Some hallmarks are
clearly related to AD; accumulation of extracellular β-amyloid plaques and intracellular
Tau neurofibrillary tangles. Nevertheless, the physiopathological mechanisms involved in
the complex and multifactorial AD development remain unclear [2]. Therefore, a multi-
omics approach could provide some progress in this field.

AD development could involve the reconfiguration of the epigenome and the modifica-
tion of some genes expression have an impact in different disease pathways [3]. Specifically,
differential expression of microRNAs have been found in recent AD studies [4,5]. These
miRNAs could act as an epigenetic mechanism modifying the expression of different pro-
teins post-transcriptionally [6]. Therefore, an increase or decrease in the levels of miRNAs
could influence the expression of different proteins or enzymes. In this context, Hébert et al.
described different miRNAs related to Amyloid precursor protein (APP) expression [7].
Therefore, epigenomics could be implicated in this pathology.

Lipidomics could also play an important role in AD development. In fact, lipids, the
main component of cell membranes, are strongly related to brain function and neurodegen-
erative diseases [8]. Specifically, the lipids from phospholipids, triglycerides, sphingolipids
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and cholesteryl esters correlated with clinical AD diagnosis, brain atrophy and disease
progression [9]. A previous study developed a combination of 24 molecules to classify
patients with high accuracy (>70%), and identified some metabolic features (triglycerides,
phosphatidylcholines) [10].

Integrative network analysis of multi-omics results allowed us to identify molecular
mechanisms in AD. A previous study based on RNA and Whole Genome Sequencing (WGS)
observed signaling circuits of complex molecular interactions in key brain regions [11].
In another multi-omics study, Xicota et al. 2019 studied RNAseq, metabolomics and
lipidomics, they found a signature of some blood metabolites and transcripts, which
identified asymptomatic AD patients [12]. Additionally, a study from the literature showed
the integration of genome-wide association studies with expression data, identifying some
genes related to AD physiopathology. Specifically, the pathways were involved in calcium
homeostasis [13]. In addition, a recent study was based on an integrative analysis of blood
microRNAs expression and genomic data to develop an AD prognosis model, including 24
single nucleotide polymorphism-microRNA (miR-eQTLs), as well as age, sex, and APOE4
genotype [14]. From these miR-eQTLs, four genes related to AD (SHC1, FOXO1, GSK3B,
and PTEN) were identified. Similarly, a genomics and metabolomics study demonstrated
the utility of these data integration with AD risk factors to understand the mechanisms
involved, revealing the importance of glycine as a mediator in cardiovascular and diabetes
risk [15]. Epigenomic–lipidomic integration would allow the global study of the regulatory
mechanisms involved in AD such as lipid homeostasis, oxidative stress, synaptic vesicle
trafficking, inflammation, etc. [16]. These omics data were analysed together to develop an
understanding of lipid regulation by epigenomics. Previous works based on the analysis
of genome-wide DNA methylation showed that an epigenetic pattern was associated
with cholesterol regulation [17]. In addition, in Parkinson Disease (PD), an epigenetic
(DNA methylation) regulation was involved in the inactivation of the autophagy system,
contributing to protein accumulation [18]. Thus, the study of the integration between
epigenomics and lipidomics could show lipid regulation mechanisms involved in AD.

The aim of this work was to carry out the integration of epigenomics and lipidomics
analysis in plasma samples from patients with mild cognitive impairment (MCI) due to
AD, in order to advance the knowledge of early physiopathological mechanisms.

2. Materials and Methods
2.1. Participants and Samples Collection

All the participants were aged between 50 and 80 years old. Patients with known
major neurological or psychiatric conditions were excluded. Assessment included a neu-
ropsychological evaluation (Repeatable Battery for Assessment of Neuropsychological
Status (RBANS) [19], Functionality Assessment Questionnaire (FAQ) [20], Clinical Demen-
tia Rating (CDR) [21], MMSE [22]), analysis by means of NMR-TAC and cerebrospinal
fluid (CSF) levels of amyloid β-42 peptide, t-Tau and p-Tau (Table 1). According to this,
participants were classified into patients with MCI-AD (n = 22), and healthy controls
(n = 5).

Blood samples from participants were collected into EDTA-tubes, and plasma was
separated. Then, plasma samples were stored at −80 ◦C until the analysis.

Table 1. Clinical and neuropsychological criteria for participants’ classification.

Test or Biomarker
Participant Group

Control MCI-AD

CDR * 0–0.5 0.5–1

MMSE * ≥27 <27

RBANS.DM * ≥85 <85
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Table 1. Cont.

Test or Biomarker
Participant Group

Control MCI-AD

FAQ <9 >9

Neuroimaging Structural
(NMR-TAC) Normal Altered

CSF amyloid β42 (pg mL−1) ≥700 <700

CSF t-Tau (pg mL−1) <350 ≥350

CSF p-Tau (pg mL−1) <85 ≥85
* In MCI-AD group minimum 2 of the 3 cognitive status test (CDR, MMSE, RBANS.DM) should be altered.

2.2. Omics Analysis
2.2.1. Epigenomics

Epigenomic analysis was carried out by means of NGS NextSeq 550 platform (Illumina,
San Diego, CA, USA) by single read sequencing of 50 cycles (1 × 50 bp). Data were
processed and normalised to quantify and generate miRNA counts. The miRbase (v.21)
allowed us to identify the miRNAs. Then, the identification of potential target genes for
the selected miRNAs were carried out by miRbase (v.21, Manchester, UK).

2.2.2. Lipidomics

Lipidomic analysis was carried out by means of ultra-performance liquid chro-
matography coupled to time-of-flight mass spectrometry (MS). The internal standard
consisted of a mix of: MG(17:0), LPC(17:0), Cer(d18:1/17:0), DG(17:0/17:0), SM(d18:1/17:0),
PE(17:0/17:0), PC(17:0/17:0), TG(17:0/17:0/17:0), CE(17:0), PG(17:0/17:0) and PS(17:0/17:0).
The chromatographic and mass spectrometry conditions were those established in the stan-
dard procedures of the Analytical Unit from Health Research Unit from Health Research
Institute La Fe. Briefly, data were processed for peak detection, noise filtering, and peak
alignment. The procedure was conducted to reduce the intra-batch variability, as well as to
ensure the quality and reproducibility of the analysis. It consisted of a random injection
order, at the beginning of the sequence 5 quality control (QC) samples were analysed in
order to condition column and equipment, and every 5–7 samples a QC was analysed in
Full MS mode. Additionally, at the beginning, middle, and end of the sequence, some
QCs were analysed in Fragmentation in Data Independent mode and in Fragmentation
in Data Dependent mode to proceed to the annotations of lipid species with the LipidMS
annotations package. Then, data were filtered to exclude variables whose coefficients of
variation in the QCs were higher than 30%, and variables with zeros in more than 60% of
samples. Then, data were normalised. Finally, the library LipidMSid was used to identify
the lipids.

2.3. Statistical Analysis and Lipidomics-Epigenomics Integration

Data were summarised using median (1st, 3rd quartiles) for quantitative variables
and absolute frequency (%) for qualitative variables.

Sparse Partial Least Squares (sPLS) regression was applied to the previous data sets to
select variables (miRNAs, lipids) and integrate them. The sPLS approach combines both
integration and variable selection on two data sets in a one-step strategy [23].

Then, the graphical representations (correlation circle plots, heatmaps, relevance
networks) resulting from the statistical approach were plotted.

Individual differences between groups were carried out by Mann–Whitney test, and
correlations by Pearson Correlation. In all the cases, statistical significance was fixed in a
p value of 0.05.
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Statistical analyses were performed using R software (v 4.0.3, Auckland, CA, USA)
and mixOmics (v 6.16.2) and clickR (v 0.7.35) packages and SPSS software version 20.0
(SPSS, Inc., Chicago, IL, USA).

3. Results
3.1. Participants

Table 2 shows the demographic and clinical data for the participants. As expected,
CSF biomarkers levels and neuropsychological tests were different between groups. In
fact, the MCI-AD group showed lower levels for amyloid β-42, and higher levels for t-Tau
and p-Tau; also, MCI-AD group showed lower scores for MMSE, and RBANS, and higher
scores for CDR and FAQ.

Table 2. Demographic and clinical characteristics of the participants.

Variables Healthy Group (n = 5) MCI-AD Group (n = 22)

Age (years, median (IQR)) 68 (68, 72) 72 (69, 74)

Gender (female, n (%)) 2 (40%) 12 (54.5%)

CSF amyloid β-42 (pg mL−1,
median (IQR))

1346.74 (930, 1421) 517.16 (453.86, 634.45)

CSF amyloid β-42/amyloid
β-40 (median, IQR) 0.1 (0.09, 0.11) 0.05 (0.05, 0.05)

CSF t-Tau (pg mL−1, median
(IQR))

240 (238, 276) 566 (450, 780)

CSF p-Tau (pg mL−1, median
(IQR))

35 (35, 40) 81 (64.5, 107)

CSF NfL (pg mL−1, median
(IQR))

826.94 (791, 847.7) 1428.68 (1123.24, 1555.91)

CSF t-Tau/amyloid β-42
(median (IQR)) 0.2 (0.19, 0.25) 0.99 (0.79, 1.32)

CDR (score, median (IQR)) 0 (0–0.5) 0.5 (0–1)

MMSE (score, median (IQR)) 29 (29, 30) 24 (23, 26)

RBANS_DM (score, median
(IQR)) 100 (98, 110) 44 (40, 64)

FAQ (score, median (IQR)) 1 (0, 2) 7 (4, 9)
CSF: cerebrospinal fluid; IQR: inter-quartile range; CDR: Clinical Dementia Rating; MMSE: Mini-Mental State
Examination; RBANS_DM: The Repeatable Battery for the Assessment of Neuropsychological Status_Delayed
Memory; FAQ: Functional Activities Questionnaire.

3.2. Omics Integration

The sPLS model integrated two data matrices X (epigenomics) and Y (lipidomics).
Additionally, sPLS performed simultaneous variables selection in the two data sets, by
means of LASSO penalization on the pair of loading vectors. In this sense, two components
were chosen, and 25 variables were selected on each dimension and for each data set. The
X-block represented miRNAs, and the Y-block represented lipids.

Samples from both sets were represented in the ‘common’ subspace spanned by the
principal components (PC1, PC2). As can be seen in Figure 1, samples were differentiated
in the plot according to the participants group, there was not observed a clear separation.

Among the 25 selected variables for each data set, the miRNAs (block X) with higher
loadings in the sPLS regression were hsa-miR-494-3p, hsa-miR-6894-3p, hsa-miR-421 and
hsa-let-7a-3p; and the lipids (block Y) with higher loadings were FA (20:3), FA (20:4), FA
(16:0), FA (20:2), and FA (18:2) (see Figure 2).
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Figure 2. Horizontal barplot to visualise loading vector. The contribution of each variable for each
component (comp) is represented in a barplot, where each bar length corresponds to the loading
weight (importance) of the feature. The loading weight can be positive or negative.

The correlation circle plot depicted microRNAs and lipids selected on each component.
As can be seen in the Supplementary Material (Figure S1), some subsets of variables were
important to define each component. Actually, some miRNAs (hsa-miR-5010-5p, hsa-
miR-421, hsa-miR-664a, hsa-miR-29b-3p, hsa-let-7a-3p, hsa-miR-19b-3p) and some lipids
(FA (20:4), FA (20:3), FA (18:0)) mainly participated in defining the sPLS component 2;
and some miRNAs (hsa-miR-335-3p, hsa-miR-532-3p, hsa-miR-379-5p, hsa-miR-4646-3p,
hsa-miR-425-3p) mainly participated in defining component 1. Additionally, miRNAs, such
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as hsa-miR-421 and hsa-miR-5010-5p, were positively correlated to the lipids FA (20:4) and
FA (20:3); while these miRNAs were negatively correlated to the lipid TG (17:0/17:0/17:0).

The integration results were depicted by means of a heatmap. The similarity matrix
was obtained from the sPLS results [24], and agglomerative hierarchical clustering was
derived using the Euclidean distance as the similarity measure, and the Ward methodol-
ogy [25]. In this sense, Figure 3 shows the heatmap for the correlations between miRNAs
and lipids selected from sPLS. The red colour corresponded to positive correlation, while
the blue colour corresponded to negative correlation. Most of the correlations were positive.
In general, Figure 4 showed a positive correlation between studied miRNAs and lipids.
However, the lipid TG (17:0/17:0/17:0) showed a negative correlation with all the described
miRNAs. In addition, similar miRNAs were grouped, showing clusters for miR-29a-3p,
let-7a-3p, miR-576-5p, miR-185-5p, miR-6894-3p, miR-5010-5p; for miR-29b-3p, miR-877-5p,
miR-494-3p, miR-4433a-3p, miR-4433b-5p; and for miR-421, miR-450b-5p, miR-664a-3p,
miR-432-5p, miR-654-5p, miR-2110, miR-329-3p. In addition, similar lipids were grouped,
showing clusters for FA (18:0)/FA (14:0)/FA (18:0)/FA (16:0)/FA (18:2) and FA (20:3)/FA
(20:4)/FA (18:2)/FA (20:2)/FA (16:0).
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3.3. Potential Pathways Involved in AD

In Table 3, the predicted target genes for the selected miRNAs were described paying
special attention to the genes that are implied in lipid metabolism, specifically in fatty
acids pathways, which showed correlation with the miRNAs. In fact, fatty acids family
showed the strongest correlations with miRNAs (see Figure 4). Among the identified
target genes, several enzymes, such as elongases (ELOVL1, ELOVL2, ELOVL3, ELOVL4,
ELOVL5, ELOVL6, ELOVL7), fatty acid desaturase (FADS6), fatty acyl-CoA reductases
(FAR 1, FAR 2), fatty acid binding protein (FABP7), and fatty acid 2-hydroxylase (FA2H)
were highlighted.

Another representation for the integration results is based on relevance network for
sPLS regression, showing simultaneously positive and negative correlations between the
two variable types (microRNAs, lipids). As can be seen in Figure 4 and the Supplementary
Material in Table S1, most of these correlations were positive. Specifically, the highest
positive correlations corresponded to these pairs of variables (FA (16:0) and FA (20:2) with
hsa-miR-664, hsa-miR-432, hsa-miR-421, and hsa-miR-450b-5p; FA (18:0) and FA (18:2) with
hsa-miR-664, hsa-miR-421 and hsa-miR-450b-5p; FA (20:3) and FA (20:4) with hsa-miR-
664, hsa-miR-211, hsa-miR-432, hsa-miR-329, hsa-miR-654, hsa-let-7a-3p, hsa-miR-29a-3p,
hsa-miR-421, and hsa-miR-450b-5p). On the other hand, the highest negative correlations
corresponded to the lipid TG (17:0/17:0/17:0) with some miRNAs (hsa-miR-664-3p, hsa-
miR-2110, hsa-miR-432-5p, hsa-miR-329-3p, hsa-miR-654-5p, hsa-miR-185-5p, hsa-let-7a-3p,
hsa-miR-576-5p, hsa-miR-29a-3p, hsa-miR-6894-3p, hsa-miR-421, hsa-miR-450b-5p).
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Table 3. Predicted target genes related to fatty acids for the selected miRNAs (miRBase).

miRNA Target Genes

hsa-miR-494-3p
ELOVL3 (ELOVL fatty acid elongase 3)

ELOVL5 (ELOVL fatty acid elongase 5)

hsa-miR-6894-3p

hsa-miR-421

ARV1 (ARV1 homolog, fatty acid homeostasis
modulator)

FAR1 (fatty acyl-CoA reductase 1)

ELOVL2 (ELOVL fatty acid elongase 2)

hsa-let-7a-3p

ELOVL2 (ELOVL fatty acid elongase 2)

FA2H (fatty acid 2-hydroxylase)

ELOVL7 (ELOVL fatty acid elongase 7)

hsa-miR-664a-3p

FAR1 (fatty acyl-CoA reductase 1)

ELOVL4 (ELOVL fatty acid elongase 4)

ELOVL7 ELOVL fatty acid elongase 7

ELOVL5 ELOVL fatty acid elongase 5

hsa-miR-329-3p

hsa-miR-450b-5p ELOVL6 (ELOVL fatty acid elongase 6)

hsa-miR-323a-3p

hsa-miR-382-5p

hsa-miR-199b-3p

hsa-miR-654-5p
FADS6 (fatty acid desaturase 6)

ELOVL1 (ELOVL fatty acid elongase 1)

hsa-miR-2110 ELOVL4 (ELOVL fatty acid elongase 4)

hsa-miR-432-5p

hsa-miR-505-3p ELOVL4 (ELOVL fatty acid elongase 4)

hsa-miR-29a-3p ELOVL4 (ELOVL fatty acid elongase 4)

hsa-miR-19b-3p ELOVL5 (ELOVL fatty acid elongase 5)

hsa-miR-185-5p

ELOVL4 (ELOVL fatty acid elongase 4)

ELOVL2 (ELOVL fatty acid elongase 2)

FAR1 (fatty acyl-CoA reductase 1)

hsa-miR-576-5p FAR2 (fatty acyl-CoA reductase 2)

hsa-miR-877-5p

hsa-miR-29b-3p ELOVL4 (ELOVL fatty acid elongase 4)

hsa-miR-143-3p
FADS6 (fatty acid desaturase 6)

FAR1 (fatty acyl-CoA reductase 1)

hsa-miR-7976

hsa-miR-5010-5p

hsa-miR-4433b-5p

hsa-miR-4433a-3p

FABP7 (fatty acid binding protein 7)

ELOVL4 (ELOVL fatty acid elongase 4)

ELOVL2 (ELOVL fatty acid elongase 2)
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3.4. Lipidomics and Epigenomics in AD

From the univariate analysis, differences between groups were not obtained for miR-
NAs nor individual lipids. Median values are summarised as Supplementary Material
(Table S2). In addition, boxplots representing the lipid levels for each participants group
were also depicted in the Supplementary Material (Figure S2).

In addition, the analysis between age/gender and biomarkers levels showed no
correlations for any miRNA or lipid analysed.

4. Discussion

Epigenomics and lipidomics analyses were carried out in plasma samples from early
AD patients, identifying microRNAs and lipids, respectively. From these results, integration
analysis was carried out in order to study associations between both compounds families; to
evaluate their potential relationship with early AD development; and identify the potential
pathways altered in early stages of the disease.

Some studies in literature are focused on multi-omics integration, mainly based on
proteomics and miRNAs [26]. However, few studies are focused on lipidomic and miR-
NAs integration, which allow us to identify different biological activities involved in cell
communication [27]. In general, the integration of omics results (lipidomics, metabolomics,
proteomics, epigenomics) helps to give a global image of the mechanisms involved in
complex diseases [28]. Nevertheless, this field of research is still underdeveloped in AD
and few studies are based on this integration [16].

In the present study, integration and selection of variables from each dimension
showed that some microRNAs (hsa-miR-494-3p, hsa-miR-6894-3p, hsa-miR-421 and hsa-
let-7a-3p) and some lipids (FA (20:3), FA (20:4), FA (16:0), FA (20:2), FA (18:2)) had higher
loadings in the regression model. Similarly, a previous study carried out in plasma from
amyloid positive and amyloid negative participants obtained a signature of 71 miRNAs
differentially expressed between groups, highlighting the hsa-miR-421 and hsa-let-7a-
3p [29]. In addition, a previous study from Hojati et al. revealed that hsa-miR-494-3p
was slightly up-regulated in AD patients and that it was related to metabolic and cellular
response to stress pathways [30]; while Lv et al., found that levels of hsa-let-7a-3p were
elevated in patients with early onset familiar AD [31]. The up-regulation of hsa-let-7a-3p
showed an increase in neurotoxicity in AD cell model [32]. On the other hand, previous
studies found several fatty acids levels increased or decreased in AD [33,34]. Specifically,
AD was related to lower levels of myristic 14:0, palmitic 16:0, stearic 18:0 and oleic 18:1
acid and a higher proportion of linoleic acid 18:2n−6 [33]. However, this study was limited
to FAs from 14:0 to 22:6 and did not determine all lipidic profiles. In addition, Conquer
et al. described lower levels of phospholipid, PC 20:5n-3, DHA, total n−3 fatty acids, the
n−3/n−6 ratio and phospholipid 24:0 compared to controls [34]. Moreover, Conquer et al.
did not find differences for FA (20:3), FA (20:4), FA (20:2) and FA (18:2) in plasma samples
from AD, cognitive impairment, and patients with other neurodegenerative diseases [34].
This discrepancy with the present results could be due to differences in AD diagnosis
methods, since the previous study did not use CSF biomarkers to identify AD patients. In
fact, these participants were classified by amyloid PET, and biomarkers were measured in
erythrocytes. In addition, erythrocyte fatty acid composition varied according to disease
development, showing differences between AD and non-AD participants for FA (20:4) but
not for FA (20:3), FA (20:2) nor FA (18:2) [35].

Regarding correlations between microRNAs and lipids, and similarities among them
in each omics data group, they showed that most of these correlations were positive.
However, previous studies that correlated epigenomics (DNA hydroxymethylation) and
metabolomics showed more variety between positive and negative correlations [36]. More
specifically, several studies in neurodegeneration revealed the interaction between miRNAs
expression and lipids regulation, mainly focussed on cholesterol metabolism [37]. Jauouen
et al. described miR-33 function modulating ABCA1 and interfering with Aβ plaque
formation through cholesterol metabolism regulation [38]. In the present study, some
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miRNAs (miR-29a-3p, let-7a-3p, miR-576-5p, miR-185-5p, miR-6894-3p, miR-5010-5p; for
miR-29b-3p, miR-877-5p, miR-494-3p, miR-4433a-3p, miR-4433b-5p; for miR-421, miR-
450b-5p, miR-664a-3p, miR-432-5p, miR-654-5p, miR-2110, miR-329-3p) were grouped
reflecting their similarity. Taking into account previous works, Kumar et al. found different
miRNAs clustered expression, differentiating AD and control participants (hsa-miR-4741,
hsa-miR-4668-5p, hsa-miR-3613-3p, hsa-miR-5001-5p, miR-4674) [39]. The discrepancies
with present results may be due to the difference in the diagnosis of the patients, since
the study from Kumar et al. was not based on CSF biomarkers. Moreover, Denk et al.
showed clustered expression of miRNAs in control, AD and frontotemporal dementia
participants, showing that some clusters included miRNAs from the same family, while
others included different families in the same cluster, as in the present study [40]. However,
the set of analysed miRNAs was limited. On the other hand, some lipids were grouped
in the present paper (FA (18:0)/FA (14:0)/FA (18:0)/FA (16:0)/FA (18:2); FA (20:3)/FA
(20:4)/FA (18:2)/FA (20:2)/FA (16:0)). In this sense, previous findings in an AD mice model
showed different lipids expression clusters along the disease progression (two, three, seven
months), showing mainly PEs in two months progression and a predomination of TG at
seven months [41]. In addition, Kumar et al. described the co-regulation of different lipid
sets, among which 17 were fatty acids [42].

Finally, the highest positive correlations between microRNAs and lipids were mainly
for hsa-miR-664, hsa-miR-432, hsa-let-7a-3p, hsa-miR-29a-3p, hsa-miR-421 and hsa-miR-
450b-5p with some fatty acids (FA (16:0), FA (18:0), FA (20:2), FA (20:3), FA (20:4)). In
general, the described miRNAs showed a positive correlation with fatty acids. Of note,
these miRNAs targeted sequences in genes implied in fatty acids metabolism. In this
sense, previous studies showed a relationship between AD and fatty acids metabolism,
demonstrating differential levels of fatty acids (FA (16:0), FA (18:0), FA (18:1), FA (18:2),
FA(20:4), FA (20:5), FA (22:6)) similar to the present results [43]. Regarding hsa-miR-421, it
showed a positive correlation with some detected lipids (FA (16:0), FA (20:2), FA (18:2), FA
(20:4), FA (20:3), FA (18:0), FA (14:0)). Previous works identified the relationship between
this miRNA and lipid metabolism regulation, specifically with triacylglycerol levels [44].On
the other hand, the highest negative correlations corresponded to the triglyceride (TG
(17:0/17:0/17:0)) with some miRNAs (hsa-miR-664-3p, hsa-miR-432-5p, hsa-miR-329-3p,
hsa-miR-654-5p, hsa-miR-185-5p, hsa-let-7a-3p, hsa-miR-576-5p, hsa-miR-29a-3p, hsa-miR-
421, hsa-miR-450b-5p). Similarly, in literature it was shown that hsa-miR-29a could regulate
the lipoprotein lipase (LPL) that catalyses hydrolysis of the triglycerides [45].

The main limitation of this study is the reduced number of healthy control patients.
However, the availability of biologically identified (CSF biomarkers) patients with MCI
due to AD provides a great potential in the identification of potential pathways involved in
early AD. Other limitations in this study are: (i) the analytical method is a semiquantitative
approach, (ii) the ApoE genotype has not been taken into account, although it is known
that ApoE is involved in lipid homeostasis.

5. Conclusions

The present study highlights the potential of a multi-omics approach in the devel-
opment of a signature of biomarkers of MCI-AD, as well as the description of potential
metabolic pathways involved in AD since its early stages. Specifically, epigenomics and
lipidomics integration allowed us to identify some associations between microRNAs and
lipids, showing their relationship with early AD development. In fact, fatty acids impair-
ment could be an important pathway involved in early AD. However, further work based
on targeted analysis should be carried out in a larger cohort in order to validate these
preliminary results, as well as to study the proposed pathways in detail.
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