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Interleukin-6 (IL-6) has a dual role in modulating insulin sensi-
tivity, with evidence for this cytokine as both an enhancer and
inhibitor of insulin action. We determined the effect of IL-6
exposure on glucose and lipid metabolism in cultured myotubes
established from people with normal glucose tolerance or type 2
diabetes. Acute IL-6 exposure increased glycogen synthesis,
glucose uptake, and signal transducer and activator of tran-
scription 3 (STAT3) phosphorylation in cultured myotubes from
normal glucose tolerant subjects. However, in type 2 diabetic
patients, IL-6 was without effect on glucose metabolism and
STAT3 signaling, concomitant with increased suppressor of
cytokine signaling 3 (SOCS3) expression. IL-6 increased fatty
acid oxidation in myotubes from type 2 diabetic and normal
glucose tolerant subjects. Expression of IL-6, IL-6 receptor (IL-
6R), or glycoprotein 130, as well as IL-6 secretion, was unaltered
between cultured myotubes from normal glucose tolerant or type
2 diabetic subjects. Circulating serum IL-6 concentration was
unaltered between normal glucose tolerant and type 2 diabetic
subjects. In summary, skeletal muscle cells from type 2 diabetic
patients display selective IL-6 resistance for glucose rather than
lipid metabolism. In conclusion, IL-6 appears to play a differential
role in regulating metabolism in type 2 diabetic patients com-
pared with normal glucose tolerant subjects. Diabetes 62:355–
361, 2013

T
he role of interleukin-6 (IL-6) in the development
of peripheral insulin resistance in type 2 diabetes
is a matter of debate (1,2). Elevated serum con-
centrations of proinflammatory cytokines such

as resistin, tumor necrosis factor-a, and IL-6 are linked to
obesity and subsequent progression to diabetes (3). Adi-
pose tissue is a major source of circulating IL-6, and with
obesity, the expanded fat mass and subsequent IL-6 se-
cretion are implicated in the development of insulin re-
sistance (3). In obese subjects with or without type 2
diabetes, adipose tissue IL-6 content correlates with im-
paired whole-body insulin–mediated glucose uptake and
glucose tolerance (4,5). However, several other cell types
also express and secrete IL-6, including endothelial cells,
pancreatic b-cells, hepatocytes, and skeletal and smooth
muscle (5–7).

In healthy normal glucose tolerant subjects, plasma IL-6
is inversely related to insulin sensitivity (6). IL-6 has
a number of tissue-specific, metabolically relevant actions.
Although epidemiological data confirm a relationship be-
tween the serum IL-6 concentration and insulin resistance
(7), careful examination of clinical cohorts indicates that
this relationship may directly reflect adipose mass rather
than insulin resistance (8,9).

Skeletal muscle contraction during exercise improves
skeletal muscle insulin sensitivity (10,11) and also in-
creases IL-6 mRNA expression and subsequently the cir-
culating IL-6 concentration (12,13). This observation has
led to the proposition that IL-6 may promote nutrient
availability and improve whole-body insulin sensitivity
during exercise (1,2). Recent evidence suggests IL-6 is
a crucial exercise-dependent signal to increase circulating
glucagon-like peptide 1 (GLP-1) and enhance b-cell func-
tion (14). In this respect, tissue-specific actions of IL-6 may
be important to consider. Acute IL-6 exposure has a met-
abolic effect by increasing insulin action in cultured hu-
man skeletal muscle (15–17). Furthermore, chronic IL-6
exposure induces proliferation of muscle satellite cells, thus
promoting muscle regeneration and muscle hypertrophy
(18). In humans, infusion of a physiological IL-6 concentra-
tion in healthy subjects, as well as type 2 diabetic patients,
increases lipolysis and enhances glucose infusion rates
during euglycemic–hyperinsulinemic clamp (17,19,20).

We hypothesized that IL-6 exposure would improve
insulin action in skeletal muscle derived from insulin-
resistant type 2 diabetic subjects. We determined insulin
and IL-6 effects on glucose and lipid metabolism in pri-
mary human skeletal muscle cultures from type 2 diabetic
patients and age- and BMI-matched healthy normal glucose
tolerant subjects.

RESEARCH DESIGN AND METHODS

Human studies. Studies were performed with approval from the local ethical
committee and in accordance with the Declaration of Helsinki. Informed
written consent was obtained from all participants before testing was initiated.
Anthropometric data are presented in Table 1. Type 2 diabetic subjects were
treated with the following antidiabetic medication: metformin (n = 5); sulfo-
nylurea (n = 1); combination of metformin and sulfonylurea (n = 1); and
combination of metformin, sulfonylurea, and thiazolidinedione (n = 1). Type 2
diabetic subjects also received statin treatment (n = 4). One normal glucose
tolerant subject was treated with thyroid hormone replacement.
In vitro contraction of mouse skeletal muscle. Animal experiments were
approved by the local animal ethics committee. Male C57BL6J mice (16 weeks
old) from Charles River Laboratories were anesthetized by intraperitoneal
injection of 2.5% Avertin (20 mL/g body weight). Extensor digitorum longus
(EDL) muscles were removed and incubated in Krebs-Henseleit bicarbonate
buffer with 0.1% BSA, 18 mmol/L D-mannitol, and 2 mmol/L pyruvate for 20 min
at 30°C. Muscles were then mounted in an in vitro contraction apparatus
(Myograph System DMT, Aarhus, Denmark) and incubated in the same buffer
with or without 120 ng/mL mouse IL-6 for 40 min. Thereafter, the buffer was
changed to Krebs-Henseleit bicarbonate buffer with 0.1% BSA, 19 mmol/L
[1-14C]D-mannitol (0.7 mCi/mL), 1 mmol/L [1,2-3-3H(N)]2-deoxy-D-glucose
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(2.5 mCi/mL), with or without 120 ng/mL mouse IL-6. Muscles were incubated
under resting conditions or stimulated to contract for a 10-min period as fol-
lows: 0.2-s trains (20 V, 100 Hz, 0.2-ms impulse), repeated every 2 s. Thereafter,
glucose transport activity was assessed for an additional 10 min. Muscles were
frozen in liquid nitrogen and then homogenized in 0.4 N NaOH. 2-Deoxy-
glucose transport activity is expressed per mmol 3 mL21 intracellular water 3
h21 as described (21).
Cell culture. Isolation of satellite cells and differentiation into myotubes were
performed as described (15). Muscle biopsies (vastus lateralis) were obtained
from normal glucose tolerant and type 2 diabetic subjects under local anes-
thesia (5 mg/mL lidocaine hydrochloride) following overnight fast. Muscle
biopsies were collected in cold PBS supplemented with 1% PeSt (100 U/mL
penicillin and 100 mg/mL streptomycin). Satellite cells were isolated and cul-
tured as described (15). Media were changed every 2 days and before each
experiment. Myotubes were incubated with serum-free Dulbecco’s modified
Eagle’s medium for 6 h before treatment.
Western blot analysis. Myoblasts were grown on 100-mm dishes and treated
for 20minwith 25 ng/mL IL-6 with orwithout insulin (60 or 120 nmol/L). Skeletal
muscle cells were harvested, and protein concentration was determined using
the BCAmethod (Pierce). Aliquots of lysates were solubilized in Laemmli buffer
and separated by SDS-PAGE. Proteins were visualized by chemiluminescence
and quantified by densitometry. Western blot analysis was performed using
phospho-specific antibodies against Aktser473, signal transducer and activator
of transcription 3 (STAT3; Tyr705), Janus kinase 2 (JAK2; Tyr1007/1008), and
AMP-activated protein kinase-a (AMPKa; Thr172), glycogen synthase kinase
3a/b (Ser21/9), IL-6 receptor (IL-6R), and glycoprotein 130 (gp130; Cell Sig-
naling Technology). Suppressor of cytokine signaling 3 (SOCS3) expression
was determined using an anti-SOCS3 antibody. Glyceraldehyde-3-phosphate
dehydrogenase (Santa Cruz Biotechnology) and pan-actin (Cell Signaling
Technology) were used to ensure equal protein loading.
Lipid oxidation. Lipid oxidation in response to IL-6 (25 ng/mL) in skeletal
muscle cells was assessed by exposing myotubes to [3H]palmitic acid and
measuring the production of 3H-labeled water as described previously (22).
Glucose uptake and incorporation to glycogen. Myotubes were pre-
incubated with or without IL-6 (25 ng/mL) for 1 h at 37°C and stimulated with or
without insulin (120 nmol/L) for the final 30 min. Glucose uptake in skeletal
muscle cells was performed as described (15). Glycogen synthesis was de-
termined by assessing the conversion of labeled glucose into glycogen as
described (15).
Enzyme-linked immunosorbent assay. IL-6 skeletal muscle cell secretion
and serum levels were measured using a commercial kit according to the man-
ufacturer’s protocol (Invitrogen). Total protein concentration was assessed and
used for normalization of IL-6 myotube secretion.
Quantitative real-time PCR analysis. Total RNA from skeletal muscle cells
was prepared with the RNeasy Midi Kit (Qiagen) and then reverse-transcribed
using the High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems).
Reagents for real-time PCR analysis, primers, and TaqMan Gene Expression
Master Mix were from Applied Biosystems and used according to the manu-
facturer’s protocol. b2-Microglobulin (b2MG) was used as a reference gene for
normalization. Expression changes were evaluated according to the compar-
ative cycle threshold method. Gene expression was amplified and detected
with the ABI Prism 7000HT Sequence Detection System (Applied Biosystems)
using default cycle parameters. Total RNA concentration and purity were

verified spectrophotometrically using the NanoDrop ND-1000 (Thermo Fisher
Scientific). All samples were analyzed in duplicate or triplicate.
Statistics. Data were analyzed using GraphPad Prism (GraphPad Software,
Inc., La Jolla, CA). Comparisons between two groups were performed using
two-tailed paired or unpaired Student t test. ANOVA followed by Tukey post
hoc test was used for comparisons among three groups. All values are pre-
sented as mean 6 SEM. Statistically significant differences were defined as
P , 0.05.

RESULTS

Subject characteristics. Subject characteristics and
clinical parameters are summarized in Table 1. Type 2 di-
abetic patients attending a primary health care clinic and
normal glucose tolerant volunteers were matched for age
and BMI. As expected, fasting plasma glucose, 2-h glucose,
and HbA1c were elevated in the type 2 diabetic patients.
Serum LDL was lower in the type 2 diabetic patients,
possibly reflecting increased medication. Serum IL-6 was
similar between the groups.
Secretion of IL-6 from cultured human muscle cells.
Media appearance of IL-6 was measured in the muscle cell
cultures established from subjects with normal glucose
tolerance or type 2 diabetes. IL-6 content in media from
cells established from normal glucose tolerant or type 2
diabetic subjects was similar, consistent with results for
the in vivo serum concentrations (Fig. 1).
IL-6 effects on glucose and lipid metabolism. Acute
(1 h) exposure to 25 ng/mL IL-6 increased glycogen synthesis
and glucose uptake in skeletal muscle cells from normal
glucose tolerant subjects, both in the presence or absence
of insulin (Fig. 2A and B). In contrast, IL-6 exposure was
without effect on glycogen synthesis or glucose uptake in
skeletal muscle cells from type 2 diabetic patients (Fig. 2A
and B). Acute exposure of skeletal muscle cells to IL-6 in-
duced a significant increase in fatty acid oxidation, with
a similar response noted between the groups (Fig. 3).
IL-6 activation of intracellular signaling pathways. To
assess whether the reduced IL-6–mediated increase in
skeletal muscle glucose metabolism was also evident for
other effects of IL-6, we assessed acute effects of IL-6–
mediated signaling in skeletal muscle cells. In cultures
established from normal glucose tolerant subjects, an
acute (20 min) IL-6 exposure increased signal transducer
and activator of transcription 3 (STAT3) phosphorylation
(Fig. 4A). Interestingly, in muscle cultures established from
type 2 diabetic patients, this effect was markedly blunted
(Fig. 4A). IL-6 increased JAK2 phosphorylation in cultured
myotubes from individuals with normal glucose tolerance,
but not type 2 diabetes (Fig. 4B).

TABLE 1
General characteristics of the subjects

Clinical characteristics NGT T2DM

n (male) 18 13
Age (years) 60 6 1 61 6 1
BMI (kg/m2) 27.5 6 0.55 29.77 6 1.0*
Waist (cm) 102 6 1 105 6 2
F-plasma glucose (mmol/L) 5.2 6 0.1 7.8 6 0.5***
2-h Plasma glucose (mmol/L) 6.5 6 0.2 14.8 6 1.1***
HbA1c (%) 4.6 6 0.1 6.6 6 0.3***
Insulin (pmol/L) 49.3 6 5.6 51.7 6 12.7
Total cholesterol (mmol/L) 5.62 6 0.35 4.69 6 0.30
LDL (mmol/L) 3.64 6 0.27 2.59 6 0.18**
HDL (mmol/L) 1.69 6 0.10 1.25 6 0.08**
Triglyceride (mmol/L) 1.44 6 0.31 1.67 6 0.33
IL-6 (pg/mL) 2.28 6 0.45 2.51 6 0.52

Data are mean 6 SEM (BMI). F, fasting; NGT, normal glucose toler-
ant; T2DM, type 2 diabetes. *P , 0.05, **P , 0.01, ***P , 0.001.

FIG. 1. IL-6 secretion from cultured skeletal muscle cells derived from
normal glucose tolerant (NGT) (n = 10) subjects and subjects with type
2 diabetes (T2DM) (n = 10). All data are mean 6 SEM. P < 0.05.
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In myotubes from type 2 diabetic patients, insulin in-
creased Aktser473 phosphorylation to a similar extent in
myotubes from normal glucose tolerant subjects and type 2
diabetic patients. Addition of IL-6 was without effect on
insulin-induced Aktser473 phosphorylation in myotubes from
normal glucose tolerant as well as type 2 diabetic patients
(Fig. 4C). IL-6 increased AMPKa Τhr172 phosphorylation in
skeletal muscle cells from normal glucose tolerant subjects
and type 2 diabetic patients to a similar extent (Fig. 4D).

To assess the effects of IL-6 at time points equivalent to
the metabolic assays (Figs. 2 and 3), cultured myotubes
were incubated with or without IL-6 (25 ng/mL) for 1 h in
the presence or absence of insulin (120 nmol/L) for the
final 30 min. Similar to what we observed following a 20-
min IL-6 exposure, a 1-h IL-6 exposure increased STAT3
phosphorylation to a greater extent in myotubes from
normal glucose tolerant subjects as compared with type 2
diabetic patients (Fig. 5A). Interestingly, whereas insulin
alone was without effect on STAT3 phosphorylation, in
muscle cultures established from type 2 diabetic patients,
insulin potentiated the effect of IL-6 on signal transduction.

In myotubes from type 2 diabetic patients, insulin-induced
Aktser473 phosphorylation was blunted compared with
myotubes from normal glucose tolerant subjects, suggest-
ing a more rapid dephosphorylation of Akt (Fig. 5B). Ad-
dition of IL-6 was without effect on insulin-induced
Aktser473 phosphorylation (Fig. 5B). To explore signaling
events downstream of Akt, phosphorylation of glycogen
synthase kinase 3 (GSK3) a and b was determined. IL-6
exposure did not alter GSK3a/b phosphorylation. Fur-
thermore, insulin-induced phosphorylated GSK3 a or b
was not impaired in myotubes derived from type 2 diabetic
subjects (Fig. 5C). Finally, IL-6 exposure did not induce
any change in the phosphorylation status of glycogen
synthase (data not shown).
Expression of intracellular signaling mediators. Be-
cause IL-6 signaling and metabolic responses were impaired
in myotubes from type 2 diabetic patients, we determined
whether expression of key signaling components is altered.
Protein abundance of IL-6R or coreceptor gp130 was un-
altered in myotubes from people with normal glucose toler-
ance or type 2 diabetes (Fig. 5D and E). Protein abundance
of SOCS3 was elevated in myotubes from type 2 diabetic
patients (Fig. 5F). mRNA expression of IL-6, IL-6R, and the
gp130 coreceptor were unaltered in cultured myotubes and
skeletal muscle biopsies obtained from people with normal
glucose tolerance or type 2 diabetes (Table 2).
IL-6 does not enhance contraction-stimulated glucose
uptake. To determine whether IL-6 exposure potentiates
the effects of muscle contraction on glucose uptake,
mouse EDL muscles were electrically stimulated to con-
tract in the presence or absence of 120 ng/mL mouse IL-6.
Contraction increased glucose uptake twofold compared
with rested muscle (P , 0.05). IL-6 plus contraction did
not have a greater effect on muscle glucose transport than
contractile activity alone (Fig. 6). This finding is compati-
ble with the hypothesis that IL-6 and contraction increase
glucose transport by a similar pathway.

DISCUSSION

In this study, we determined the acute effect of IL-6 on
glucose and lipid metabolism in primary cultured skeletal
muscle cells from normal glucose tolerant and type 2 diabetic

FIG. 2. A: Glycogen synthesis in skeletal muscle cells (n = 6). B: Glucose uptake in skeletal muscle cells (n = 6). All data are mean 6 SEM. *P <
0.05, **P < 0.01, ***P < 0.001 relative to basal; +P < 0.05 relative to insulin-stimulated basal. NGT, normal glucose tolerant; T2DM, type 2
diabetes.

FIG. 3. Lipid oxidation in skeletal muscle cells (n = 8). All data are
mean 6 SEM. *P < 0.05, ***P < 0.001 relative to basal. NGT, normal
glucose tolerant; T2DM, type 2 diabetes.
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subjects. IL-6 exposure enhances glucose uptake and gly-
cogen synthesis in skeletal muscle cells from people
with normal glucose tolerance at basal and under insulin-
stimulated conditions (15–17,23). Thus, our initial hypoth-
esis was that IL-6 exposure may potentiate glucose uptake
in myotubes from type 2 diabetic patients and provide an
alternative strategy to enhance glucose metabolism in in-
sulin-resistant cells. Contrary to our expectations, myotubes
from type 2 diabetic patients are resistant to the metabolic
action of IL-6 on glucose metabolism.

To dissect the mechanism by which IL-6 signaling
enhances metabolism in skeletal muscle, we assessed

phosphorylation of several proteins implicated in the
canonical IL-6 cascade. Phosphorylation of JAK2 and
STAT3 was increased significantly in response to IL-6 ex-
posure in myotubes from people with normal glucose tol-
erance. However, this signaling response was blunted in
myotubes from type 2 diabetic patients, possibly attributed
to elevated expression of SOCS3. SOCS3 has been shown to
interfere with post–receptor insulin or leptin signal trans-
duction (24,25), as well as tempering cytokine responses
(26). Thus, increased skeletal muscle expression of
SOCS3 may contribute to insulin resistance in type 2 di-
abetes. In obese people, circulating mononuclear cells

FIG. 4. A: Expression of phosphorylated STAT3 in skeletal muscle cells after stimulation with IL-6 (n = 7). Note only IL-6–stimulated conditions
were quantified because the basal STAT3

tyr705
phosphorylation level was below detection limit. B: Expression of phosphorylated JAK2

tyr1007
in

skeletal muscle cells after stimulation with IL-6 (n = 6 to 7). C: Expression of insulin-stimulated phosphorylation of Akt
ser473

in skeletal muscle
cells (n = 6 to 7). Note all conditions are insulin-stimulated because the basal Akt

ser473
phosphorylation level was below detection limit. D: Ex-

pression of phosphorylated AMPKathr172
in skeletal muscle cells (n = 6 to 7). All data are mean 6 SEM. *P < 0.05 relative to control. NGT, normal

glucose tolerant; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; p, phosphorylation; T2DM, type 2 diabetes.
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are characterized by reduced insulin receptor tyrosine
phosphorylation, which is inversely related to increased
SOCS3 expression (27). It is noteworthy that SOCS3 ex-
pression is increased in mononuclear cells from healthy
people in response to a high-fat, high-carbohydrate meal
(28) or following ingestion of glucose or cream (29).

In healthy young males, the IL-6 infusion enhances lipid
metabolism in skeletal muscle but not adipose tissue (30).
Although we noted that IL-6–mediated glucose metabolism
was impaired in myotubes from type 2 diabetic patients,
the effect of IL-6 on lipid oxidation was unaltered between
people with type 2 diabetes or normal glucose tolerance.
IL-6–mediated effects on lipid metabolism involve AMPK
signaling (15,17,31,32). Consistent with our finding that IL-
6–induced lipid oxidation was preserved in myotubes from
type 2 diabetic patients, IL-6–dependent AMPK phosphor-
ylation was also similar between glucose tolerant and type
2 diabetic subjects. Thus, the JAK–STAT pathway may be
dispensable for IL-6 signaling to AMPK; however, this
requires further molecular interrogation. In contrast to the
increased protein expression of SOCS3 in cells derived

from type 2 diabetic patients, mRNA expression of com-
ponents of the IL-6R was unaltered between myotubes
derived from normal glucose tolerant and type 2 diabetic
subjects.

Akt is critical for insulin signaling to glucose metabolism
(33,34). In this study, we report that myotubes from type 2
diabetic patients displayed impaired insulin, as well as IL-
6–mediated glucose metabolism. Interestingly, insulin ac-
tion on Akt phosphorylation was not impaired in myotubes
from type 2 diabetic patients following a 20-min insulin
stimulation. Indeed, insulin-stimulated Akt phosphoryla-
tion in skeletal muscle is unaltered in type 2 diabetic
patients studied in vivo, despite profound impairments in
glucose disposal (35,36). However, in the current study,
insulin-stimulated Akt phosphorylation was blunted in
myotubes from type 2 diabetic patients following a 30-min
insulin exposure, suggesting a more rapid dephos-
phorylation of Akt.

There is growing appreciation that inflammatory path-
ways, including those engaged by IL-6, play an endocrine
role in the regulation of metabolism (1). However, the role

FIG. 5. A: Abundance of phosphorylated STAT3 in skeletal muscle cells after stimulation with IL-6 (n = 8 to 9). Note only IL-6–stimulated con-
ditions were quantified because the basal STAT3

tyr705
phosphorylation level was below detection limit. B: Insulin-stimulated phosphorylation of

Akt
ser473

in skeletal muscle cells (n = 4). Note all conditions are insulin-stimulated because the basal Akt
ser473

phosphorylation level was below
detection limit. C: Insulin-stimulated phosphorylation of GSK3a/bser21/9

in skeletal muscle cells (n = 3). D: IL-6R abundance (n = 4). E: gp130
abundance (n = 4). F: Abundance of SOCS3 in skeletal muscle cells (n = 6 to 7). Pan-actin and glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) are shown as markers of protein loading. P < 0.05. NGT, normal glucose tolerant; p, phosphorylation; T2DM, type 2 diabetes.
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of IL-6 in the pathophysiology of obesity and diabetes has
been vigorously debated. Although the serum level of IL-6
often correlates with insulin resistance (7), this is not
a universal finding (8,9). Administration of IL-6 to rodents
has an antiobesity (37) as well as antidiabetic (14) effect.
Mice lacking IL-6 protein develop obesity and insulin re-
sistance (38). In this study, we observed a trend toward
increased secretion of IL-6 from myotubes derived from
type 2 diabetic patients compared with normal glucose
tolerant subjects. Because IL-6 action on glucose metabo-
lism was reduced in myotubes from type 2 diabetic patients,
the increase in IL-6 secretion from these cells may be
a compensatory mechanism to maintain glucose uptake.

Skeletal muscle IL-6 mRNA and circulatory IL-6 levels are
increased after acute exercise (15,17,22). In this study, we
provide evidence that IL-6 plus contraction did not have
a greater effect on muscle glucose transport than contrac-
tile activity alone, compatible with the hypothesis that IL-6
and contraction increase glucose transport by a similar
pathway. Recent evidence suggests that IL-6 is required for
the exercise-mediated increase in GLP-1 (17), leading to
improved insulin secretion and glucose homeostasis. Thus,
intestinal L cells and pancreatic a cells are now considered
metabolically relevant IL-6 target tissues. However, in light
of the results presented in this paper highlighting IL-6 re-
sistance in subjects with type 2 diabetes, whether exercise-
induced IL-6 has a similar effect on GLP-1 secretion in type
2 diabetic patients warrants further investigation.

Several lines of evidence suggest that skeletal muscle
cultured cells have a metabolic memory consistent with
the host condition. For example, cultured skeletal muscle

cells from type 2 diabetic patients retain an insulin-
resistant phenotype in culture (39–41). Similarly, elevated
nuclear factor-kB activation has been noted in cultured
muscle from obese type 2 diabetic patients (42). In addi-
tion, the metabolic response endothelin is attenuated in
cultured myotubes from type 2 diabetic patients (43). This
metabolic memory persists after many passages in culture
and underscores the utility of satellite cell cultures to
elucidate molecular mechanism for impaired intracellular
signaling in the context of human disease. Whether this
metabolic memory is a reflection of disease-specific gene
variants or an epigenetically acquired trait following in
vivo exposure to altered milieu remains to be investigated.

In conclusion, we present evidence that skeletal muscle
cells from subjects with type 2 diabetes are partially IL-6–
resistant. IL-6 effects on glucose metabolism through the
JAK–STAT pathway are impaired, whereas IL-6–mediated
effects on lipid oxidation are not affected. Thus, increased
circulatory IL-6 noted in subjects with insulin resistance
may be a compensatory mechanism to overcome partial
IL-6 resistance in skeletal muscle; alternatively, the in-
crease in IL-6 may serve as a compensatory mechanism
mediated by inflammatory response, including the activa-
tion of nuclear factor-kB, which in turn may be responsible
for the induction of insulin resistance.
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